地球科学进展 ›› 2022, Vol. 37 ›› Issue (4): 358 -369. doi: 10.11867/j.issn.1001-8166.2022.013

综述与评述 上一篇    下一篇

海洋 ReMoU对氧化还原环境的指示作用
张晓潼 1 , 2 , 3( ), 袁华茂 1 , 2 , 3 , 4( ), 宋金明 1 , 2 , 3 , 4, 段丽琴 1 , 2 , 3 , 4   
  1. 1.中国科学院海洋生态与环境科学重点实验室,中国科学院海洋研究所,山东 青岛 266071
    2.中国科学院大学,北京 100049
    3.青岛海洋科学与技术试点国家实验室 海洋生态与环境 科学功能实验室,山东 青岛 266237
    4.中国科学院海洋大科学中心,山东 青岛 266071
  • 收稿日期:2021-06-27 修回日期:2022-01-28 出版日期:2022-04-10
  • 通讯作者: 袁华茂 E-mail:zhangxiaotong19@mails.ucas.ac.cn;yuanhuamao@qdio.ac.cn
  • 基金资助:
    中国科学院战略先导性专项“近海环境健康评估技术与海域评估方案”(XDA23050501);国家自然科学基金面上项目“微生物对富营养化近海沉积物砷循环的调控机制解析:以长江口为例”(41976037)

Indication to Redox Conditions of Re, Mo and U in Marine Environment

Xiaotong ZHANG 1 , 2 , 3( ), Huamao YUAN 1 , 2 , 3 , 4( ), Jinming SONG 1 , 2 , 3 , 4, Liqin DUAN 1 , 2 , 3 , 4   

  1. 1.CAS Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.Marine Ecology and Environmental Science Laboratory,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China
    4.Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China
  • Received:2021-06-27 Revised:2022-01-28 Online:2022-04-10 Published:2022-04-28
  • Contact: Huamao YUAN E-mail:zhangxiaotong19@mails.ucas.ac.cn;yuanhuamao@qdio.ac.cn
  • About author:ZHANG Xiaotong (1997-), female, Xingtai City, Hebei Province, Master student. Research areas include marine biogeochemistry. E-mail: zhangxiaotong19@mails.ucas.ac.cn
  • Supported by:
    the Strategic Priority Research Program of the Chinese Academy of Sciences "Technique and scheme of Chinese offshore environmental health assessment"(XDA23050501);The National Natural Science Foundation of China "Microbial regulation of arsenic cycling in eutrophic coastal sediments: a case study of the Yangtze River Estuary"(41976037)

氧化还原敏感微量元素Re、Mo和U主要依靠扩散作用通过沉积物—水界面,在不同氧化还原条件下的沉积物中自生富集,Re在轻度还原的次氧化沉积环境中富集,Mo在还原性更强的硫化环境中富集,而U具有较宽的富集沉积深度区间。Re、Mo和U独特的地球化学行为使其可用于指示海洋环境的氧化还原状态,其在沉积物中的自生富集程度与沉积时所处的氧化还原条件具有良好的相关性:Re、Mo和U在氧化沉积环境(Re/Al<1.3×10-7,Mo/Al<0.4×10-4)和季节性缺氧区覆盖的沉积环境中富集程度较小,在常年性缺氧区覆盖的沉积环境(U/Al>5×10-4,Mo/Al>5×10-4)和硫化沉积环境(Mo/Al>5×10-4)中富集程度较大。除依据其地球化学行为特征和相对富集程度进行定性分析之外,还可以结合元素富集系数(TMEF<1表示亏损,TMEF>1表示富集,TMEF>3表示明显富集,TMEF>10表示强烈富集)、元素比值(Re/Mo≤0.3×10-3指示氧化环境,Re/Mo≈10×10-3~30×10-3指示缺氧环境,Re/Mo≈0.7×10-3~0.8×10-3指示硫化环境)、元素共变体系(MoEF/UEF≈0.1×现代海水值~0.3×现代海水值指示氧化—次氧化环境,MoEF/UEF>1×现代海水值指示缺氧环境,MoEF/UEF≈3×现代海水值~10×现代海水值指示硫化环境)以及同位素(氧化沉积环境中δ98/95Mo≈-0.7‰,次氧化沉积环境中δ98/95Mo≈-0.5‰~+1.3‰,缺氧沉积环境中δ98/95Mo≈+1.6‰,硫化沉积环境中δ98/95Mo≈+2.2‰~ +2.5‰)等进行综合定量判别。值得关注的是,目前Re、Mo和U的氧化还原迁移转化机制尚未完善,现代海洋系统的数据较为有限,Re、Mo和U富集程度的区域分异性和高度可变性仍有待进一步研究。未来仍需要更多的现代海洋系统氧化还原敏感微量元素数据和应用实例,以更好地与古海洋体系相结合来完善氧化还原敏感微量元素指标的指示作用。

Redox Sensitive Trace Elements (RSE), such as Re, Mo, and U, are often autogenetically enriched in sediments because of their different solubilities and/or affinities for particulates under various redox states at the time of sediment deposition when diffusing through the sediment-water interface. The enrichment of Re is primarily in a suboxic depositional environment but that of Mo is in an euxinic environment. In contrast, U has a relatively large depositional depth range in sediments. The special geochemical behavior of the RSEs makes it possible to indicate the redox state, as the autogenetic enrichment degrees in sediments have a good correlation with the redox conditions of marine sedimentary environments. Lower enrichments were recorded from sediments deposited in oxic (Re/Al<1.3×10-7, Mo/Al<0.4×10-4) and beneath seasonal oxygen minimum zone environments, while higher enrichments were recorded from sediments deposited within the perennial oxygen minimum zone (U/Al>5×10-4, Mo/Al>5×10-4) and euxinic (Mo/Al>5×10-4) environments. In addition to the relative enrichment degree, the paleoredox proxies of the enrichment coefficient (TMEF<1 means depletion; TMEF>1 means enrichment; TMEF>3 means obvious enrichment; TMEF>10 means significant enrichment), trace elements ratios (Re/Mo≤0.3×10-3 indicates an oxic environment; Re/Mo≈10×10-3~30×10-3 indicates an anoxic environment; Re/Mo≈0.7×10-3~0.8×10-3 indicates an euxinic environment), the trace elements covariant system (MoEF/UEF≈0.1×modern seawater value~0.3×modern seawater value indicates an oxic-suboxic environment; MoEF/UEF>1×modern seawater value indicates an anoxic environment; MoEF/UEF≈3×modern seawater value~10×modern seawater value indicates an euxinic environment), and isotope values (δ98/95Mo≈-0.7‰ in an oxic environment; δ98/95Mo≈-0.5‰~+1.3‰ in a suboxic environment; δ98/95Mo≈+1.6‰ in an anoxic environment; δ98/95Mo≈+2.2‰~+2.5‰ in an euxinic environment) could also be utilized to comprehensively unravel the history of depositional environments. It should be noted that the migration and transformation mechanisms under the different redox conditions of Re, Mo, and U are imperfect, and related datasets in modern marine systems are limited. The highly variable enrichment degrees of Re, Mo, and U reflect obvious regional differentiation, which is yet to be examined. In future, more observations and research in modern marine systems are needed to improve the indicative utility of RSEs combined with the paleo-marine system.

中图分类号: 

表1 海洋氧化还原程度的界定 [ 1 - 2 ]
Table 1 Marine redox classification [ 1 - 2 ]
表2 ReMoU环境行为特征 [ 16 - 17 , 25 ]
Table 2 Environmental behavior characteristics of Re, Mo, U [ 16 - 17 , 25 ]
图1 不同的现代海洋沉积环境的RSE富集程度(log10标度)(据参考文献[ 15 ]修改)
方框表示四分位区间;十字表示中位数;上下端线表示第5和第95百分位,超出第5和第95百分位的数据表示为空心圆;地壳平均值表示为灰色实线,灰色阴影表示2个标准偏差,Re的2条灰色线表示地壳平均值的2个单独估计值
Fig. 1 RSE enrichmentslog10 scaleof a range of modern marine depositional environmentsmodified after reference 15 ])
The box represents the interquartile range and the cross represents the mean. The whiskers represent the 5th and 95th percentiles, where data exceeding are represented as open circles. The crustal average value is shown as a gray solid line with two standard deviations represented by the gray shading, while the two gray lines represent two separate estimates of the crustal average value for Re
表3 ReMoU对氧化还原环境的指示
Table 3 Indication of redox environments by Re, Mo and U
图2 沉积物ReMo的原始富集深度 ZRe/Mo的相关关系(log10标度)(据参考文献[ 26 ]修改)
Fig. 2 Correlation between Re and Mo initial enrichment depthsZRe/Moand Re/Mo ratiolog10 scale) (modified after reference 26 ])
图3 现代海洋环境MoEF-UEF 共变的一般模式(log10标度)(据参考文献[ 61 ]修改)
Fig. 3 General patterns of MoEF-UEF covariation in modern marine environmentslog10 scale) (modified after reference 61 ])
1 TYSON R V, PEARSON T H. Modern and ancient continental shelf Anoxia: an overview[J]. Geological Society, London, Special Publications, 1991, 58(1): 1-24.
2 ALGEO T J, LI C. Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta, 2020, 287: 8-26.
3 FERRY J G, LESSNER D J. Methanogenesis in marine sediments[J]. Annals of the New York Academy of Sciences, 2008, 1125: 147-157.
4 SONG Jinming, DUAN Liqin. Environmental biogeochemistry of micro/trace elements in the Bohai Sea, Yellow Sea and East China Sea [M]. Beijing: Science Press, 2017.
宋金明, 段丽琴. 渤黄东海微/痕量元素的环境生物地球化学[M]. 北京: 科学出版社, 2017.
5 CALVERT S E, PIPER D Z, THUNELL R C, et al. Elemental settling and burial fluxes in the Cariaco Basin[J]. Marine Chemistry, 2015, 177: 607-629.
6 TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
7 CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99.
常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91-99.
8 FRANCOIS R. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet sediments, British Columbia, Canada[J]. Marine Geology, 1988, 83(1/2/3/4): 285-308.
9 RUSSELL A D, MORFORD J L. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia [J]. Marine Geology, 2001, 174(1/2/3/4): 341-354.
10 ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
11 ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225.
12 MORFORD J L, MARTIN W R, FRANÇOIS R, et al. A model for uranium, rhenium, and molybdenum diagenesis in marine sediments based on results from coastal locations[J]. Geochimica et Cosmochimica Acta, 2009, 73(10): 2 938-2 960.
13 YU Yu, SONG Jinming, LI Xuegang, et al. Significance of sedimentary trace metals in reconstructing the aquatic environmental changes[J]. Geological Review, 2012, 58(5): 911-922.
于宇, 宋金明, 李学刚, 等. 沉积物微量金属元素在重建水体环境变化中的意义[J]. 地质论评, 2012, 58(5): 911-922.
14 ZHANG Mingliang, GUO Wei, SHEN Jun, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4): 95-106.
张明亮, 郭伟, 沈俊, 等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报, 2017, 36(4): 95-106.
15 BENNETT W W, CANFIELD D E. Redox-sensitive trace metals as paleoredox proxies: a review and analysis of data from modern sediments[J]. Earth-Science Reviews, 2020, 204: 103175.
16 MCLENNAN S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 1021.
17 MORFORD J L, EMERSON S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1 735-1 750.
18 COLODNER D. The marine geochemistry of Rhenium, Iridium and Platinum[D]. Woods Hole Oceanographic Institution: Massachusetts Institute of Technology, 1991.
19 COLODNER D, SACHS J, RAVIZZA G, et al. The geochemical cycle of rhenium: a reconnaissance[J]. Earth and Planetary Science Letters, 1993, 117(1/2): 205-221.
20 COLODNER D, EDMOND J, BOYLE E. Rhenium in the Black Sea: comparison with molybdenum and uranium[J]. Earth and Planetary Science Letters, 1995, 131(1/2): 1-15.
21 ANBAR A D, CREASER R A, PAPANASTASSIOU D A, et al. Rhenium in seawater: confirmation of generally conservative behavior[J]. Geochimica et Cosmochimica Acta, 1992, 56(11): 4 099-4 103.
22 RAHAMAN W, SINGH S K. Rhenium in rivers and estuaries of India: sources, transport and behaviour[J]. Marine Chemistry, 2010, 118(1/2): 1-10.
23 YAMASHITA Y, TAKAHASHI Y, HABA H, et al. Comparison of reductive accumulation of Re and Os in seawater-sediment systems[J]. Geochimica et Cosmochimica Acta, 2007, 71(14): 3 458-3 475.
24 MORFORD J L, MARTIN W R, CARNEY C M. Rhenium geochemical cycling: insights from continental margins[J]. Chemical Geology, 2012, 324/325: 73-86.
25 SMRZKA D, ZWICKER J, BACH W, et al. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review[J]. Facies, 2019, 65(4): 1-47.
26 CRUSIUS J, CALVERT S, PEDERSEN T, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1/2/3/4): 65-78.
27 CRUSIUS J, THOMSON J. Mobility of authigenic rhenium, silver, and selenium during postdepositional oxidation in marine sediments[J]. Geochimica et Cosmochimica Acta, 2003, 67(2): 265-273.
28 GOSWAMI V, SINGH S K, BHUSHAN R. Dissolved redox sensitive elements, Re, U and Mo in intense denitrification zone of the Arabian Sea[J]. Chemical Geology, 2012, 291: 256-268.
29 HELZ G R, DOLOR M K. What regulates rhenium deposition in euxinic basins?[J]. Chemical Geology, 2012, 304/305: 131-141.
30 HELZ G R, ADELSON J M. Trace element profiles in sediments as proxies of dead zone history; rhenium compared to molybdenum[J]. Environmental Science & Technology, 2013, 47(3): 1 257-1 264.
31 MORFORD J L, EMERSON S R, BRECKEL E J, et al. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin[J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 5 021-5 032.
32 SUNDBY B, MARTINEZ P, GOBEIL C. Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(11): 2 485-2 493.
33 ALGEO T J, MORFORD J, CRUSE A. New applications of trace metals as proxies in marine paleoenvironments[J]. Chemical Geology, 2012, 306/307: 160-164.
34 MONIEN P, LETTMANN K A, MONIEN D, et al. Redox conditions and trace metal cycling in coastal sediments from the maritime Antarctic[J]. Geochimica et Cosmochimica Acta, 2014, 141: 26-44.
35 XIE Xingwei, YUAN Huamao, SONG Jinming, et al. Indication of redox sensitive elements in marine sediments on anoxic condition of water environment[J]. Geological Review, 2019, 65(3): 671-688.
解兴伟, 袁华茂, 宋金明, 等. 海洋沉积物中氧化还原敏感元素对水体环境缺氧状况的指示作用[J]. 地质论评, 2019, 65(3): 671-688.
36 XU Lingang, LEHMANN B. Mo and Mo stable isotope geochemistry: isotope system, analytical technique and applications to geology[J]. Mineral Deposits, 2011, 30(1): 103-124.
徐林刚, LEHMANN B. 钼及钼同位素地球化学: 同位素体系、测试技术及在地质中的应用[J]. 矿床地质, 2011, 30(1): 103-124.
37 ALGEO T J, ROWE H. Paleoceanographic applications of trace-metal concentration data[J]. Chemical Geology, 2012, 324/325: 6-18.
38 SCOTT C, LYONS T W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies[J]. Chemical Geology, 2012, 324/325: 19-27.
39 HELZ G R, MILLER C V, CHARNOCK J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence[J]. Geochimica et Cosmochimica Acta, 1996, 60(19): 3 631-3 642.
40 ZHENG Y, ANDERSON R F, GEEN A VAN, et al. Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin[J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4 165-4 178.
41 ERICKSON B E, HELZ G R. Molybdenum(VI) speciation in sulfidic waters: stability and lability of thiomolybdates[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1 149-1 158.
42 XU Shumei, ZHANG Xiaodong, ZHAI Shikui, et al. The geochemistry of redox sensitive trace elements and their environmental implications [J]. Marine Geology Letters, 2007, 23(3): 11-18.
许淑梅, 张晓东, 翟世奎, 等. 海洋环境中氧化还原敏感性微量元素的地球化学行为及环境指示意义[J]. 海洋地质动态, 2007, 23(3): 11-18.
43 SHAW T J, SHOLKOVITZ E R, KLINKHAMMER G. Redox dynamics in the Chesapeake Bay: the effect on sediment/water uranium exchange[J]. Geochimica et Cosmochimica Acta, 1994, 58(14): 2 985-2 995.
44 LUO W S, GU B H. Dissolution and mobilization of uranium in a reduced sediment by natural humic substances under anaerobic conditions[J]. Environmental Science & Technology, 2009, 43(1): 152-156.
45 KLINKHAMMER G P, PALMER M R. Uranium in the oceans: where it goes and why[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1 799-1 806.
46 LOVLEY D R, PHILLIPS E J P, GORBY Y A, et al. Microbial reduction of uranium[J]. Nature, 1991, 350(6 317): 413-416.
47 ALGEO T J, MAYNARD J B. Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments[J]. Geosphere, 2008, 4(5): 872.
48 ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): PA1016.
49 HELZ G R, VORLICEK T P. Precipitation of molybdenum from euxinic waters and the role of organic matter[J]. Chemical Geology, 2019, 509: 178-193.
50 DAHL T W, CHAPPAZ A, HOEK J, et al. Evidence of molybdenum association with particulate organic matter under sulfidic conditions[J]. Geobiology, 2017, 15(2): 311-323.
51 WAGNER M, CHAPPAZ A, LYONS T W. Molybdenum speciation and burial pathway in weakly sulfidic environments: insights from XAFS[J]. Geochimica et Cosmochimica Acta, 2017, 206: 18-29.
52 TESSIN A, CHAPPAZ A, HENDY I, et al. Molybdenum speciation as a paleo-redox proxy: a case study from Late Cretaceous Western Interior Seaway black shales[J]. Geology, 2019, 47(1): 59-62.
53 BRÜCHERT V, JØRGENSEN B B, NEUMANN K, et al. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone[J]. Geochimica et Cosmochimica Acta, 2003, 67(23): 4 505-4 518.
54 SWEERE T, van den BOORN S, DICKSON A J, et al. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations[J]. Chemical Geology, 2016, 441: 235-245.
55 MCMANUS J, BERELSON W M, KLINKHAMMER G P, et al. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain[J]. Geochimica et Cosmochimica Acta, 2005, 69(1): 95-108.
56 MCMANUS J, BERELSON W M, SEVERMANN S, et al. Molybdenum and uranium geochemistry in continental margin sediments: paleoproxy potential[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): 4 643-4 662.
57 ZHENG Y, ANDERSON R F, GEEN A VAN, et al. Preservation of particulate non-lithogenic uranium in marine sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(17): 3 085-3 092.
58 BÖNING P, CUYPERS S, GRUNWALD M, et al. Geochemical characteristics of Chilean upwelling sediments at ∼36°S[J]. Marine Geology, 2005, 220(1/2/3/4): 1-21.
59 SCHOLZ F, HENSEN C, NOFFKE A, et al. Early diagenesis of redox-sensitive trace metals in the Peru upwelling area-response to ENSO-related oxygen fluctuations in the water column[J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7 257-7 276.
60 NAMEROFF T J, BALISTRIERI L S, MURRAY J W. Suboxic trace metal geochemistry in the Eastern Tropical North Pacific[J]. Geochimica et Cosmochimica Acta, 2002, 66(7): 1 139-1 158.
61 TRIBOVILLARD N, ALGEO T J, BAUDIN F, et al. Analysis of marine environmental conditions based onmolybdenum-uranium covariation—applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324/325: 46-58.
62 POULSON R L, SIEBERT C, MCMANUS J, et al. Authigenic molybdenum isotope signatures in marine sediments[J]. Geology, 2006, 34(8): 617.
63 DUAN L Q, SONG J M, LIANG X M, et al. Dynamics and diagenesis of trace metals in sediments of the Changjiang Estuary[J]. The Science of the Total Environment, 2019, 675: 247-259.
64 van HELMOND N A G M, JILBERT T, SLOMP C P. Hypoxia in the Holocene Baltic Sea: comparing modern versus past intervals using sedimentary trace metals[J]. Chemical Geology, 2018, 493: 478-490.
65 TANG Dongjie, SHI Xiaoying, ZHAO Xiangkuan, et al. Mo-U covariation as an important proxy for sedimentary environment redox conditions—progress, problems and prospects[J]. Geoscience, 2015, 29(1): 1-13.
汤冬杰, 史晓颖, 赵相宽, 等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标: 进展、问题与展望[J]. 现代地质, 2015, 29(1): 1-13.
66 TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution[J]. Geological Magazine, 1985. DOI:10.1086/629067 .
67 BARLING J, ARNOLD G L, ANBAR A D. Natural mass-dependent variations in the isotopic composition of molybdenum[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 447-457.
68 BARLING J, ANBAR A D. Molybdenum isotope fractionation during adsorption by manganese oxides[J]. Earth and Planetary Science Letters, 2004, 217(3/4): 315-329.
69 NÄGLER T F, NEUBERT N, BÖTTCHER M E, et al. Molybdenum isotope fractionation in pelagic Euxinia: evidence from the modern black and Baltic Seas[J]. Chemical Geology, 2011, 289(1/2): 1-11.
70 NEUBERT N, NÄGLER T F, BÖTTCHER M E. Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea[J]. Geology, 2008, 36(10): 775.
71 WEYER S, ANBAR A D, GERDES A, et al. Natural fractionation of 238U/235U[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 345-359.
72 XU Lingang. 238U/ 235U isotope fractionation in nature and its geological applications[J]. Mineral Deposits, 2014, 33(3): 497-510.
徐林刚. 238U/235U分馏及其地质应用[J]. 矿床地质, 2014, 33(3): 497-510.
73 DICKSON A J, HSIEH Y T, BRYAN A. The rhenium isotope composition of Atlantic Ocean seawater[J]. Geochimica et Cosmochimica Acta, 2020, 287: 221-228.
74 MILLER C A, PEUCKER-EHRENBRINK B, BALL L. Precise determination of rhenium isotope composition by multi-collector inductively-coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(8): 1 069-1 078.
75 MILLER C A, PEUCKER-EHRENBRINK B, SCHAUBLE E A. Theoretical modeling of rhenium isotope fractionation, natural variations across a black shale weathering profile, and potential as a paleoredox proxy[J]. Earth and Planetary Science Letters, 2015, 430: 339-348.
[1] 尚晓三, 王栋. 考虑历史洪水不确定性的多维联合洪水频率分析[J]. 地球科学进展, 2022, 37(4): 407-416.
[2] 魏思华, 田军. 晚中新世低大气 pCO2 背景下暖室气候的成因机制[J]. 地球科学进展, 2022, 37(4): 417-428.
[3] 胡石建, 李诗翰. 海洋热浪研究进展与展望[J]. 地球科学进展, 2022, 37(1): 51-64.
[4] 薛存金, 苏奋振, 何亚文. 过程——一种地理时空动态分析的新视角[J]. 地球科学进展, 2022, 37(1): 65-79.
[5] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[6] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[7] 张苗苗, 陈晓东, 徐建桥, 崔小明, 刘明, 邢乐林, 穆朝民, 孙和平. 淮南深部地球物理实验场重力噪声水平初步分析[J]. 地球科学进展, 2021, 36(5): 500-509.
[8] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[9] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[10] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[11] 张凌, 王平, 陈玺赟, 殷勇. 碎屑锆石 U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.
[12] 刘许柯,付云翀,周卫健,张丽,赵国庆. 宇宙成因核素 7Be10Be示踪大气垂直传输交换研究进展[J]. 地球科学进展, 2020, 35(10): 1016-1028.
[13] 李家科,刘周立,张蓓. DRAINMOD模型研究与应用进展[J]. 地球科学进展, 2019, 34(7): 679-687.
[14] 时连强,郭俊丽,刘海江,叶清华. Argus系统在我国海滩研究中的应用进展与展望[J]. 地球科学进展, 2019, 34(5): 552-560.
[15] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
阅读次数
全文


摘要