Please wait a minute...
img img
高级检索
地球科学进展  2013, Vol. 28 Issue (9): 1036-1042    DOI: 10.11867/j.issn.1001-8166.2013.09.1036
研究论文     
白云山地表水重金属健康风险不确定性评价
宋 焱1,2,徐颂军1*,张 勇2,廖秀英2,张林英1,杨 秀1,杨文槐1,冯晓丹1
1. 华南师范大学地理科学学院,广东 广州 510631;
2. 湖南科技大学地理科学系,湖南 湘潭 411201
Uncertainty Evaluation of the Surface Water’sHeavy Metal Health Risk in Baiyun Mountain
Song Yan1,2, Xu Songjun1, Zhang Yong2, Liao Xiuying2, Zhang Linying1,Yang Xiu1, Yang Wenhuai1, Feng Xiaodan1
1.College of Geography Science, South China Normal University, Guangzhou 510631, China;
2. Department of Geography Science, Hu’nan University of Science and Technology, Xiangtan 411201, China
 全文: PDF(999 KB)   HTML
摘要:

为了解广州市白云山地表水重金属健康风险水平,测量了白云山山南、山北9个采样点的水体温度,pH值,Cd,As,Cr,Hg,Pb,Mn,Cu,Zn和Ni等物化指标,构建了白云山地表水重金属不确定性健康风险评价模型,对评价标准进行模糊化分级,确定了隶属度和风险等级的归属。通过对比不确定性模型和确定性模型的评价结果发现:2012年广州市白云山地表水重金属健康风险级别较高,山南总风险值为5.19×10-4和1.14×10-4,山北总风险值为6.88×10-4和2.33×10-4,都处于中—高等级及其以上,甚至达到极高风险级别,且山北地表水重金属健康风险等级较山南高;不确定性地表水重金属健康风险评价模型相比确定性评价模型更加真实、合理;相关参考文献中有关不确定性评价模型的健康风险总分值和风险等级隶属度公式等问题有待进一步商榷。

关键词: 健康风险评价不确定性评价地表水重金属广州白云山    
Abstract:

The water environmental health risk assessment relates environmental pollution with human health, taking its risk degree as evaluation index, quantitatively describing the risk that pollution does great harm to human body. To understand the surface water’s heavy metal health risk in Guangzhou Baiyun Mountain, this study measured the nine sampling points in Baiyun Mountain’s south mountain and north mountain, including these physical and chemical indicators, such as water temperature, pH value, Cd, As, Cr, Hg, Pb, Mn, Cu,Zn and Ni, constructing the uncertainty evaluation model of the surface water’s heavy metal health risk in Baiyun Mountain(heavy metal including radioactive substances, chemical carcinogens and body toxic substances, etc.), having a fuzzy classification of the health risk assessment standard of the surface water’s heavy metal, further determining the membership degree and the belonging of the risk grade. By comparing the evaluation results of the uncertainty model and the deterministic model, the study found that: the surface water’s heavy metal health risk level was higher in Guangzhou Baiyun Mountain in 2012, being of the high grade and above, even achieving the highest grade; the surface water’s heavy metal health risk level of the north mountain was higher than the south mountain; the uncertainty evaluation model of the surface water’s heavy metal health risk was more reasonable and comprehensive to reflect the real situation of the surface water’s heavy metal quality concentration than the deterministic model. Besides, in the relevant references these questions on the total score of the health risk of the uncertainty evaluation model, the membership degree formula of the risk grade, etc. need  further discussion.

Key words: Health risk assessment    Uncertainty evaluation    Surface water    Heavy metal    Guangzhou Baiyun Mountain
收稿日期: 2013-05-22 出版日期: 2013-09-10
:  P343  
基金资助:

国家自然科学基金项目“基于信息图谱的珠三角人工红树林次生湿地生态系统健康研究”(编号:41271060);广东省科技计划项目“珠江河口湿地土壤重金属污染诊断及植物修复技术研究”(编号:2012B010500025)资助.

通讯作者: 徐颂军(1962-),男,广东梅州人,教授,主要从事植物地理与环境生态学研究.E-mail:xsjscnu@126.com     E-mail: 徐颂军 xsjscnu@126.com
作者简介: 宋焱(1980-),女,湖南长沙人,讲师,主要从事环境生态与景观生态研究.E-mail:[WT6BZ]songyanscnu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宋焱
徐颂军
张勇
廖秀英
张林英
杨秀
杨文槐
冯晓丹

引用本文:

宋焱,徐颂军,张勇,廖秀英,张林英,杨秀,杨文槐,冯晓丹. 白云山地表水重金属健康风险不确定性评价[J]. 地球科学进展, 2013, 28(9): 1036-1042.

Song Yan, Xu Songjun, Zhang Yong, Liao Xiuying, Zhang Linying,Yang Xiu, Yang Wenhuai, Feng Xiaodan. Uncertainty Evaluation of the Surface Water’sHeavy Metal Health Risk in Baiyun Mountain. Advances in Earth Science, 2013, 28(9): 1036-1042.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2013.09.1036        http://www.adearth.ac.cn/CN/Y2013/V28/I9/1036

[1]Sun Li. The Water Environment Impacts of the Traveling Activity—A Case Study of Guangzhou Baiyun Mountain[D].Guangzhou:South China Normal University,2007.[孙丽. 旅游活动对水环境的影响研究——以广州白云山为例[D]. 广州: 华南师范大学, 2007.]

[2]EPA US. The Risk Assessment Guidelines of 1986[R].Washington DC: Offiice of Emergency and Remedial Response,1986.

[3]Sun Qingzhan, Zang Shuying. Pollution evaluation and forecast of heavy mental in lake of Zhalong Wetland[J]. Journal of Agro-Environment Science,2012,31(11):2 242-2 248.[孙清展,臧淑英. 水体重金属污染评价方法对比研究——以扎龙湿地湖水为例[J]. 农业环境科学学报,2012,31(11):2 242-2 248.]

[4]Ding Ran, Xiao Weihua, Yu Fuliang, et al. Evaluation method for water quality: A review and further investigation for improvement[J]. Environmental Monitoring in China,2011,27(3):63-68.[丁冉,肖伟华,于福亮,等.水资源质量评价方法的比较与改进[J].中国环境监测,2011,27(3):63-68. ]

[5]Huang Lihong, Chen Renjie, Wu Chuan, et al. An improved integrated index method for evaluating piped drinking water quality[J]. Journal of Environmental & Occupational Medicine, 2011,28(3):129-132.[黄丽红,陈仁杰,吴遄,等.应用改良综合指数法评价管道直饮水水质[J].环境与职业医学,2011,28(3):129-132.]

[6]He Lingling, Chen Zhenghong. Monitoring of heavy metal pollution in water environment of Wuhan[J]. Environmental Science and Technology,2007, 30(5):41-42,94.[何玲玲,陈正洪. 武汉市水环境重金属污染的监测[J].环境科学与技术,2007, 30(5):41-42,94.]

[7]Sun Weiping, Yu Peisong, Pan Jianming. Assessment of dissolved trace metals in nearshore area of Changjiang Estuary and Hangzhou Bay with gray cluster method[J]. Acta Oceanologica Sinica, 2009, 31(1): 79-84.[孙维萍,于培松,潘建明. 灰色聚类法评价长江口、杭州湾海域表层海水中的重金属污染程度[J].海洋学报, 2009, 31(1): 79-84.]

[8]Deng Julong. Essential Methods of Grey System[M]. Wuhan: Huazhong Institute Technology Press, 1987: 10-15.[邓聚龙. 灰色系统基本方法[M].武汉:华中理工大学出版社,1987: 10-15.]

[9]La Zadeh.Fuzzy sets[J]. Information and Control,1965,8(3):338-353.

[10]Sun Qiwei, Wu Pute, Wang Yubao, et al. Projection pursuit classification model and its application for health evaluation about agricultural water consumption in the Heihe River Basin[J]. Agricultural Research in the Arid Areas,2012,30(1): 175-183.[孙琦伟,吴普特,王玉宝,等. 投影寻踪分类模型在黑河流域农业用水方案健康性评价中的应用[J].干旱地区农业研究,2012,30(1): 175-183.]

[11]Jiang Baiquan. Application the Artificial Neural Network in Water Environmental Quality Assessment and Forecasting[D]. Beijing: Capital Normal University,2007.[蒋佰权.人工神经网络在水环境质量评价与预测上的应用[D]. 北京:首都师范大学,2007.]

[12]Sun Xinhuai, Liu Shirong, Ren Lili. Neural network for modeling of heavy metal adsorption from aqueous solution by Na-bentonite[J]. China Mining Magazine,2011,20(9):99-101,105.[孙鑫淮,刘峙嵘,任丽丽. 神经网络预测钠基膨润土吸附水中重金属离子[J].中国矿业,2011,20(9):99-101,105.]

[13]Kentel E, Aral M M. 2D Monte Carlo versus 2D Fuzzy Monte Carlo health risk assessment[J].Stochastic Environmental Research and Risk Assessment, 2005,19(1): 86-96.

[14]Dante D C, Paulina P, Nestor M, et al. Exposure to inorganic arsenic in drinking water and total urinary arsenic concentration in a Chilean population[J]. Environmental Research, 2005, 98(2): 151-159.

[15]Schwab B W, Hayes E P, Fiori J M, et al. Human pharmaceuticals in US surface waters: A human health risk assessment[J].Regulatory Toxicology and Pharmacology, 2005, 42(3): 296-312.

[16]Li Ruzhong. River Water Environmental System Uncertainty Problem Research[D]. Nanjing: Hehai University,2004.[李如忠.河流水环境系统不确定性问题研究[D].南京:河海大学,2004. ]

[17]Li Ruzhong. Assessment for environmental health of urban water supply source based on uncertain information[J]. Joutnal of Hydraulic Engineering, 2007,38(8): 895-900.[李如忠.基于不确定信息的城市水源水环境健康风险评价[J].水利学报, 2007,38(8): 895-900.]

[18]Chen Honghan, Chen Hongwei, He Jiangtao, et al. Health-based risk assessment of contaminated sites: Principles and methods[J]. Earth Science Frontiers,2006,13(1):216-223.[陈鸿汉,谌宏伟,何江涛,等.污染场地健康风险评价的理论和方法[J].地学前缘, 2006,13(1): 216-223.]

[19]Muddassir N, Faisal I K. Human health risk modeling for various exposure routes of trihalomethanes(THMs) in potable water supply[J].Environmental Modeling & Software, 2006,21(10): 1 416-1 429. 

[20]Liang Jie. Research of Solute Transport and Contamination Risk in Groundwater Based on Uncertainty Theory[D]. Changsha: Hu’nan University,2009.[梁婕.基于不确定性理论的地下水溶质运移及污染风险研究[D].长沙:湖南大学,2009.]

[21]Xu Shuitai. Health risk assessment model for heavy metals in mining areas based on uncertainty analysis[J].Gold,2012,33(6):49-53.[徐水太. 基于不确定性分析的矿区重金属健康风险评价模型[J].黄金,2012,33(6):49-53.]

[22]Yu Yong, Zhai Yuanzheng, Guo Yongli, et al. Risk assessment of groundwater pollution based on uncertainty[J]. Hydrogeology and Engineering Geology,2013,40(1):115-120.[于勇,翟远征,郭永丽,等. 基于不确定性的地下水污染风险评价研究进展[J]. 水文地质工程地质,2013,40(1):115-120.]

[23]Luo Lingli, Pan Jun, An Zhixian. A study of environmental quality assessment for water based on the method of ranking interval number[J]. Environmental Science and Management,2010,35(2):176-179.[罗玲莉,潘俊,安志娴.基于区间数排序的水环境质量评价方法研究[J].环境科学与管理,2010,35(2):176-179.]

[24]Ding Haotian. Intergrated Fuzzy Approach for Health Risk Assessment of Groundwater Contamination of Heavy Metal[D].Changsha: Hu’nan University,2011.[丁昊天.基于区间数的地下水重金属健康风险模糊综合评价[D].长沙:湖南大学,2011.]

[25]Zhao Junlei. Study on Tourism Carrying Capacity Management in Baiyun Mountain Scenic Area[D]. Guangzhou: Guangzhou University,2011.[赵俊磊. 白云山风景名胜区旅游环境容量管理研究[D]. 广州: 广州大学,2011.]

[26]Hu Xibang, Wang Junneng, Xu Zhencheng, et al. Integrated fuzzy model based on interval number for the assessment of environmental health risk of drinking water resources[J]. Environmental Science & Technology, 2012,35(S2):349-355.[胡习邦,王俊能,许振成,等. 区间数的饮用水源地健康风险模糊综合评价[J].环境科学与技术,2012,35(增刊2):349- 355.]

[27]Zhu Huina, Yuan Xingzhong, Zeng Guangming, et al. An integrated fuzzy model based on interval numbers for assessment of environmental health risks of water sources[J].Acta Scientiae Circumstantiae, 2009,29(7): 1 527-1 533.[祝慧娜,袁兴中,曾光明,等. 基于区间数的河流水环境健康风险模糊综合评价模型[J].环境科学学报, 2009,29(7): 1 527-1 533.]

[28]Li Ruzhong, Tong Fang, Zhou Aijia, et al. Fuzzy assessment model for the health risk of heavy metals in urban dusts based on trapezoidal fuzzy numbers[J]. Acta Scientiae Circumstantiae,2011,31(8):1 790-1 798.[李如忠,童芳,周爱佳,等. 基于梯形模糊数的地表灰尘重金属污染健康风险评价模型[J].环境科学学报,2011,31(8): 1 790-1 798.]

[1] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[2] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[3] 宗庆霞, 窦磊, 侯青叶, 杨忠芳, 游远航, 唐志敏. 基于土地利用类型的土壤重金属区域生态风险评价:以珠江三角洲经济区为例[J]. 地球科学进展, 2017, 32(8): 875-884.
[4] 唐志敏, 侯青叶, 游远航, 杨忠芳, 李括. 珠三角平原区第四系剖面重金属分布特征及其影响因素[J]. 地球科学进展, 2017, 32(8): 885-898.
[5] 杜佳媛, 魏永鹏, 刘菲菲, 代燕辉, 赵建, 王震宇. 氧化石墨烯对环境污染物的吸附行为及吸附机理[J]. 地球科学进展, 2016, 31(11): 1125-1136.
[6] 高江波, 吴绍洪, 戴尔阜, 侯文娟. 西南喀斯特地区地表水热过程研究进展与展望[J]. 地球科学进展, 2015, 30(6): 647-653.
[7] 张兆永, 吉力力 , 阿不都外力, 姜逢清. 天山山地表层土壤重金属的污染评价及生态风险分析[J]. 地球科学进展, 2014, 29(5): 608-616.
[8] 孟春雷. 城市地表特征数值模拟研究进展[J]. 地球科学进展, 2014, 29(4): 464-474.
[9] 范伟,章光新,李然然. 湿地地表水—地下水交互作用的研究综述[J]. 地球科学进展, 2012, 27(4): 413-423.
[10] 周永章,沈文杰, 李 勇,窦 磊,李文胜,赖启宏,杜海燕,钟莉莉,梁 婷. 基于通量模型的珠江三角洲经济区土壤重金属地球化学累积预测预警研究[J]. 地球科学进展, 2012, 27(10): 1115-1125.
[11] 温健婷,张霞,张兵,赵冬. 土壤铅含量高光谱遥感反演中波段选择方法研究[J]. 地球科学进展, 2010, 25(6): 625-629.
[12] 刘绍民,李小文,施生锦,徐自为,白洁,丁晓萍,贾贞贞,朱明佳. 大尺度地表水热通量的观测、分析与应用[J]. 地球科学进展, 2010, 25(11): 1113-1127.
[13] 李泽琴,侯佳渝,王奖臻. 矿山环境土壤重金属污染潜在生态风险评价模型探讨[J]. 地球科学进展, 2008, 23(5): 509-516.
[14] 陈翠华,倪师军,何彬彬,张成江. 基于GIS技术的江西德兴地区水系沉积物重金属污染的潜在生态危害研究[J]. 地球科学进展, 2008, 23(3): 312-322.
[15] 郎赟超,刘丛强,Satake H.,WuJiahong,李思亮. 贵阳地表水—地下水的硫和氯同位素组成特征及其污染物示踪意义[J]. 地球科学进展, 2008, 23(2): 151-159.