地球科学进展 ›› 2022, Vol. 37 ›› Issue (4): 417 -428. doi: 10.11867/j.issn.1001-8166.2021.116

全球变化研究 上一篇    下一篇

晚中新世低大气 pCO2 背景下暖室气候的成因机制
魏思华( ), 田军( )   
  1. 同济大学 海洋与地球科学学院,上海 200092
  • 收稿日期:2021-07-15 修回日期:2021-11-17 出版日期:2022-04-10
  • 通讯作者: 田军 E-mail:1931664@tongji.edu.cn;tianjun@tongji.edu.cn
  • 基金资助:
    国家自然科学基金重点项目“探索晚新生代太平洋中深层经向翻转流与气候演变冰期旋回的关系”(42030403);“晚中新世大洋碳位移事件的成因机制及其古环境效应”(41776051)

Mechanisms of Greenhouse Climate at Low Atmospheric CO 2 Levels in the Late Miocene

Sihua WEI( ), Jun TIAN( )   

  1. School of Ocean and Earth Science,Tongji University,Shanghai 200092,China
  • Received:2021-07-15 Revised:2021-11-17 Online:2022-04-10 Published:2022-04-28
  • Contact: Jun TIAN E-mail:1931664@tongji.edu.cn;tianjun@tongji.edu.cn
  • About author:WEI Sihua (1997-), female, Nanping City, Fujian Province, Master student. Research areas include paleoceanography and paleoclimatology. E-mail: 1931664@tongji.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Probing the forcing mechanism of the late Miocene ocean carbon shift and its environmental significance"(42030403);"Probing the relationship of the Pacific meridional overturning circulation with the glacial/interglacial variability of climate change during the late Cenozoic"(41776051)

晚中新世托尔通期(11.61~7.25 Ma)比现代更加温暖和潮湿,却有着与工业革命前相近的大气二氧化碳分压,这种低大气二氧化碳分压下的暖室气候在整个新生代都很特殊,搞清其驱动机制有助于预测未来气候变化。对此有两种解释:基于指标记录的晚中新世气候—二氧化碳分压“解耦假说”和基于数值模拟的“协同作用假说”。指标重建的地质记录表明晚中新世的气候可能并不受二氧化碳分压影响,即气候与二氧化碳分压发生解耦。数值模拟表明晚中新世异于现代的植被分布和地形构造等,很可能促成晚中新世全球温度的升高。但数值模拟很难充分模拟出晚中新世的升温幅度和模式。对晚中新世开展准确且高分辨率的二氧化碳分压重建是未来指标重建工作的重点,而植被反馈、云反馈、水蒸汽反馈和土壤性质是影响晚中新世暖室气候的主要因素,未来的数值模拟工作应朝这些方向推进。

The period of the late Miocene Tortonian (11.61~7.25 Ma) was warmer and wetter than today, with atmospheric partial pressure of carbon dioxide (pCO2) near the preindustrial level. Greenhouse climate under low pCO2 was rare throughout the Cenozoic and understanding its mechanisms will help to better forecast the future climate. We summarized two hypotheses to elucidate this mechanism. One is the late Miocene climate-pCO2 "decoupling hypothesis" based on geological records, and the other is "synergistic effects hypothesis" based on climate modeling. Geological records indicate that the late Miocene climate may not have been affected by pCO2, that is, climate and pCO2 were decoupled. Climate modeling results indicate that different vegetation and tectonic conditions in the late Miocene may have contributed to the global temperature increase. However, realistically, it is difficult to fully simulate the amplitude and pattern of the late Miocene warmth. Future work should focus on reconstructing pCO2 records with high accuracy and resolution. Vegetation, clouds, water vapor feedback, and soil properties may be the dominant factors contributing to the late Miocene greenhouse climate, which should also be considered in future simulation work.

中图分类号: 

1 HERBERT T D, LAWRENCE K T, TZANOVA A, et al. Late Miocene global cooling and the rise of modern ecosystems[J]. Nature Geoscience, 2016, 9(11): 843-847.
2 TIAN Jun, LIU Jingjing, LIU Zhonghui. Evolution of the East Equatorial Pacific cold tongue since the Late Miocene[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(6): 585-591.
田军, 刘晶晶, 柳中晖. 晚中新世以来东赤道太平洋冷舌的地质演化[J]. 中国科学基金, 2019, 33(6): 585-591.
3 LEAR C H, ROSENTHAL Y, WRIGHT J D. The closing of a seaway: ocean water masses and global climate change[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 425-436.
4 STEPPUHN A, MICHEELS A, BRUCH A A, et al. The sensitivity of ECHAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data[J]. Global and Planetary Change, 2007, 57(3/4): 189-212.
5 BRADSHAW C D, LUNT D J, FLECKER R, et al. The relative roles of CO2 and palaeogeography in determining Late Miocene climate: results from a terrestrial model-data comparison[J]. Climate of the Past, 2012, 8(4): 1 257-1 285.
6 ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517): 686-693.
7 RUDDIMAN W. A paleoclimatic enigma?[J]. Science, 2010, 328(5 980): 838-839.
8 MICHEELS A, BRUCH A A, UHL D, et al. A Late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253(1/2): 251-270.
9 POUND M J, HAYWOOD A M, SALZMANN U, et al. A Tortonian (Late Miocene, 11.61-7.25 Ma) global vegetation reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 300(1/2/3/4): 29-45.
[1] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[2] 董治宝, 吕萍, 李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[4] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[5] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[6] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[7] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[8] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[9] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[10] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[11] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[12] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
[13] 孙运宝, 赵铁虎, 秦柯. 南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J]. 地球科学进展, 2014, 29(9): 1055-1064.
[14] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[15] 薛羽君,白爱娟,李 典. 四川盆地降水日变化特征分析和个例模拟[J]. 地球科学进展, 2012, 27(8): 885-894.
阅读次数
全文


摘要