| 1 | FANG Rukang. Dictionary of environmental science[M]. Beijing:Science Press, 2003. | 
																													
																						|  | 方如康. 环境学词典[M]. 北京:科学出版社, 2003. | 
																													
																						| 2 | LIU Yan, MA Maohua, WU Shengjun, et al. Soil aggregates as affected by wetting-drying cycle: a review[J]. Soils, 2018, 50(5): 853-865. | 
																													
																						|  | 刘艳, 马茂华, 吴胜军, 等. 干湿交替下土壤团聚体稳定性研究进展与展望[J]. 土壤, 2018, 50(5): 853-865. | 
																													
																						| 3 | TANG Ru, SUN Yuxiang, DAI Qi, et al. Research methods and progress of soil aggregate microstructure[J]. Journal of Henan Agricultural Sciences, 2018, 47(9): 8-15. | 
																													
																						|  | 唐茹, 孙钰翔, 戴齐, 等. 土壤团聚体微结构研究方法及进展[J]. 河南农业科学, 2018, 47(9): 8-15. | 
																													
																						| 4 | LI Decheng, ZHANG Taolin, VELDE B. Application of CT analysis techniques in soil science research [J]. Soil, 2002, 34(6): 328-332. | 
																													
																						|  | 李德成,张桃林, VELDE B. CT分析技术在土壤科学研究中的应用[J].土壤, 2002, 34(6): 328-332. | 
																													
																						| 5 | PETROVIC A M, SIEBERT J E, RIEKE P E. Soil bulk density analysis in three dimensions by computed tomographic scanning[J]. Soil Science Society of America Journal, 1982, 46(3): 445-450. | 
																													
																						| 6 | WU Jingshe. Determination of soil structure by CT scanner[J]. Irrigation and Drainage,1988,7(4):51-52. | 
																													
																						|  | 吴景社. 用CT扫描器测定土壤结构[J]. 灌溉排水, 1988,7(4):51-52. | 
																													
																						| 7 | FENG Jie, HAO Zhenchun. A summary of CT application in research of soil macropores[J]. Irrigation and Drainage, 2000, 19(3): 71-76. | 
																													
																						|  | 冯杰, 郝振纯. CT在土壤大孔隙研究中的应用评述[J]. 灌溉排水, 2000, 19(3): 71-76. | 
																													
																						| 8 | FENG Jie, HAO Zhenchun. Distribution of soil macropores characterized by CT[J]. Advances in Water Science, 2002, 13(5): 611-617. | 
																													
																						|  | 冯杰, 郝振纯. CT扫描确定土壤大孔隙分布[J]. 水科学进展, 2002, 13(5): 611-617. | 
																													
																						| 9 | Fei LÜ, LIU Jianli, HE Juan. Prediction of near saturated soil hydraulic properties by using CT images and network model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(5): 10-14. | 
																													
																						|  | 吕菲, 刘建立, 何娟. 利用CT数字图像和网络模型预测近饱和土壤水力学性质[J]. 农业工程学报, 2008, 24(5): 10-14. | 
																													
																						| 10 | Fei LÜ, LIU Jianli, ZHANG Jiabao, et al. Prediction of near saturated soil water retention curve using CT images and random network model[J]. Journal of Irrigation and Drainage, 2009, 28(6): 18-21. | 
																													
																						|  | 吕菲, 刘建立, 张佳宝, 等. 利用随机网络模型和CT数字图像预测近饱和土壤水分特征曲线[J]. 灌溉排水学报, 2009, 28(6): 18-21. | 
																													
																						| 11 | WHITTLES C L. The determination of the number of bacteria in soil. II. Methods for the disintegration of soil aggregates and the preparation of soil suspensions[J]. The Journal of Agricultural Science, 1924, 14(3): 346-369. | 
																													
																						| 12 | HAN Songlin, ZHU Zhengru, JIANG Junchao. Based on CiteSpace information visualization analysis of research progress in the field of photocatalytic technology for water pollution control[J]. Journal of Capital Normal University (Natural Science Edition), 2021, 42(3): 75-83. | 
																													
																						|  | 韩嵩琳, 朱正如, 姜俊超. 基于CiteSpace信息可视化分析光催化技术治理水污染领域的研究进展[J]. 首都师范大学学报(自然科学版), 2021, 42(3): 75-83. | 
																													
																						| 13 | GAO H L, QIU L P, ZHANG Y J, et al. Distribution of organic carbon and nitrogen in soil aggregates of aspen (Populus simonii Carr.) woodlands in the semi-arid Loess Plateau of China[J]. Soil Research, 2013, 51(5): 406. | 
																													
																						| 14 | WEI G X, ZHOU Z F, GUO Y, et al. Long-term effects of tillage on soil aggregates and the distribution of soil organic carbon, total nitrogen, and other nutrients in aggregates on the semi-arid Loess Plateau, China[J]. Arid Land Research and Management, 2014, 28(3): 291-310. | 
																													
																						| 15 | ZHANG X K, WU X, ZHANG S X, et al. Organic amendment effects on aggregate-associated organic C, microbial biomass C and glomalin in agricultural soils[J]. Catena, 2014, 123: 188-194. | 
																													
																						| 16 | FICK S E, HIJMANS R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4 302-4 315. | 
																													
																						| 17 | ROGELJ J, ELZEN M DEN, HÖHNE N, et al. Paris agreement climate proposals need a boost to keep warming well below 2 ℃[J]. Nature, 2016, 534(7 609): 631-639. | 
																													
																						| 18 | RUMPEL C, KÖGEL-KNABNER I. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2011, 338(1/2): 143-158. | 
																													
																						| 19 | CONANT R T, RYAN M G, ÅGREN G I, et al. Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward[J]. Global Change Biology, 2011, 17(11): 3 392-3 404. | 
																													
																						| 20 | KUZYAKOV Y, BLAGODATSKAYA E. Microbial hotspots and hot moments in soil: concept & review[J]. Soil Biology and Biochemistry, 2015, 83: 184-199. | 
																													
																						| 21 | GRIFFITHS B S, PHILIPPOT L. Insights into the resistance and resilience of the soil microbial community[J]. FEMS Microbiology Reviews, 2013, 37(2): 112-129. | 
																													
																						| 22 | PENG X, YE L L, WANG C H, et al. Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in Southern China[J]. Soil and Tillage Research, 2011, 112(2): 159-166. | 
																													
																						| 23 | HERATH H M S K, CAMPS-ARBESTAIN M, HEDLEY M. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol[J]. Geoderma, 2013, 209/210: 188-197. | 
																													
																						| 24 | WIESMEIER M, URBANSKI L, HOBLEY E, et al. Soil organic carbon storage as a key function of soils—a review of drivers and indicators at various scales[J]. Geoderma, 2019, 333: 149-162. | 
																													
																						| 25 | SIX J, PAUSTIAN K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool[J]. Soil Biology and Biochemistry, 2014, 68: A4-A9. | 
																													
																						| 26 | GUAN S, AN N, ZONG N, et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow[J]. Soil Biology and Biochemistry, 2018, 116: 224-236. | 
																													
																						| 27 | GUAN S, AN N, LIU J H, et al. Warming impacts on carbon, nitrogen and phosphorus distribution in soil water-stable aggregates[J]. Plant, Soil and Environment, 2018, 64(2): 64-69. | 
																													
																						| 28 | ZHAO Y D, HU X, LI X Y. Analysis of the intra-aggregate pore structures in three soil types using X-ray computed tomography[J]. Catena, 2020, 193: 104622. | 
																													
																						| 29 | WEI X R, WANG X, MA T E, et al. Distribution and mineralization of organic carbon and nitrogen in forest soils of the southern Tibetan Plateau[J]. Catena, 2017, 156: 298-304. | 
																													
																						| 30 | LI C L, CAO Z Y, CHANG J J, et al. Elevational gradient affect functional fractions of soil organic carbon and aggregates stability in a Tibetan alpine meadow[J]. Catena, 2017, 156: 139-148. | 
																													
																						| 31 | WANG J W, ZHAO C Z, ZHAO L C, et al. Effects of grazing on the allocation of mass of soil aggregates and aggregate-associated organic carbon in an alpine meadow[J]. PLoS ONE, 2020, 15(6): e0234477. | 
																													
																						| 32 | ZHANG N N, SUN G, ZHONG B, et al. Impacts of wise grazing on physicochemical and biological features of soil in a sandy grassland on the Tibetan Plateau[J]. Land Degradation & Development, 2019, 30(7): 719-729. | 
																													
																						| 33 | LI M, WANG G X, KANG X M, et al. Long-term fertilization alters microbial community but fails to reclaim soil organic carbon stocks in a land-use changed soil of the Tibetan Plateau[J]. Land Degradation & Development, 2020, 31(4): 531-542. | 
																													
																						| 34 | DONG S K, ZHANG J, LI Y Y, et al. Effect of grassland degradation on aggregate-associated soil organic carbon of alpine grassland ecosystems in the Qinghai-Tibetan Plateau[J]. European Journal of Soil Science, 2020, 71(1): 69-79. | 
																													
																						| 35 | MA P P, QIN Y, FU H, et al. Effects of grassland degradation on the distribution and stability of water-stable aggregate on the Qinghai-Tibet Plateau[J]. Polish Journal of Environmental Studies, 2021, 30(3): 2 671-2 689. | 
																													
																						| 36 | MA L, WANG Q, SHEN S T, et al. Heterogeneity of soil structure and fertility during desertification of alpine grassland in northwest Sichuan[J]. Ecosphere, 2020, 11(7): e03161. | 
																													
																						| 37 | ZHANG N N, ZHONG B, ZHAO C Z, et al. Change of soil physicochemical properties, bacterial community and aggregation during desertification of grasslands in the Tibetan Plateau[J]. European Journal of Soil Science, 2021, 72(1): 274-288. | 
																													
																						| 38 | PAN T, HOU S, WU S H, et al. Variation of soil hydraulic properties with alpine grassland degradation in the eastern Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2017, 21(4): 2 249-2 261. | 
																													
																						| 39 | QIN Wenjing, FAN Guisheng. Study on influencing factors of water characteristic curve of alluvial-diluvial plain soil at low suction stage[J]. Water Saving Irrigation, 2019(10): 38-42. | 
																													
																						|  | 秦文静, 樊贵盛. 冲洪积平原土壤低吸力阶段水分特征曲线影响因素研究[J]. 节水灌溉, 2019(10): 38-42. | 
																													
																						| 40 | PAN Genxing, LU Haifei, LI Lianqing, et al. Soil carbon sequestration with bioactivity: a new emerging frontier for sustainable soil management[J]. Advances in Earth Science, 2015, 30(8): 940-951. | 
																													
																						|  | 潘根兴, 陆海飞, 李恋卿, 等. 土壤碳固定与生物活性: 面向可持续土壤管理的新前沿[J]. 地球科学进展, 2015, 30(8): 940-951. | 
																													
																						| 41 | ZU Qianhui, FANG Huan, ZHOU Hu, et al. Effect of X-ray micro-computed tomography on the metabolic activity and diversity of soil microbial communities in two Chinese soils[J]. Acta Microbiologica Sinica, 2016, 56(1): 101-109. | 
																													
																						|  | 俎千惠, 房焕, 周虎, 等. X射线对我国两种典型土壤中微生物活性及群落结构的影响[J]. 微生物学报, 2016, 56(1): 101-109. |