1 |
GILBERT A, SHERWOOD LOLLAR B, MUSAT F, et al. Intramolecular isotopic evidence for bacterial oxidation of propane in subsurface natural gas reservoirs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6 653-6 658.
|
2 |
KOPPMANN R. Chemistry of volatile organic compounds in the atmosphere[M]// Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer, 2010: 267-277.
|
3 |
KANAKIDOU M, SINGH H B, VALENTIN K M, et al. A two-dimensional study of ethane and propane oxidation in the troposphere[J]. Journal of Geophysical Research: Atmospheres, 1991, 96 (D8): 15 395-15 413.
|
4 |
AIKIN A C, HERMAN J R, MAIER E J, et al. Atmospheric chemistry of ethane and ethylene[J]. Journal of Geophysical Research: Oceans, 1982, 87(C4): 3 105-3 118.
|
5 |
EDWARDS P M, BROWN S S, ROBERTS J M, et al. High winter ozone pollution from carbonyl photolysis in an oil and gas basin[J]. Nature, 2014, 514(7 522): 351-354.
|
6 |
LAL S, SAHU L K, VENKATARAMANI S. Impact of transport from the surrounding continental regions on the distributions of ozone and related trace gases over the Bay of Bengal during February 2003[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D14): D14302.
|
7 |
MCKAIN K, DOWN A, RACITI S M, et al. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 1 941-1 946.
|
8 |
KATZENSTEIN A S, DOEZEMA L A, SIMPSON I J, et al. Extensive regional atmospheric hydrocarbon pollution in the southwestern United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(21): 11 975-11 979.
|
9 |
POZZER A, POLLMANN J, TARABORRELLI D, et al. Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes[J]. Atmospheric Chemistry and Physics (ACP) & Discussions, 2010, 10(195): 4 403-4 422.
|
10 |
ETIOPE G, CICCIOLI P. Earth's degassing: a missing ethane and propane source[J]. Science, 2009, 323(5 913): 478.
|
11 |
RUDOLPH J, EHHALT D H. Measurements of C2-C5 hydrocarbons over the North Atlantic[J]. Journal of Geophysical Research: Oceans, 1981, 86(C12): 11 959-11 964.
|
12 |
ZHANG Fugui, ZHOU Yalong, SUN Zhongjun, et al. Research progress of geochemical exploration technology for natural gas hydrate in the permafrost area, China[J]. Advances in Earth Science, 2021, 36(3): 276-287.
|
|
张富贵,周亚龙,孙忠军,等. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展,2021,36(3):276-287.
|
13 |
RUDOLPH J. The tropospheric distribution and budget of ethane[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D6): 11 369-11 381.
|
14 |
REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2):486-513.
|
15 |
FORSTER P. Climate change 2007: the physical science basis.Contribution of working group Ⅰ to the forth assessment report of the IPCC[M]. Cambrige, UK: Cambrige University Press, 2007.
|
16 |
SWINNERTON J W, LAMONTAGNE R A. Oceanic distribution of low-molecular-weight hydrocarbons. Baseline measurements[J]. Environmental Science & Technology, 1974, 8 (7): 657-663.
|
17 |
HUNT J M. Hydrocarbon geochemistry of Black Sea: geochemistry[J]. The Black Sea—Geology, Chemistry, and Biology, 1974, A145: 499-504.
|
18 |
PLASS-DÜLMER C, KOPPMANN R, RATTE M, et al. Light nonmethane hydrocarbons in seawater[J]. Global Biogeochemical Cycles, 1995, 9: 79-100.
|
19 |
BROOKS J M, SACKETT W M. Sources, sinks, and concentrations of light hydrocarbons in the Gulf of Mexico[J]. Journal of Geophysical Research, 1973, 78(24): 5 248-5 258.
|
20 |
TSURUSHIMA N, WATANABE S, TSUNOGAI S. Determination of light hydrocarbons dissolved in seawater[J]. Talanta, 1999, 50(3): 577-583.
|
21 |
BROADGATE W J, MALIN G, KÜEPPER F C, et al. Isoprene and other non-methane hydrocarbons from seaweeds: a source of reactive hydrocarbons to the atmosphere[J]. Marine Chemistry, 2004, 88(1/2):61-73.
|
22 |
BROADGATE W J, LISS P S, PENKETT S A. Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean[J]. Geophysical Research Letters, 1997, 24(21): 2 675-2 678.
|
23 |
LI J L, ZHAI X, MA Z, et al. Spatial distributions and sea-to-air fluxes of non-methane hydrocarbons in the atmosphere and seawater of the Western Pacific Ocean[J]. Science of the Total Environment, 2019, 672: 491-501.
|
24 |
WU Y C, LI J L, WANG J, et al. Occurance, emission and environmental effects of non-methane hydrocarbons in the Yellow Sea and the East China Sea[J]. Environmental Pollution, 2021, 270: 116305. DOI: 10.1016/j.envpol.2020.116305 .
|
25 |
LAMONTAGNE R A, SWINNERTON J W, LINNENBOM V J. C1-C4 hydrocarbons in the North and South Pacific[J]. Tellus, 1974, 26(1/2): 71-77.
|
26 |
GREENBERG J P, ZIMMERMAN P R. Nonmethane hydrocarbons in remote tropical, continental, and marine atmospheres[J]. Journal of Geophysical Research Atmospheres, 1984, 89(D3): 4 767-4 778.
|
27 |
REED W E, KAPLAN I R. The chemistry of marine petroleum seeps[J]. Journal of Geochemical Exploration, 1977, 7: 255-293.
|
28 |
TYLER P A, YOUNG C M. Reproduction and dispersal at vents and cold seeps[J]. Journal of the Marine Biological Association of the United Kingdom, 1999, 79(2): 193-208.
|
29 |
RATTE M, PLASS-DÜLMER C, KOPPMANN R, et al. Horizontal and vertical profiles of light hydrocarbons in sea water related to biological, chemical and physical parameters[J]. Tellus Series B—Chemical & Physical Meteorology, 1995, 47(5):607-623.
|
30 |
PLASS C, KOPPMANN R, RUDOLPH J. Light hydrocarbons in the surface water of the mid-Atlantic[J]. Journal of Atmospheric Chemistry, 1992, 15(3/4): 235-251.
|
31 |
RATTE M, BUJOK O, SPITZY A, et al. Photochemical alkene formation in seawater from dissolved organic carbon: results from laboratory experiments[J]. Journal of Geophysical Research Atmospheres, 1998, 103(D5): 5 707-5 717.
|
32 |
OREMLAND R S, WHITICAR M J, STROHMAIER F E, et al. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1988, 52(7): 1 895-1 904.
|
33 |
VOGEL T M, OREMLAND R S, KVENVOLDEN K A. Low-temperature formation of hydrocarbon gases in San Francisco Bay sediment (California, U.S.A.)[J]. Chemical Geology, 1982, 37(3/4): 289-298.
|
34 |
KVENVOLDEN K A, REDDEN G D. Hydrocarbon gas in sediment from the shelf, slope, and basin of the Bering Sea[J]. Geochimica et Cosmochimica Acta, 1980, 44 (8): 1 145-1 150.
|
35 |
KVENVOLDEN K A. Hydrocarbon gas in sediment of the southern Pacific Ocean[J]. Geo-Marine Letters, 1988, 8(3): 179-187.
|
36 |
HINRICHS K U, HAYES J M, BACH W, et al. Biological formation of ethane and propane in the deep marine subsurface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(40): 14 684-14 689.
|
37 |
MILKOV A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth-Science Reviews, 2004, 66(3/4): 183-197.
|
38 |
SASSEN R, CURIALE J A. Microbial methane and ethane from gas hydrate nodules of the Makassar Strait, Indonesia[J].Organic Geochemistry, 2006, 37(8): 977-980.
|
39 |
MILKOV A V. Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings[J]. Organic Geochemistry, 2005, 36(5): 681-702.
|
40 |
BERNARD B B, BROOKS J M, SACKETT W M. Light hydrocarbons in recent Texas continental shelf and slope sediments[J]. Journal of Geophysical Research Oceans, 1978, 83(C8): 4 053-4 061.
|
41 |
MCKAY W A, TURNER M F, JONES B M R, et al. Emissions of hydrocarbons from marine phytoplankton—some results from controlled laboratory experiments[J]. Atmospheric Environment, 1996, 30(14): 2 583-2 593.
|
42 |
RONTANI J F. Identification by GC/MS of acidic compounds produced during the photosensitized oxidation of normal and isoprenoid alkanes in seawater[J]. International Journal of Environmental Analytical Chemistry, 1991, 45(1): 1-9.
|
43 |
LEE R F, BAKER J. Ethylene and ethane production in an estuarine river: formation from the decomposition of polyunsaturated fatty acids[J]. Marine Chemistry, 1992, 38(1/2): 25-36.
|
44 |
PSZENNY A A P, PRINN R G, KLEIMAN G, et al. Nonmethane hydrocarbons in surface waters, their sea-air fluxes and impact on OH in the marine boundary layer during the First Aerosol Characterization Experiment (ACE 1)[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D17): 21 785-21 801.
|
45 |
BERNARD B B, BROOKS J M, SACKETT W M. Natural gas seepage in the Gulf of Mexico[J]. Earth and Planetary Science Letters, 1976, 31(1): 48-54.
|
46 |
VIETH A, WILKES H. Stable isotopes in understanding origin and degradation processes of petroleum[M]// Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer, 2010.
|
47 |
CLAYPOOL G E, KVENVOLDEN K A. Methane and other hydrocarbon gases in marine sediment[J]. Annual Review of Earth and Planetary Sciences, 1983, 11(1): 299-327.
|
48 |
BELAY N, DANIELS L. Ethane production by methanosarcina barkeri during growth in ethanol supplemented medium[J]. Antonie van Leeuwenhoek, 1988, 54(2): 113-125.
|
49 |
KNIEMEYER O, MUSAT F, SIEVERT S M, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria[J]. Nature, 2007, 449(7 164): 898-901.
|
50 |
CHEN S C, MUSAT N, LECHTENFELD O J, et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep[J]. Nature, 2019, 568(7 750): 108-111.
|
51 |
FU Xiancai. Physical chemistry [M]. 5th Edition. Beijing: Higher Education Press, 2005: 483-492.
|
|
傅献彩. 物理化学[M]. 第五版. 北京:高等教育出版社, 2005: 483-492.
|
52 |
HAYNES W. CRC handbook of chemistry and physics, 95th ed[M]. Boca Raton, FL, USA: CRC Press, 2014: 1 364-1 366.
|
53 |
DAVIS J B, SQUIRES R M. Detection of microbially produced gaseous hydrocarbons other than methane[J]. Science, 1954, 119(3 090): 381-382.
|
54 |
EMERY K O, HOGGAN D. Gases in marine sediments[J]. AAPG Bulletin, 1958, 42: 2 174-2 188.
|
55 |
XIE S T, LAZAR C S, LIN Y S, et al. Ethane- and propane- producing potential and molecular characterization of an ethanogenic enrichment in an anoxic estuarine sediment[J]. Organic Geochemistry, 2013, 59: 37-48.
|
56 |
TAYLOR C D, WOLFE R S. Structure and methylation of Coenzyme M (HSCH2CH2SO3)[J]. Journal of Biological Chemistry, 1974, 249(15): 4 879-4 885.
|
57 |
BALCH W E, WOLFE R S. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in methanobacterium ruminantium[J]. Journal of Bacteriology, 1979, 137(1): 264-273.
|
58 |
FERRY J G. The chemical biology of methanogenesis[J]. Planetary & Space Science, 2010, 58(14/15):1 775-1 783.
|
59 |
GUNSALUS R P, ROMESSER J A, WOLFE R S. Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of methanobacterium thermoautotrophicum[J]. Biochemistry, 1978, 17(12): 2 374-2 377.
|
60 |
OREMLAND R S. Microbial formation of ethane in anoxic estuarine sediments[J]. Applied and Environmental Microbiology, 1981, 42(1):122-129.
|
61 |
BELAY N, DANIELS L. Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria[J]. Applied and Environmental Microbiology, 1987, 53(7): 1 604-1 610.
|
62 |
KOENE C F H M, SCHRAA G. Anaerobic reduction of ethene to ethane in an enrichment culture[J]. FEMS Microbiology Ecology, 1998, 25(3): 251-256.
|
63 |
BALCH W E, WOLFE R S. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid)[J]. Journal of Bacteriology, 1979, 137(1): 256-263.
|
64 |
MCINERNEY M J, STRUCHTEMEYER C G, SIEBER J, et al. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism[J]. Annals of the New York Academy of Sciences, 2008, 1 125(1): 58-72.
|
65 |
CLAYPOOL G. Biogenic ethane-where does it come from[Z]. American Association of Petroleum Geologists Hedberg Conference Abstracts, Natural Gas Formation and Occurrence, June 6-10, 1999 , Durango, Colorado, 1999: 27-29.
|
66 |
CONRAD R, KLOSE M. Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots[J]. FEMS Microbiology Ecology, 1999, 30(2): 147-155.
|
67 |
ROJO F. Enzymes for Aerobic Degradation of Alkanes[M]//Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer, 2010: 781-797.
|
68 |
LABINGER J A, BERCAW J E. Understanding and exploiting C-H bond activation[J]. Nature, 2002, 417(6 888): 507-514.
|
69 |
BEILEN J B VAN, LI Z, DUETZ W A, et al. Diversity of alkane hydroxylase systems in the environment[J]. Oil & Gas Science & Technology, 2003, 58(4): 427-440.
|
70 |
WENTZEL A, ELLINGSEN T E, KOTLAR H K, et al. Bacterial metabolism of long-chain n-alkanes[J]. Applied Microbiology and Biotechnology, 2007, 76(6): 1 209-1 221.
|
71 |
KNIEF C, LIPSKI A, DUNFIELD P F. Diversity and activity of methanotrophic bacteria in different upland soils[J]. Applied and Environmental Microbiology, 2003, 69(11):6 703-6 714.
|
72 |
KNIEF C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker[J]. Frontiers in Microbiology, 2015, 6: 1346.
|
73 |
CONRAD R. The global methane cycle: recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports, 2009, 1(5): 285-292.
|
74 |
KNITTEL K, BOETIUS A. The anaerobic oxidation of methane-progress with an unknown process[J]. Annual Reviews of Microbiology, 2009, 63: 311-334.
|
75 |
JAMES A T, BURNS B J. Microbial alteration of subsurface natural gas accumulations1[J]. AAPG Bulletin, 1984, 68(8): 957-960.
|
76 |
HIGGINS I J, QUAYLE J R. Oxygenation of methane by methane-grown pseudomonas methanica and methanomonas methanooxidans[J]. The Biochemical Journal, 1970, 118(2): 201-208.
|
77 |
SÖHNGEN N L. Uber bakterien welche methan ab kohlenstoffnahrung und energiequelle gebrauchen[J]. Zentrabl Bakteriol Parasitenk Infektionskr, 1906, 15: 513-517.
|
78 |
SÖHNGEN N L. Benzin, Petroleum, Paraffinöl und Paraffin als Kohlenstoff- und Energiequelle für Mikroben[J]. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt, 1913, 37: 595-609.
|
79 |
DAVIS J B, CHASE H H, RAYMOND R L. Mycobacterium paraffinicum n. sp., a bacterium isolated from soil[J]. Applied Microbiology, 1956, 4(6): 310-315.
|
80 |
DWORKIN M, FOSTER J W. Experiments with some microorganisms which utilize ethane and hydrogen[J]. Journal of Bacteriology, 1958, 75(5): 592-603.
|
81 |
BERTHE CORTI L, FETZNER S. Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions[J]. Acta Biotechnologica, 2002, 22(3/4): 299-336.
|
82 |
ASHRAF W, MIHDHIR A, MURRELL J C. Bacterial oxidation of propane[J]. FEMS Microbiology Letters, 1994, 122(1/2): 1-6.
|
83 |
DANIEL J A. Butane metabolism by butane-grown "Pseudomonas butanovora"[J]. Microbiology, 1999, 145(5): 1 173-1 180.
|
84 |
PERRY J J. Propane utilization by microorganisms[J]. Advances in Applied Microbiology, 1980, 26:89-115.
|
85 |
REDMOND M C, VALENTINE D L, SESSIONS A L. Identification of Novel Methane-, Ethane-, and Propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing[J]. Applied and Environmental Microbiology, 2010, 76(19): 6 412-6 422.
|
86 |
MUKHERJEE J, MENGE M, HOISCHEN D, et al. Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions[J]. Acta Biotechnologica, 2002, 22(3/4): 299-336.
|
87 |
SMITH D D S, DALTON H. Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath)[J]. European Journal of Biochemistry, 1989, 182(3): 667-671.
|
88 |
LIPSCOMB J D. Biochemistry of the soluble methane monooxygenase[J]. Annual Review of Microbiology, 1994, 48: 371-399.
|
89 |
SHENNAN J L. Utilisation of C2-C4 gaseous hydrocarbons and isoprene by microorganisms[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(3): 237-256.
|
90 |
DALTON H. Structure and mechanism of action of the Enzyme(s) involved in Methane Oxidation[M]// Applications of enzyme biotechnology. Boston, MA: Springer, 1991: 55-68.
|
91 |
VESTAL J R. The metabolism of gaseous hydrocarbons by microorganisms[M]// Petroleum microbiology. New York: Macmillan Publishing Co., 1984: 129-151.
|
92 |
KOTANI T, YAMAMOTO T, YURIMOTO H, et al. Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. Strain TY-5[J]. Journal of Bacteriology, 2003, 185(24): 7 120-7 128.
|
93 |
LI J, LIU C L, HE X L, et al. Aerobic microbial oxidation of hydrocarbon gases: implications for oil and gas exploration[J]. Marine and Petroleum Geology, 2019, 103: 76-86.
|
94 |
KINNAMAN F S, VALENTINE D L, TYLER S C. Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane[J]. Geochimica et Cosmochimica Acta, 2007, 71(2):271-283.
|
95 |
CHEN X G, SCHMIDT M, CHEN C L, et al. Carbon and hydrogen isotope fractionation during aerobic oxidation of short-chain alkanes in experimental incubations of vent fluids[J]. Organic Geochemistry, 2021, 158: 104269.
|
96 |
HINRICHS K U, BOETIUS A. The Anaerobic Oxidation of Methane: new insights in microbial ecology and biogeochemistry[M]. Berlin, Heidelberg: Springer, 2003: 457-477.
|
97 |
ORCUTT B N, BOETIUS A, LUGO S K, et al. Life at the edge of methane ice: microbial cycling of carbon and sulfur in Gulf of Mexico gas hydrates-ScienceDirect[J]. Chemical Geology, 2004, 205(3/4): 239-251.
|
98 |
JOYE S B, BOETIUS A, ORCUTT B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J]. Chemical Geology, 2004, 205(3/4): 219-238.
|
99 |
MASTALERZ V, de LANGE G J, DÄHLMANN A. Differential aerobic and anaerobic oxidation of hydrocarbon gases discharged at mud volcanoes in the Nile deep-sea fan[J]. Geochimica et Cosmochimica Acta, 2009, 73(13): 3 849-3 863.
|
100 |
JAEKEL U, MUSAT N, ADAM B, et al. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps[J]. The ISME Journal, 2013, 7(5): 885-895.
|
101 |
SAVAGE K N, KRUMHOLZ L R, GIEG L M, et al. Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns[J]. FEMS Microbiology Ecology, 2010, 72(3): 485-495.
|
102 |
MUSAT F. The anaerobic degradation of gaseous, nonmethane alkanes-From in situ processes to microorganisms[J]. Computational and Structural Biotechnology Journal, 2015, 13: 222-228.
|
103 |
SINGH R, GUZMAN M S, BOSE A. Anaerobic oxidation of ethane, propane, and butane by marine microbes: a mini review[J]. Frontiers in Microbiology, 2017, 8: 2 056-2 056.
|
104 |
JAEKEL U, VOGT C, FISCHER A, et al. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria[J]. Environmental Microbiology, 2014, 16(1): 130-140.
|
105 |
GRUNDMANN O, BEHRENDS A, RABUS R, et al. Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1[J]. Environmental Microbiology, 2008, 10(2): 376-385.
|
106 |
BHARADWAJ V S, VYAS S, VILLANO S M, et al. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism-a gas-phase ab initio study[J]. Physical Chemistry Chemical Physics, 2015, 17(6): 4 054-4 066.
|
107 |
ADAMS M, HOARFROST A, BOSE A, et al. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity[J]. Frontiers in Microbiology, 2013, 4:110.
|
108 |
BAO P, LI G X, SUN G X, et al. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling[J]. The Science of the Total Environment, 2018, 613/614: 398-408.
|
109 |
HAHN C J, LASO-PÉREZ R, VULCANO F, et al. Candidatus Ethanoperedens, a thermophilic genus of archaea mediating the anaerobic oxidation of ethane[J]. mBio, 2020, 11(2):e00600-20. DOI: 10.1101/2020.03.21.999862 .
|