地球科学进展 ›› 2022, Vol. 37 ›› Issue (4): 429 -438. doi: 10.11867/j.issn.1001-8166.2022.012

研究简报 上一篇    下一篇

基于文献可视化分析的土壤团聚体研究进展
张彧行 1 , 2( ), 翁白莎 2( ), 严登华 2   
  1. 1.首都师范大学 资源环境与旅游学院,北京 100048
    2.流域水循环模拟与调控国家重点实验室,中国水利水电科学研究院,北京 100038
  • 收稿日期:2021-11-25 修回日期:2022-02-06 出版日期:2022-04-10
  • 通讯作者: 翁白莎 E-mail:2200902120@cnu.edu.cn;wengbs@iwhr.com
  • 基金资助:
    国家自然科学基金面上项目“气候变化背景下高寒草甸区根系变化特征及其对关键土壤水分参数的影响机理”(51879276);第二次青藏高原综合科学考察研究项目“水资源演变与适应性利用”(2019QZKK0207)

Research Progress of Soil Aggregates Based on Literature Visualization Analysis

Yuhang ZHANG 1 , 2( ), Baisha WENG 2( ), Denghua YAN 2   

  1. 1.College of Resource Environment and Tourism,Capital Normal University,Beijing 100048,China
    2.State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research,Beijing 100038,China
  • Received:2021-11-25 Revised:2022-02-06 Online:2022-04-10 Published:2022-04-28
  • Contact: Baisha WENG E-mail:2200902120@cnu.edu.cn;wengbs@iwhr.com
  • About author:ZHANG Yuhang (1997-), male, Wenshui County, Shanxi Province, Ph.D student.Research areas include extreme hydrological and ecological effects. E-mail: 2200902120@cnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Characteristics of root system changes in alpine meadow area under the background of climate change and its mechanism of influencing key soil moisture parameters"(51879276);The Second Tibetan Plateau Scientific Expedition and Research Program (STEP) "Water resources evolution and adaptive use"(2019QZKK0207)

从时间和空间尺度梳理了土壤团聚体的发展历程,通过分析发文时间、发文国家和地区以及关键词等把握土壤团聚体的研究方向、热点和发展趋势。近10年来,土壤团聚体的研究方向主要集中在气候变化背景下土壤有机碳对土壤团聚体稳定性的影响机制,以及土壤团聚体在缓解土壤侵蚀、风蚀和重金属污染等方面的作用。土壤团聚体研究的热点是不同土地管理制度或者不同土地利用方式对土壤团聚体稳定性的影响机制,以及土壤团聚体在碳循环中的作用。同时发现对土壤团聚体的研究高度集中在中低纬度、中低海拔地区,而对高纬度、高海拔地区关注不够。未来土壤团聚体的研究仍会在气候变化背景下展开: 研究其与土壤有机碳的相互作用机制,充分发挥其固碳潜力; 研究其与土壤水分的关系,探究其对不同尺度水循环的影响; 在高纬度、高海拔地区进一步开展深层次和外延性的研究。

We investigated the development of soil aggregates on temporal and spatial scales. By analyzing the time of publication, countries and regions of publication, and keywords, we can grasp the research direction, hotspots, and trends of soil aggregates. In the last decade, the main research directions in soil aggregates have focused on the mechanisms of soil organic carbon on the stability of soil aggregates in the context of climate change and the role of soil aggregates in mitigating soil erosion, wind erosion, and heavy metal pollution. Hot topics in research on soil aggregates are the mechanisms by which different land management regimes or land use practices affect the stability of soil aggregates and the role of soil aggregates in the carbon cycle. Meanwhile, research on soil aggregates has been highly concentrated at low and middle latitudes and altitudes, with insufficient attention being paid to high latitudes and altitudes. Future research on soil aggregates must be conducted in the context of climate change. First, we studied the mechanism of interaction between soil aggregates and soil organic carbon to give full play to the carbon sequestration potential of soil aggregates. Second, its relationship with soil moisture was studied and its impact on the water cycle at different scales was explored. Third, we conducted further deep and extensive research at high latitudes and altitudes.

中图分类号: 

图1 19242020年土壤团聚体SCI论文年度发表趋势
Fig. 1 The trends in annually published SCI papers on soil aggregates from 1924 to 2020
图2 20112020年土壤团聚体SCI论文Top10发文国家/地区分布
Fig. 2 The Top 10 countries/regions in the number of published SCI articles on soil aggregates from 2011 to 2020
表1 2011年和 2020年土壤团聚体研究 Top10国家
Table 1 The top 10 countries/regions for soil aggregates research in 2011 and 2020, respectively
图3 国际主要研究机构合作态势(20112020年)
Fig. 3 Trends in cooperation among major international research institutions2011-2020
表2 引用计数、爆发指数分别为 Top10的研究机构( 20112020年)
Table 2 Citation counts, outbreak index Top 10 research institutions2011-2020
表3 SCI论文国际出版机构分布情况
Table 3 Distribution of international publishing institutions of SCI papers
表4 SCI论文 Top10国际资助来源( 20112020年)
Table 4 Top 10 international funding source for SCI papers2011-2020
表5 SCI论文中国国内 Top10资助来源( 20112020年)
Table 5 Top 10 domestic funding agencies for SCI papers in China2011-2020
图4 土壤团聚体研究涉及的主要学科(20112020年)
Fig. 4 Main disciplines involved in soil aggregates research2011-2020
图5 20112020年土壤团聚体关键词聚类分析
Fig. 5 Clustering analysis of the keywords in soil aggregates research from 2011 to 2020
表6 20112020年土壤团聚体研究关键词列表
Table 6 The keywords for soil aggregates research 2011-2020
表7 20112020年有关土壤团聚体 Top10高被引论文
Table 7 Top 10 highly cited papers about soil aggregates 2011-2020
图6 青藏高原土壤团聚体研究现状及与土壤水分互馈作用
Fig. 6 Current status of research on soil aggregates and their interaction with soil moisture in the Tibetan Plateau
1 FANG Rukang. Dictionary of environmental science[M]. Beijing:Science Press, 2003.
方如康. 环境学词典[M]. 北京:科学出版社, 2003.
2 LIU Yan, MA Maohua, WU Shengjun, et al. Soil aggregates as affected by wetting-drying cycle: a review[J]. Soils, 2018, 50(5): 853-865.
刘艳, 马茂华, 吴胜军, 等. 干湿交替下土壤团聚体稳定性研究进展与展望[J]. 土壤, 2018, 50(5): 853-865.
3 TANG Ru, SUN Yuxiang, DAI Qi, et al. Research methods and progress of soil aggregate microstructure[J]. Journal of Henan Agricultural Sciences, 2018, 47(9): 8-15.
唐茹, 孙钰翔, 戴齐, 等. 土壤团聚体微结构研究方法及进展[J]. 河南农业科学, 2018, 47(9): 8-15.
4 LI Decheng, ZHANG Taolin, VELDE B. Application of CT analysis techniques in soil science research [J]. Soil, 2002, 34(6): 328-332.
李德成,张桃林, VELDE B. CT分析技术在土壤科学研究中的应用[J].土壤, 2002, 34(6): 328-332.
5 PETROVIC A M, SIEBERT J E, RIEKE P E. Soil bulk density analysis in three dimensions by computed tomographic scanning[J]. Soil Science Society of America Journal, 1982, 46(3): 445-450.
6 WU Jingshe. Determination of soil structure by CT scanner[J]. Irrigation and Drainage,1988,7(4):51-52.
吴景社. 用CT扫描器测定土壤结构[J]. 灌溉排水, 1988,7(4):51-52.
7 FENG Jie, HAO Zhenchun. A summary of CT application in research of soil macropores[J]. Irrigation and Drainage, 2000, 19(3): 71-76.
冯杰, 郝振纯. CT在土壤大孔隙研究中的应用评述[J]. 灌溉排水, 2000, 19(3): 71-76.
8 FENG Jie, HAO Zhenchun. Distribution of soil macropores characterized by CT[J]. Advances in Water Science, 2002, 13(5): 611-617.
冯杰, 郝振纯. CT扫描确定土壤大孔隙分布[J]. 水科学进展, 2002, 13(5): 611-617.
9 Fei LÜ, LIU Jianli, HE Juan. Prediction of near saturated soil hydraulic properties by using CT images and network model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(5): 10-14.
吕菲, 刘建立, 何娟. 利用CT数字图像和网络模型预测近饱和土壤水力学性质[J]. 农业工程学报, 2008, 24(5): 10-14.
10 Fei LÜ, LIU Jianli, ZHANG Jiabao, et al. Prediction of near saturated soil water retention curve using CT images and random network model[J]. Journal of Irrigation and Drainage, 2009, 28(6): 18-21.
吕菲, 刘建立, 张佳宝, 等. 利用随机网络模型和CT数字图像预测近饱和土壤水分特征曲线[J]. 灌溉排水学报, 2009, 28(6): 18-21.
11 WHITTLES C L. The determination of the number of bacteria in soil. II. Methods for the disintegration of soil aggregates and the preparation of soil suspensions[J]. The Journal of Agricultural Science, 1924, 14(3): 346-369.
12 HAN Songlin, ZHU Zhengru, JIANG Junchao. Based on CiteSpace information visualization analysis of research progress in the field of photocatalytic technology for water pollution control[J]. Journal of Capital Normal University (Natural Science Edition), 2021, 42(3): 75-83.
韩嵩琳, 朱正如, 姜俊超. 基于CiteSpace信息可视化分析光催化技术治理水污染领域的研究进展[J]. 首都师范大学学报(自然科学版), 2021, 42(3): 75-83.
13 GAO H L, QIU L P, ZHANG Y J, et al. Distribution of organic carbon and nitrogen in soil aggregates of aspen (Populus simonii Carr.) woodlands in the semi-arid Loess Plateau of China[J]. Soil Research, 2013, 51(5): 406.
14 WEI G X, ZHOU Z F, GUO Y, et al. Long-term effects of tillage on soil aggregates and the distribution of soil organic carbon, total nitrogen, and other nutrients in aggregates on the semi-arid Loess Plateau, China[J]. Arid Land Research and Management, 2014, 28(3): 291-310.
15 ZHANG X K, WU X, ZHANG S X, et al. Organic amendment effects on aggregate-associated organic C, microbial biomass C and glomalin in agricultural soils[J]. Catena, 2014, 123: 188-194.
16 FICK S E, HIJMANS R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4 302-4 315.
17 ROGELJ J, ELZEN M DEN, HÖHNE N, et al. Paris agreement climate proposals need a boost to keep warming well below 2 ℃[J]. Nature, 2016, 534(7 609): 631-639.
18 RUMPEL C, KÖGEL-KNABNER I. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2011, 338(1/2): 143-158.
19 CONANT R T, RYAN M G, ÅGREN G I, et al. Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward[J]. Global Change Biology, 2011, 17(11): 3 392-3 404.
20 KUZYAKOV Y, BLAGODATSKAYA E. Microbial hotspots and hot moments in soil: concept & review[J]. Soil Biology and Biochemistry, 2015, 83: 184-199.
21 GRIFFITHS B S, PHILIPPOT L. Insights into the resistance and resilience of the soil microbial community[J]. FEMS Microbiology Reviews, 2013, 37(2): 112-129.
22 PENG X, YE L L, WANG C H, et al. Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in Southern China[J]. Soil and Tillage Research, 2011, 112(2): 159-166.
23 HERATH H M S K, CAMPS-ARBESTAIN M, HEDLEY M. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol[J]. Geoderma, 2013, 209/210: 188-197.
24 WIESMEIER M, URBANSKI L, HOBLEY E, et al. Soil organic carbon storage as a key function of soils—a review of drivers and indicators at various scales[J]. Geoderma, 2019, 333: 149-162.
25 SIX J, PAUSTIAN K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool[J]. Soil Biology and Biochemistry, 2014, 68: A4-A9.
26 GUAN S, AN N, ZONG N, et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow[J]. Soil Biology and Biochemistry, 2018, 116: 224-236.
27 GUAN S, AN N, LIU J H, et al. Warming impacts on carbon, nitrogen and phosphorus distribution in soil water-stable aggregates[J]. Plant, Soil and Environment, 2018, 64(2): 64-69.
28 ZHAO Y D, HU X, LI X Y. Analysis of the intra-aggregate pore structures in three soil types using X-ray computed tomography[J]. Catena, 2020, 193: 104622.
29 WEI X R, WANG X, MA T E, et al. Distribution and mineralization of organic carbon and nitrogen in forest soils of the southern Tibetan Plateau[J]. Catena, 2017, 156: 298-304.
30 LI C L, CAO Z Y, CHANG J J, et al. Elevational gradient affect functional fractions of soil organic carbon and aggregates stability in a Tibetan alpine meadow[J]. Catena, 2017, 156: 139-148.
31 WANG J W, ZHAO C Z, ZHAO L C, et al. Effects of grazing on the allocation of mass of soil aggregates and aggregate-associated organic carbon in an alpine meadow[J]. PLoS ONE, 2020, 15(6): e0234477.
32 ZHANG N N, SUN G, ZHONG B, et al. Impacts of wise grazing on physicochemical and biological features of soil in a sandy grassland on the Tibetan Plateau[J]. Land Degradation & Development, 2019, 30(7): 719-729.
33 LI M, WANG G X, KANG X M, et al. Long-term fertilization alters microbial community but fails to reclaim soil organic carbon stocks in a land-use changed soil of the Tibetan Plateau[J]. Land Degradation & Development, 2020, 31(4): 531-542.
34 DONG S K, ZHANG J, LI Y Y, et al. Effect of grassland degradation on aggregate-associated soil organic carbon of alpine grassland ecosystems in the Qinghai-Tibetan Plateau[J]. European Journal of Soil Science, 2020, 71(1): 69-79.
35 MA P P, QIN Y, FU H, et al. Effects of grassland degradation on the distribution and stability of water-stable aggregate on the Qinghai-Tibet Plateau[J]. Polish Journal of Environmental Studies, 2021, 30(3): 2 671-2 689.
36 MA L, WANG Q, SHEN S T, et al. Heterogeneity of soil structure and fertility during desertification of alpine grassland in northwest Sichuan[J]. Ecosphere, 2020, 11(7): e03161.
37 ZHANG N N, ZHONG B, ZHAO C Z, et al. Change of soil physicochemical properties, bacterial community and aggregation during desertification of grasslands in the Tibetan Plateau[J]. European Journal of Soil Science, 2021, 72(1): 274-288.
38 PAN T, HOU S, WU S H, et al. Variation of soil hydraulic properties with alpine grassland degradation in the eastern Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2017, 21(4): 2 249-2 261.
39 QIN Wenjing, FAN Guisheng. Study on influencing factors of water characteristic curve of alluvial-diluvial plain soil at low suction stage[J]. Water Saving Irrigation, 2019(10): 38-42.
秦文静, 樊贵盛. 冲洪积平原土壤低吸力阶段水分特征曲线影响因素研究[J]. 节水灌溉, 2019(10): 38-42.
40 PAN Genxing, LU Haifei, LI Lianqing, et al. Soil carbon sequestration with bioactivity: a new emerging frontier for sustainable soil management[J]. Advances in Earth Science, 2015, 30(8): 940-951.
潘根兴, 陆海飞, 李恋卿, 等. 土壤碳固定与生物活性: 面向可持续土壤管理的新前沿[J]. 地球科学进展, 2015, 30(8): 940-951.
41 ZU Qianhui, FANG Huan, ZHOU Hu, et al. Effect of X-ray micro-computed tomography on the metabolic activity and diversity of soil microbial communities in two Chinese soils[J]. Acta Microbiologica Sinica, 2016, 56(1): 101-109.
俎千惠, 房焕, 周虎, 等. X射线对我国两种典型土壤中微生物活性及群落结构的影响[J]. 微生物学报, 2016, 56(1): 101-109.
[1] 刘建辉, 叶玫, 何清吟. 基于文献计量学的地球生物学发展和演变趋势分析[J]. 地球科学进展, 2022, 37(2): 212-220.
[2] 房婷婷, 付广裕. 卫星重力与地球重力场的文献计量分析[J]. 地球科学进展, 2021, 36(5): 543-552.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
[5] 艾鑫,马明国,王雪梅,匡鸿海. 全球地球科学研究的可视化分析[J]. 地球科学进展, 2020, 35(12): 1270-1280.
[6] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[7] 王雪梅,尉永平,马明国,张志强. 基于文献计量学的黑河流域研究进展分析[J]. 地球科学进展, 2019, 34(3): 316-323.
[8] 高春东,吴秀平. 基于文献计量的水治理研究国际发展态势分析[J]. 地球科学进展, 2019, 34(3): 324-332.
[9] 张宸嘉, 方一平, 陈秀娟. 基于文献计量的国内可持续生计研究进展分析[J]. 地球科学进展, 2018, 33(9): 969-982.
[10] 王金平, 曲建升, 马金珠. 基于文献计量的国际虚拟水研究发展态势分析[J]. 地球科学进展, 2018, 33(6): 653-663.
[11] 马学成, 巩杰, 柳冬青, 张金茜. 社会生态系统研究态势:文献计量分析视角[J]. 地球科学进展, 2018, 33(4): 435-444.
[12] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[13] 宋世雄, 刘志锋, 何春阳, 赵瑞, 任强. 城市扩展过程对自然生境影响评价的研究进展[J]. 地球科学进展, 2018, 33(10): 1094-1104.
[14] 李强. 基于文献计量学分析2016年度岩溶学研究热点[J]. 地球科学进展, 2017, 32(5): 535-545.
[15] 王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
阅读次数
全文


摘要