地球科学进展 ›› 2022, Vol. 37 ›› Issue (4): 407 -416. doi: 10.11867/j.issn.1001-8166.2022.021

研究论文 上一篇    下一篇

考虑历史洪水不确定性的多维联合洪水频率分析
尚晓三 1 , 2( ), 王栋 1( )   
  1. 1.南京大学 地球科学与工程学院 水科学系,江苏 南京 210093
    2.安徽省 水利水电勘测设计研究总院有限公司,安徽 合肥 230088
  • 收稿日期:2022-01-04 修回日期:2022-02-14 出版日期:2022-04-10
  • 通讯作者: 王栋 E-mail:shangxiaosan@gmail.com;wangdong@nju.edu.cn
  • 基金资助:
    第二次青藏高原综合科学考察研究项目“青藏高原河流尼克带水系纵剖面变化分析”(2019QZKK0203-03)

Multi-dimensional Joint Flood Frequency Analysis Considering the Uncertainty of Historical Flood Events

Xiaosan SHANG 1 , 2( ), Dong WANG 1( )   

  1. 1.Department of Hydrosciences,School of Earth Sciences and Engineering,Nanjing University,Nanjing 210093,China
    2.Anhui Survey and Design Institute of Water Conservancy & Hydropower Company Limited,Hefei 230088,China
  • Received:2022-01-04 Revised:2022-02-14 Online:2022-04-10 Published:2022-04-28
  • Contact: Dong WANG E-mail:shangxiaosan@gmail.com;wangdong@nju.edu.cn
  • About author:SHANG Xiaosan (1985-), male, Xuancheng City, Anhui Province, Senior Engineer. Research areas include application in hydrology and water resources. E-mail: shangxiaosan@gmail.com
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research Program "Variation analysis of longitudinal section of river Nickel belt in the Tibetan Plateau"(2019QZKK0203-03)

洪水过程由多个特征变量组成,各变量之间存在正相关性,应进行多变量联合分析。但随着变量的增多,在相同样本条件下,多维联合分布具有更大的抽样不确定性。将历史洪水纳入多维联合频率分析,以提升各特征变量边缘分布和Copula函数相关性参数的准确性。以分层Archimedean Copulas函数为基础,构建了考虑历史洪水不确定性的多维联合洪水频率分析层次模型,将多维联合分布分解成为若干个二维Copula函数的多级层叠形式,并结合极大似然法,选用遗传算法求解特征变量边缘分布及各层Copula函数的相关性参数。长江流域宜昌站的应用结果表明,考虑历史洪水不确定性的多维联合洪水频率分析层次模型能够完整地描述整个洪水过程,考虑洪水过程特征变量之间的相关性,也能够有效利用历史洪水,改善样本的代表性,Copula函数的相关性参数符合实测序列峰量之间的相关关系。

The entire flood process consists of multiple characteristic variables, including the flood peak and flood volume, for different durations. There is a positive correlation between these variables, and multivariate joint analysis should be performed for flood frequency analysis. However, the multi-dimensional joint distribution has greater sampling uncertainty with increasing variables using limited measurable samples. This could improve the accuracy of the marginal distribution of each characteristic variable and the correlation parameters of the Copula function using historical flood information that predated the period of systematic gauging for extending observation records in the multi-dimensional joint frequency analysis. Based on the hierarchical Archimedean Copulas function, a multi-dimensional joint flood frequency analysis hierarchical model, considering the uncertainty of historical flood events, was constructed and decomposed into several cascaded multi-level forms of two-dimensional Copula functions. Combined with the maximum likelihood method, the parameters of the nested multi-level Copula function and the marginal distribution of the characteristic variables are effectively estimated using a genetic algorithm. The Yichang hydrological station, located in the main stream of the Yangtze River, was selected as a case study, including systematic gauge records and historical flood data. The results show that it can completely describe the entire flood process and consider the correlation between the characteristic variables of the flood process with the multi-dimensional joint flood frequency analysis hierarchical model. This could improve the representativeness of the values of the marginal distribution parameters. Meanwhile, it could effectively use historical floods and improve the representativeness of the samples, and the correlation parameters of the Copula function were more consistent with the correlation between the measured data.

中图分类号: 

图1 四维完全嵌套Archimedean 结构(a)和部分嵌套Archimedean 结构(b
Fig. 1 The four dimensional hierarchical Archimedean constructionafully nested HAC andbpartially nested HAC
图2 长江流域宜昌水文站位置示意图
Fig. 2 Sketch map of Yichang station in Yangtze River Basin
表1 宜昌站各特征变量统计参数及多维 Copula函数的相关性参数
Table 1 The statistical parameters of each characteristic variable and the correlation parameters of the multidimensional Copula function at Yichang Station
表2 几种不同方法三峡水库设计洪水对比表
Table 2 Comparison table of design flood of the Three Gorges Reservoir with several approaches
1 GUO Shenglian, LIU Zhangjun, XIONG Lihua. Advances and assessment on design flood estimation methods[J]. Journal of Hydraulic Engineering, 2016, 47(3): 302-314.
郭生练, 刘章君, 熊立华. 设计洪水计算方法研究进展与评价[J]. 水利学报, 2016, 47(3): 302-314.
2 SADEGH M, RAGNO E, AGHAKOUCHAK A. Multivariate Copula Analysis Toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework[J]. Water Resources Research, 2017, 53(6): 5 166-5 183.
3 LI Tianyuan, GUO Shenglian, CHEN Lu, et al. Safety design for reservoir flood control based on Copula function[J]. Journal of Hydroelectric Engineering, 2013, 32(6): 50-56.
李天元, 郭生练, 陈璐, 等. 基于Copula函数的水库防洪安全设计[J]. 水力发电学报, 2013, 32(6): 50-56.
4 CHEN Lu. Application research of copula function theory in multivariable hydrological analysis and calculation [M]. Wuhan: Wuhan University Press, 2013.
陈璐. Copula函数理论在多变量水文分析计算中的应用研究 [M]. 武汉: 武汉大学出版社, 2013.
5 XIONG Lihua, GUO Shenglian. Application study of a bivariate extremal distribution in flood frequency analysis[J]. Journal of Yangtze River Scientific Research Institute, 2004, 21(2): 35-37.
熊立华, 郭生练. 两变量极值分布在洪水频率分析中的应用研究[J]. 长江科学院院报, 2004, 21(2): 35-37.
6 FENG Ping, MAO Huihui, WANG Yong. Method for hydrological reoccurrence frequency analysis under the condition of multivariate[J]. Journal of Hydraulic Engineering, 2009, 40(1): 33-37.
冯平, 毛慧慧, 王勇. 多变量情况下的水文频率分析方法及其应用[J]. 水利学报, 2009, 40(1): 33-37.
7 GRIMALDI S, SERINALDI F. Asymmetric copula in multivariate flood frequency analysis [J]. Advances in Water Resources, 2006, 29(8): 1 155-1 167.
8 SERINALDI F, GRIMALDI S. Fully nested 3-copula: procedure and application on hydrological data [J]. Journal of Hydrologic Engineering, 2007, 12(4): 420-430.
9 HOU Yunyun, SONG Songbai, ZHAO Lina, et al. Research of trivariate flood frequency based on Copula function[J]. Journal of Northwest A & F University (Natural Science Edition), 2010, 38(2): 219-228.
侯芸芸, 宋松柏, 赵丽娜, 等. 基于Copula函数的3变量洪水频率研究[J]. 西北农林科技大学学报(自然科学版), 2010, 38(2): 219-228.
10 SALVADORI G, de MICHELE C, DURANTE F. On the return period and design in a multivariate framework[J]. Hydrology and Earth System Sciences, 2011, 15(11): 3 293-3 305.
11 CHEN Zishen, HUANG Qiang, LIU Zengmei. Risk assessment of trivariate flood based on asymmetric Archimedean Copulas[J]. Advances in Water Science, 2016, 27(5): 763-771.
陈子燊, 黄强, 刘曾美. 基于非对称Archimedean Copula的三变量洪水风险评估[J]. 水科学进展, 2016, 27(5): 763-771.
12 LIU Zhangjun, GUO Shenglian, XU Xinfa, et al. Application of Copula functions in hydrology and water resources: a state- of the art review[J]. Advances in Water Science, 2021, 32(1): 148-159.
刘章君, 郭生练, 许新发, 等. Copula函数在水文水资源中的研究进展与述评[J]. 水科学进展, 2021, 32(1): 148-159.
13 LI T Y, GUO S L, CHEN L, et al. Bivariate flood frequency analysis with historical information based on Copula[J]. Journal of Hydrologic Engineering, 2013, 18(8): 1 018-1 030.
14 YIN J B, GUO S L, WU X S, et al. A meta-heuristic approach for multivariate design flood quantile estimation incorporating historical information[J]. Hydrology Research, 2019, 50(2): 526-544.
15 CUI Dongmei, LU Baohong, ZHANG Hanwen, et al. Trivariate discontinuous flood frequency analysis using copulas[J]. China Rural Water and Hydropower, 2015(4): 105-108, 112.
崔冬梅, 陆宝宏, 张翰文, 等. 基于Copula函数的三维非连续序列洪水频率分析[J]. 中国农村水利水电, 2015(4): 105-108, 112.
16 SHANG Xiaosan, WANG Dong, WANG Yuankun. Joint frequency analysis of flood discharge and volume considering uncertainties of historical flood events[J]. Journal of Hydroelectric Engineering, 2021, 40(5): 35-43.
尚晓三, 王栋, 王远坤. 考虑历史洪水不确定性的峰量联合频率分析[J]. 水力发电学报, 2021, 40(5): 35-43.
17 COSSETTE H, GADOURY S P, MARCEAU É, et al. Hierarchical Archimedean copulas through multivariate compound distributions[J]. Insurance: Mathematics and Economics, 2017, 76: 1-13.
18 BureauHydrological, Yangtze River Basin Planning Office, Ministry of Water and Power. The hydrological analysis report of the Three Gorges Project [R]. 1987.
水电部长江流域规划办公室水文局. 三峡工程水文分析报告[R]. 1987.
19 JI Xuewu. The hydrological research on the Three Gorges Project [M]. Wuhan: Hubei Science and Technology Press, 1997.
季学武. 三峡工程水文研究 [M]. 武汉: 湖北科学技术出版社, 1997.
20 Changjiang Water Resources Commission of the Ministry of Water Resources. The flood control plan of the Yangtze River Basin[R]. 2008.
水利部长江水利委员会. 长江流域防洪规划[R]. 2008.
21 LI Tianyuan. Design flood estimation based on Copulas[D]. Wuhan: Wuhan University,2014.
李天元. 基于Copula函数的设计洪水计算方法研究[D]. 武汉:武汉大学, 2014.
22 LI T Y, GUO S L, CHEN L, et al. Bivariate flood frequency analysis with historical information based on Copula[J]. Journal of Hydrologic Engineering, 2013, 18(8): 1 018-1 030.
23 CAO Guangjing, WANG Jun. The observation and research on hydrological and sediment on the Three Gorges Project of the Yangtze River[M]. Beijing: Science Press, 2015.
曹广晶, 王俊. 长江三峡工程水文泥沙观测与研究[M]. 北京: 科学出版社, 2015.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[3] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[4] 卿文武, 刘俊峰, 杨钰泉, 陈仁升, 韩春坛. 基于气温的物质平衡模型的参数不确定性分析——以祁连山十一冰川为例[J]. 地球科学进展, 2016, 31(9): 937-945.
[5] 鲁易, 张稳, 李婷婷, 周筠珺. 大气甲烷浓度变化的源汇因素模拟研究进展[J]. 地球科学进展, 2015, 30(7): 763-772.
[6] 王辉, 刘娜, 李本霞, 李响. 海洋可预报性和集合预报研究综述[J]. 地球科学进展, 2014, 29(11): 1212-1225.
[7] 彭建, 刘焱序, 潘雅婧, 赵志强, 宋治清, 王仰麟. 基于景观格局—过程的城市自然灾害生态风险研究:回顾与展望[J]. 地球科学进展, 2014, 29(10): 1186-1196.
[8] 覃荣高, 曹广祝, 仵彦卿. 非均质含水层中渗流与溶质运移研究进展 *[J]. 地球科学进展, 2014, 29(1): 30-41.
[9] 宋焱,徐颂军,张勇,廖秀英,张林英,杨秀,杨文槐,冯晓丹. 白云山地表水重金属健康风险不确定性评价[J]. 地球科学进展, 2013, 28(9): 1036-1042.
[10] 胡宁科,李新. 历史时期土地利用变化研究方法综述[J]. 地球科学进展, 2012, 27(7): 758-768.
[11] 岳跃民, 王克林, 张兵,刘波, 陈洪松, 张明阳. 喀斯特石漠化信息遥感提取的不确定性[J]. 地球科学进展, 2011, 26(3): 266-274.
[12] 方修琦,王媛,魏本勇,王文琴. 中国进出口贸易碳转移排放测算方法分析与评价[J]. 地球科学进展, 2011, 26(10): 1101-1108.
[13] 陈泮勤,程邦波,王芳,曲建升. 全球气候变化的几个关键问题辨析[J]. 地球科学进展, 2010, 25(1): 69-75.
[14] 陈玲,阎广建,李静,余莹洁. 行播作物地面方向性测量的视场不确定性分析[J]. 地球科学进展, 2009, 24(7): 793-802.
[15] 周冠华,唐军武,田国良,李京,柳钦火. 内陆水质遥感不确定性:问题综述[J]. 地球科学进展, 2009, 24(2): 150-158.
阅读次数
全文


摘要