地球科学进展 ›› 2022, Vol. 37 ›› Issue (4): 370 -381. doi: 10.11867/j.issn.1001-8166.2021.110

综述与评述 上一篇    下一篇

海洋环境中乙烷和丙烷的分布及生物转化
袁媛 1 , 2 , 3( ), 庄光超 1 , 2( ), 毛士海 1 , 2 , 3, 刘佳睿 4, 刘喜停 5, 杨桂朋 1 , 2 , 3   
  1. 1.深海圈层与地球系统前沿科学中心和海洋化学理论与工程技术教育部重点实验室,中国海洋大学,山东 青岛 266100
    2.青岛海洋科学与技术试点国家实验室 海洋生态与环境科学功能实验室,山东 青岛 266237
    3.中国海洋大学化学化工学院,山东 青岛 266100
    4.Department of Earth,Planetary and Space Sciences,University of California,Los Angeles,CA,USA 9009
    5.中国海洋大学海洋地球科学学院,山东 青岛 266100
  • 收稿日期:2021-09-15 修回日期:2021-11-10 出版日期:2022-04-10
  • 通讯作者: 庄光超 E-mail:yuanyuan3305@stu.ouc.edu.cn;zgc@ouc.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“瓜伊马斯盆地热液区深部沉积物中甲烷及其他小分子化合物的代谢途径与机制研究”(42076031);山东省泰山学者工程(tsqn201909057)

Distribution and Biotransformation of Ethane and Propane in Marine Environments

Yuan YUAN 1 , 2 , 3( ), Guangchao ZHUANG 1 , 2( ), Shihai MAO 1 , 2 , 3, Jiarui LIU 4, Xiting LIU 5, Guipeng YANG 1 , 2 , 3   

  1. 1.Frontiers Science Center for Deep Ocean Multispheres and Earth System,and Key Laboratory of Marine Chemistry Theory and Technology,Ministry of Education,Ocean University of China,Qingdao 266100,China
    2.Marine Ecology and Environmental Science Laboratory,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China
    3.College of Chemistry and Chemical Engineering,Ocean University of China,Qingdao 266100,China
    4.Department of Earth,Planetary and Space Sciences,University of California,Los Angeles,CA,USA 9009
    5.College of Marine Geosciences,Ocean University of China,Qingdao 266100,China
  • Received:2021-09-15 Revised:2021-11-10 Online:2022-04-10 Published:2022-04-28
  • Contact: Guangchao ZHUANG E-mail:yuanyuan3305@stu.ouc.edu.cn;zgc@ouc.edu.cn
  • About author:YUAN Yuan (1996-), female, Jiujiang City, Jiangxi Province, Master student. Research areas include marine biogeochemistry. E-mail: yuanyuan3305@stu.ouc.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Metabolic pathways of methane and other low molecular weight compounds in hydrothermally altered subseafloor sediments from the Guaymas Basin"(42076031);The Taishan Scholar Project of Shandong Province(tsqn201909057)

海洋沉积物中蕴含着大量以甲烷(CH4)、乙烷(C2H6)和丙烷(C3H8)为主要成分的烷烃化合物,与甲烷类似,乙烷与丙烷也是重要的温室气体。水合物分解和油气渗漏会释放这些烷烃化合物到海水及大气中,对海洋生态环境及全球气候产生重要影响。海洋环境中的微生物对烷烃的氧化作用有效降低了海洋烷烃气体的排放通量。系统综述了海洋环境中乙烷和丙烷的分布及生物转化机制的最新研究进展,归纳出以下认识: 海水中乙烷与丙烷的分布特征明显,主要受到水文、化学及生物等环境参数的影响; 海洋环境中乙烷与丙烷的生物来源主要有海水中浮游植物生产释放和沉积物中厌氧微生物生成,产甲烷菌可以利用多种底物生成乙烷与丙烷; 乙烷和丙烷的好氧氧化主要由烷烃氧化菌完成,并且该过程中伴随一定程度的碳氢同位素分馏; 沉积物中乙烷与丙烷的厌氧氧化通常与硫酸盐还原耦合,目前已对参与氧化乙烷与丙烷的硫酸盐还原菌及厌氧氧化机制有了初步认识。总结和回顾了海洋环境中乙烷和丙烷的来源、分布及微生物代谢过程,可为未来深入理解碳氢化合物的生物地球化学循环奠定基础。

Marine sediments contain large amounts of alkanes, mainly consisting of methane (CH4), ethane (C2H6), and propane (C3H6). Similar to methane, ethane and propane are also important greenhouse gases. The decomposition of hydrates and oil/gas seeps can cause the release of ethane and propane into seawater and the atmosphere, significantly impacting the marine ecosystems and global climate change. The microbial oxidation of alkanes, in marine environments, effectively reduces the emission flux of these gases. The latest research progresses on the distribution and biotransformation of ethane and propane in marine environment were reviewed with the following highlights: The distribution of ethane and propane in seawater exhibited clear patterns, which are largely influenced by hydrological, chemical, and biological factors; Biological sources of ethane and propane in marine environments include phytoplankton production in seawater and anaerobic production by microorganisms in sediments. Methanogens can produce ethane and propane using a variety of substrates, and aerobic oxidation of ethane to propane is performed by hydrocarbon-degrading bacteria, and this process is accompanied by carbon and hydrogen isotope fractionation. Anaerobic oxidation of ethane and propane in sediments is usually coupled with sulfate reduction. Sulfate-reducing bacteria can oxidize ethane and propane, and a possible mechanism for this process has been proposed. This review summarizes the source, distribution, and microbial metabolism of ethane and propane in marine environments and provides a scientific basis for further understanding the biogeochemical cycle of hydrocarbons.

中图分类号: 

图1 海洋环境中乙烷与丙烷产生、代谢和转移过程示意图
Fig. 1 Schematic diagram of ethane and propane productionmetabolism and transformation in marine environment
表1 部分海区表层海水中溶解乙烷和丙烷的浓度
Table 1 Compilation of ethane and propane concentrations in surface marine waters
表2 乙烷与丙烷产生和氧化化学方程式以及反应的吉布斯自由能
Table 2 Production and oxidation reactions of ethane and propane and Gibbs free energy
图2 丙烷可能的好氧氧化途径(据参考文献[ 82 ]修改)
Fig. 2 Possible aerobic propane oxidation pathwaysmodified after reference 82 ])
图3 在亚末端(a)和末端(b)碳原子(标有星号)上厌氧活化丙烷(据参考文献[ 103 ]修改)
Fig. 3 Anaerobic activation of propane at the sub-terminalaand terminalbcarbon atommodified after reference 103 ])
图4 乙烷厌氧氧化(据参考文献[ 50 109 ]修改)
Fig. 4 Anaerobic oxidation of ethanemodified after references50109])
1 GILBERT A, SHERWOOD LOLLAR B, MUSAT F, et al. Intramolecular isotopic evidence for bacterial oxidation of propane in subsurface natural gas reservoirs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6 653-6 658.
2 KOPPMANN R. Chemistry of volatile organic compounds in the atmosphere[M]// Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer, 2010: 267-277.
3 KANAKIDOU M, SINGH H B, VALENTIN K M, et al. A two-dimensional study of ethane and propane oxidation in the troposphere[J]. Journal of Geophysical Research: Atmospheres, 1991, 96 (D8): 15 395-15 413.
4 AIKIN A C, HERMAN J R, MAIER E J, et al. Atmospheric chemistry of ethane and ethylene[J]. Journal of Geophysical Research: Oceans, 1982, 87(C4): 3 105-3 118.
5 EDWARDS P M, BROWN S S, ROBERTS J M, et al. High winter ozone pollution from carbonyl photolysis in an oil and gas basin[J]. Nature, 2014, 514(7 522): 351-354.
6 LAL S, SAHU L K, VENKATARAMANI S. Impact of transport from the surrounding continental regions on the distributions of ozone and related trace gases over the Bay of Bengal during February 2003[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D14): D14302.
7 MCKAIN K, DOWN A, RACITI S M, et al. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 1 941-1 946.
8 KATZENSTEIN A S, DOEZEMA L A, SIMPSON I J, et al. Extensive regional atmospheric hydrocarbon pollution in the southwestern United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(21): 11 975-11 979.
9 POZZER A, POLLMANN J, TARABORRELLI D, et al. Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes[J]. Atmospheric Chemistry and Physics (ACP) & Discussions, 2010, 10(195): 4 403-4 422.
10 ETIOPE G, CICCIOLI P. Earth's degassing: a missing ethane and propane source[J]. Science, 2009, 323(5 913): 478.
11 RUDOLPH J, EHHALT D H. Measurements of C2-C5 hydrocarbons over the North Atlantic[J]. Journal of Geophysical Research: Oceans, 1981, 86(C12): 11 959-11 964.
12 ZHANG Fugui, ZHOU Yalong, SUN Zhongjun, et al. Research progress of geochemical exploration technology for natural gas hydrate in the permafrost area, China[J]. Advances in Earth Science, 2021, 36(3): 276-287.
张富贵,周亚龙,孙忠军,等. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展,2021,36(3):276-287.
13 RUDOLPH J. The tropospheric distribution and budget of ethane[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D6): 11 369-11 381.
14 REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2):486-513.
15 FORSTER P. Climate change 2007: the physical science basis.Contribution of working group Ⅰ to the forth assessment report of the IPCC[M]. Cambrige, UK: Cambrige University Press, 2007.
16 SWINNERTON J W, LAMONTAGNE R A. Oceanic distribution of low-molecular-weight hydrocarbons. Baseline measurements[J]. Environmental Science & Technology, 1974, 8 (7): 657-663.
17 HUNT J M. Hydrocarbon geochemistry of Black Sea: geochemistry[J]. The Black Sea—Geology, Chemistry, and Biology, 1974, A145: 499-504.
18 PLASS-DÜLMER C, KOPPMANN R, RATTE M, et al. Light nonmethane hydrocarbons in seawater[J]. Global Biogeochemical Cycles, 1995, 9: 79-100.
19 BROOKS J M, SACKETT W M. Sources, sinks, and concentrations of light hydrocarbons in the Gulf of Mexico[J]. Journal of Geophysical Research, 1973, 78(24): 5 248-5 258.
20 TSURUSHIMA N, WATANABE S, TSUNOGAI S. Determination of light hydrocarbons dissolved in seawater[J]. Talanta, 1999, 50(3): 577-583.
21 BROADGATE W J, MALIN G, KÜEPPER F C, et al. Isoprene and other non-methane hydrocarbons from seaweeds: a source of reactive hydrocarbons to the atmosphere[J]. Marine Chemistry, 2004, 88(1/2):61-73.
22 BROADGATE W J, LISS P S, PENKETT S A. Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean[J]. Geophysical Research Letters, 1997, 24(21): 2 675-2 678.
23 LI J L, ZHAI X, MA Z, et al. Spatial distributions and sea-to-air fluxes of non-methane hydrocarbons in the atmosphere and seawater of the Western Pacific Ocean[J]. Science of the Total Environment, 2019, 672: 491-501.
24 WU Y C, LI J L, WANG J, et al. Occurance, emission and environmental effects of non-methane hydrocarbons in the Yellow Sea and the East China Sea[J]. Environmental Pollution, 2021, 270: 116305. DOI: 10.1016/j.envpol.2020.116305 .
25 LAMONTAGNE R A, SWINNERTON J W, LINNENBOM V J. C1-C4 hydrocarbons in the North and South Pacific[J]. Tellus, 1974, 26(1/2): 71-77.
26 GREENBERG J P, ZIMMERMAN P R. Nonmethane hydrocarbons in remote tropical, continental, and marine atmospheres[J]. Journal of Geophysical Research Atmospheres, 1984, 89(D3): 4 767-4 778.
27 REED W E, KAPLAN I R. The chemistry of marine petroleum seeps[J]. Journal of Geochemical Exploration, 1977, 7: 255-293.
28 TYLER P A, YOUNG C M. Reproduction and dispersal at vents and cold seeps[J]. Journal of the Marine Biological Association of the United Kingdom, 1999, 79(2): 193-208.
29 RATTE M, PLASS-DÜLMER C, KOPPMANN R, et al. Horizontal and vertical profiles of light hydrocarbons in sea water related to biological, chemical and physical parameters[J]. Tellus Series B—Chemical & Physical Meteorology, 1995, 47(5):607-623.
30 PLASS C, KOPPMANN R, RUDOLPH J. Light hydrocarbons in the surface water of the mid-Atlantic[J]. Journal of Atmospheric Chemistry, 1992, 15(3/4): 235-251.
31 RATTE M, BUJOK O, SPITZY A, et al. Photochemical alkene formation in seawater from dissolved organic carbon: results from laboratory experiments[J]. Journal of Geophysical Research Atmospheres, 1998, 103(D5): 5 707-5 717.
32 OREMLAND R S, WHITICAR M J, STROHMAIER F E, et al. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1988, 52(7): 1 895-1 904.
33 VOGEL T M, OREMLAND R S, KVENVOLDEN K A. Low-temperature formation of hydrocarbon gases in San Francisco Bay sediment (California, U.S.A.)[J]. Chemical Geology, 1982, 37(3/4): 289-298.
34 KVENVOLDEN K A, REDDEN G D. Hydrocarbon gas in sediment from the shelf, slope, and basin of the Bering Sea[J]. Geochimica et Cosmochimica Acta, 1980, 44 (8): 1 145-1 150.
35 KVENVOLDEN K A. Hydrocarbon gas in sediment of the southern Pacific Ocean[J]. Geo-Marine Letters, 1988, 8(3): 179-187.
36 HINRICHS K U, HAYES J M, BACH W, et al. Biological formation of ethane and propane in the deep marine subsurface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(40): 14 684-14 689.
37 MILKOV A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth-Science Reviews, 2004, 66(3/4): 183-197.
38 SASSEN R, CURIALE J A. Microbial methane and ethane from gas hydrate nodules of the Makassar Strait, Indonesia[J].Organic Geochemistry, 2006, 37(8): 977-980.
39 MILKOV A V. Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings[J]. Organic Geochemistry, 2005, 36(5): 681-702.
40 BERNARD B B, BROOKS J M, SACKETT W M. Light hydrocarbons in recent Texas continental shelf and slope sediments[J]. Journal of Geophysical Research Oceans, 1978, 83(C8): 4 053-4 061.
41 MCKAY W A, TURNER M F, JONES B M R, et al. Emissions of hydrocarbons from marine phytoplankton—some results from controlled laboratory experiments[J]. Atmospheric Environment, 1996, 30(14): 2 583-2 593.
42 RONTANI J F. Identification by GC/MS of acidic compounds produced during the photosensitized oxidation of normal and isoprenoid alkanes in seawater[J]. International Journal of Environmental Analytical Chemistry, 1991, 45(1): 1-9.
43 LEE R F, BAKER J. Ethylene and ethane production in an estuarine river: formation from the decomposition of polyunsaturated fatty acids[J]. Marine Chemistry, 1992, 38(1/2): 25-36.
44 PSZENNY A A P, PRINN R G, KLEIMAN G, et al. Nonmethane hydrocarbons in surface waters, their sea-air fluxes and impact on OH in the marine boundary layer during the First Aerosol Characterization Experiment (ACE 1)[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D17): 21 785-21 801.
45 BERNARD B B, BROOKS J M, SACKETT W M. Natural gas seepage in the Gulf of Mexico[J]. Earth and Planetary Science Letters, 1976, 31(1): 48-54.
46 VIETH A, WILKES H. Stable isotopes in understanding origin and degradation processes of petroleum[M]// Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer, 2010.
47 CLAYPOOL G E, KVENVOLDEN K A. Methane and other hydrocarbon gases in marine sediment[J]. Annual Review of Earth and Planetary Sciences, 1983, 11(1): 299-327.
48 BELAY N, DANIELS L. Ethane production by methanosarcina barkeri during growth in ethanol supplemented medium[J]. Antonie van Leeuwenhoek, 1988, 54(2): 113-125.
49 KNIEMEYER O, MUSAT F, SIEVERT S M, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria[J]. Nature, 2007, 449(7 164): 898-901.
50 CHEN S C, MUSAT N, LECHTENFELD O J, et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep[J]. Nature, 2019, 568(7 750): 108-111.
51 FU Xiancai. Physical chemistry [M]. 5th Edition. Beijing: Higher Education Press, 2005: 483-492.
傅献彩. 物理化学[M]. 第五版. 北京:高等教育出版社, 2005: 483-492.
52 HAYNES W. CRC handbook of chemistry and physics, 95th ed[M]. Boca Raton, FL, USA: CRC Press, 2014: 1 364-1 366.
53 DAVIS J B, SQUIRES R M. Detection of microbially produced gaseous hydrocarbons other than methane[J]. Science, 1954, 119(3 090): 381-382.
54 EMERY K O, HOGGAN D. Gases in marine sediments[J]. AAPG Bulletin, 1958, 42: 2 174-2 188.
55 XIE S T, LAZAR C S, LIN Y S, et al. Ethane- and propane- producing potential and molecular characterization of an ethanogenic enrichment in an anoxic estuarine sediment[J]. Organic Geochemistry, 2013, 59: 37-48.
56 TAYLOR C D, WOLFE R S. Structure and methylation of Coenzyme M (HSCH2CH2SO3)[J]. Journal of Biological Chemistry, 1974, 249(15): 4 879-4 885.
57 BALCH W E, WOLFE R S. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in methanobacterium ruminantium[J]. Journal of Bacteriology, 1979, 137(1): 264-273.
58 FERRY J G. The chemical biology of methanogenesis[J]. Planetary & Space Science, 2010, 58(14/15):1 775-1 783.
59 GUNSALUS R P, ROMESSER J A, WOLFE R S. Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of methanobacterium thermoautotrophicum[J]. Biochemistry, 1978, 17(12): 2 374-2 377.
60 OREMLAND R S. Microbial formation of ethane in anoxic estuarine sediments[J]. Applied and Environmental Microbiology, 1981, 42(1):122-129.
61 BELAY N, DANIELS L. Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria[J]. Applied and Environmental Microbiology, 1987, 53(7): 1 604-1 610.
62 KOENE C F H M, SCHRAA G. Anaerobic reduction of ethene to ethane in an enrichment culture[J]. FEMS Microbiology Ecology, 1998, 25(3): 251-256.
63 BALCH W E, WOLFE R S. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid)[J]. Journal of Bacteriology, 1979, 137(1): 256-263.
64 MCINERNEY M J, STRUCHTEMEYER C G, SIEBER J, et al. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism[J]. Annals of the New York Academy of Sciences, 2008, 1 125(1): 58-72.
65 CLAYPOOL G. Biogenic ethane-where does it come from[Z]. American Association of Petroleum Geologists Hedberg Conference Abstracts, Natural Gas Formation and Occurrence, June 6-10, 1999 , Durango, Colorado, 1999: 27-29.
66 CONRAD R, KLOSE M. Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots[J]. FEMS Microbiology Ecology, 1999, 30(2): 147-155.
67 ROJO F. Enzymes for Aerobic Degradation of Alkanes[M]//Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer, 2010: 781-797.
68 LABINGER J A, BERCAW J E. Understanding and exploiting C-H bond activation[J]. Nature, 2002, 417(6 888): 507-514.
69 BEILEN J B VAN, LI Z, DUETZ W A, et al. Diversity of alkane hydroxylase systems in the environment[J]. Oil & Gas Science & Technology, 2003, 58(4): 427-440.
70 WENTZEL A, ELLINGSEN T E, KOTLAR H K, et al. Bacterial metabolism of long-chain n-alkanes[J]. Applied Microbiology and Biotechnology, 2007, 76(6): 1 209-1 221.
71 KNIEF C, LIPSKI A, DUNFIELD P F. Diversity and activity of methanotrophic bacteria in different upland soils[J]. Applied and Environmental Microbiology, 2003, 69(11):6 703-6 714.
72 KNIEF C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker[J]. Frontiers in Microbiology, 2015, 6: 1346.
73 CONRAD R. The global methane cycle: recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports, 2009, 1(5): 285-292.
74 KNITTEL K, BOETIUS A. The anaerobic oxidation of methane-progress with an unknown process[J]. Annual Reviews of Microbiology, 2009, 63: 311-334.
75 JAMES A T, BURNS B J. Microbial alteration of subsurface natural gas accumulations1[J]. AAPG Bulletin, 1984, 68(8): 957-960.
76 HIGGINS I J, QUAYLE J R. Oxygenation of methane by methane-grown pseudomonas methanica and methanomonas methanooxidans[J]. The Biochemical Journal, 1970, 118(2): 201-208.
77 SÖHNGEN N L. Uber bakterien welche methan ab kohlenstoffnahrung und energiequelle gebrauchen[J]. Zentrabl Bakteriol Parasitenk Infektionskr, 1906, 15: 513-517.
78 SÖHNGEN N L. Benzin, Petroleum, Paraffinöl und Paraffin als Kohlenstoff- und Energiequelle für Mikroben[J]. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt, 1913, 37: 595-609.
79 DAVIS J B, CHASE H H, RAYMOND R L. Mycobacterium paraffinicum n. sp., a bacterium isolated from soil[J]. Applied Microbiology, 1956, 4(6): 310-315.
80 DWORKIN M, FOSTER J W. Experiments with some microorganisms which utilize ethane and hydrogen[J]. Journal of Bacteriology, 1958, 75(5): 592-603.
81 BERTHE CORTI L, FETZNER S. Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions[J]. Acta Biotechnologica, 2002, 22(3/4): 299-336.
82 ASHRAF W, MIHDHIR A, MURRELL J C. Bacterial oxidation of propane[J]. FEMS Microbiology Letters, 1994, 122(1/2): 1-6.
83 DANIEL J A. Butane metabolism by butane-grown "Pseudomonas butanovora"[J]. Microbiology, 1999, 145(5): 1 173-1 180.
84 PERRY J J. Propane utilization by microorganisms[J]. Advances in Applied Microbiology, 1980, 26:89-115.
85 REDMOND M C, VALENTINE D L, SESSIONS A L. Identification of Novel Methane-, Ethane-, and Propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing[J]. Applied and Environmental Microbiology, 2010, 76(19): 6 412-6 422.
86 MUKHERJEE J, MENGE M, HOISCHEN D, et al. Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions[J]. Acta Biotechnologica, 2002, 22(3/4): 299-336.
87 SMITH D D S, DALTON H. Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath)[J]. European Journal of Biochemistry, 1989, 182(3): 667-671.
88 LIPSCOMB J D. Biochemistry of the soluble methane monooxygenase[J]. Annual Review of Microbiology, 1994, 48: 371-399.
89 SHENNAN J L. Utilisation of C2-C4 gaseous hydrocarbons and isoprene by microorganisms[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(3): 237-256.
90 DALTON H. Structure and mechanism of action of the Enzyme(s) involved in Methane Oxidation[M]// Applications of enzyme biotechnology. Boston, MA: Springer, 1991: 55-68.
91 VESTAL J R. The metabolism of gaseous hydrocarbons by microorganisms[M]// Petroleum microbiology. New York: Macmillan Publishing Co., 1984: 129-151.
92 KOTANI T, YAMAMOTO T, YURIMOTO H, et al. Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. Strain TY-5[J]. Journal of Bacteriology, 2003, 185(24): 7 120-7 128.
93 LI J, LIU C L, HE X L, et al. Aerobic microbial oxidation of hydrocarbon gases: implications for oil and gas exploration[J]. Marine and Petroleum Geology, 2019, 103: 76-86.
94 KINNAMAN F S, VALENTINE D L, TYLER S C. Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane[J]. Geochimica et Cosmochimica Acta, 2007, 71(2):271-283.
95 CHEN X G, SCHMIDT M, CHEN C L, et al. Carbon and hydrogen isotope fractionation during aerobic oxidation of short-chain alkanes in experimental incubations of vent fluids[J]. Organic Geochemistry, 2021, 158: 104269.
96 HINRICHS K U, BOETIUS A. The Anaerobic Oxidation of Methane: new insights in microbial ecology and biogeochemistry[M]. Berlin, Heidelberg: Springer, 2003: 457-477.
97 ORCUTT B N, BOETIUS A, LUGO S K, et al. Life at the edge of methane ice: microbial cycling of carbon and sulfur in Gulf of Mexico gas hydrates-ScienceDirect[J]. Chemical Geology, 2004, 205(3/4): 239-251.
98 JOYE S B, BOETIUS A, ORCUTT B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J]. Chemical Geology, 2004, 205(3/4): 219-238.
99 MASTALERZ V, de LANGE G J, DÄHLMANN A. Differential aerobic and anaerobic oxidation of hydrocarbon gases discharged at mud volcanoes in the Nile deep-sea fan[J]. Geochimica et Cosmochimica Acta, 2009, 73(13): 3 849-3 863.
100 JAEKEL U, MUSAT N, ADAM B, et al. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps[J]. The ISME Journal, 2013, 7(5): 885-895.
101 SAVAGE K N, KRUMHOLZ L R, GIEG L M, et al. Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns[J]. FEMS Microbiology Ecology, 2010, 72(3): 485-495.
102 MUSAT F. The anaerobic degradation of gaseous, nonmethane alkanes-From in situ processes to microorganisms[J]. Computational and Structural Biotechnology Journal, 2015, 13: 222-228.
103 SINGH R, GUZMAN M S, BOSE A. Anaerobic oxidation of ethane, propane, and butane by marine microbes: a mini review[J]. Frontiers in Microbiology, 2017, 8: 2 056-2 056.
104 JAEKEL U, VOGT C, FISCHER A, et al. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria[J]. Environmental Microbiology, 2014, 16(1): 130-140.
105 GRUNDMANN O, BEHRENDS A, RABUS R, et al. Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1[J]. Environmental Microbiology, 2008, 10(2): 376-385.
106 BHARADWAJ V S, VYAS S, VILLANO S M, et al. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism-a gas-phase ab initio study[J]. Physical Chemistry Chemical Physics, 2015, 17(6): 4 054-4 066.
107 ADAMS M, HOARFROST A, BOSE A, et al. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity[J]. Frontiers in Microbiology, 2013, 4:110.
108 BAO P, LI G X, SUN G X, et al. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling[J]. The Science of the Total Environment, 2018, 613/614: 398-408.
109 HAHN C J, LASO-PÉREZ R, VULCANO F, et al. Candidatus Ethanoperedens, a thermophilic genus of archaea mediating the anaerobic oxidation of ethane[J]. mBio, 2020, 11(2):e00600-20. DOI: 10.1101/2020.03.21.999862 .
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 樊嘉琛, 钱施, 裴宏业, 吴杰, 赵世锦, 党心悦, 杨欢, 谢树成. 微生物醚类化合物在泥炭古环境重建中的应用:进展与问题[J]. 地球科学进展, 2021, 36(12): 1272-1290.
[3] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[4] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[5] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[6] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[7] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[8] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[9] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[10] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[11] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[12] 郑伟, 齐永安, 张忠慧, 邢智峰. 豫西荥阳陆相二叠纪—三叠纪之交的微生物成因构造(MISS)及其地质意义[J]. 地球科学进展, 2016, 31(7): 737-750.
[13] 王莹, 刘同旭, 李芳柏. 微生物—矿物间半导体介导电子传递机制研究进展[J]. 地球科学进展, 2016, 31(4): 347-356.
[14] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[15] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
阅读次数
全文


摘要