地球科学进展 ›› 2012, Vol. 27 ›› Issue (4): 413 -423. doi: 10.11867/j.issn.1001-8166.2012.04.0413

综述与评述 上一篇    下一篇

湿地地表水—地下水交互作用的研究综述
范伟,章光新*,李然然   
  1. 中国科学院东北地理与农业生态研究所,中国科学院湿地生态与环境重点实验室,吉林 长春130012
  • 收稿日期:2011-11-25 修回日期:2012-03-16 出版日期:2012-04-10
  • 通讯作者: 章光新(1971-),男,安徽池州人,研究员,主要从事水资源与水环境研究 E-mail:zhgx@neigae.ac.cn
  • 基金资助:

    国家重点基础研究发展计划项目“气候变化对北方农业及生态脆弱区水资源的影响”(编号: 2010CB428404);中国科学院知识创新工程重要方向项目“松嫩平原水资源调配的生态环境效应与安全调控”(编号: KZCX2-YW-Q06-2)资助.

Review of Groundwater-Surface Water Interactions in Wetland

Fan Wei, Zhang Guangxin, Li Ranran   

  1. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun130012, China
  • Received:2011-11-25 Revised:2012-03-16 Online:2012-04-10 Published:2012-04-10

湿地地表水—地下水之间的水量与水质交互作用是影响湿地水文过程及其生态环境效应的重要机制。从湿地地表水—地下水交互作用的内涵、影响因素、界面效应及其研究方法与模型等5个方面,归纳总结了国内外相关的研究成果。分析认为:湿地地表水—地下水交互作用受到地质/水文地质条件与水文情势共同控制,对未来变化环境尤其是气候变化的响应机制是其影响因素研究关注的焦点,在此背景下物理—化学—生物多层次环境界面之间的“激励—响应”更加显著,将成为理解湿地—地下水交互作用过程及其环境反馈的重要内容。结合多学科交叉理论与方法,利用不同界面特征的响应变化反馈指示湿地地表水—地下水交互作用是未来研究方法发展与创新的基本思路。结合湿地水文特性整合不同尺度的数据信息、耦合交互过程的不同机制等是模型构建的关键科学问题,实现交互作用过程中的地表水—地下水耦合、水量—水质联合模拟是模型研究的发展趋势。

Surface Water-Ground Water (SW-GW) interactions constitute an important link in wetland hydrologic processes, and consequently are of significance for eco-environmental evolution. Thus the interaction has important implications for the effective protection and management of the high environmental values usually attached to wetland habits. This article reviews the current knowledge of the SW-GW interactions and  the mechanisms, impact factors, interfaces effects, analysis methodologies and numerical models are synthesized and exemplified. The key findings are as follow: the SW-GW interactions are controlled by both the basic geological/hydro-geological conditions and the variations of hydrological regimes. However, its responses to the changing world should be emphasized in future due to the high sensitivity. Changes in global climate are expected to have impacts on hydrological and water supply regimes, which will in turn impose additional pressures on wetland. Subsequently the interactions among multi-interfaces integrating physical, chemical and biological processes will be enhanced for better understanding under changing conditions, and it is supposed to be counteractive to the SW-GW system extensively indeed. Concerted efforts from multidisciplinary approaches must be encouraged to elucidate the different interfaces effects, which help to understand the eco-environmental response to SW-GW interactions and provide insight into the research methodologies in return, because the interfaces effects display a function of fingerprinting to the characteristics of the interactions. Finally, the SW-GW interactions models are reviewed, and it is important to note that the models of SW-GW interactions coupling the water quantity and quality should be constructed based upon the understanding of hydrologic characteristics in wetland. To identify the information on different scales, coupling  several mechanisms and verifying  the parameters in the model are the key points in future study. Overall, the SW-GW interactions strongly influence the spatial/ temporal availability of the water resources and the structure/ function of the wetland ecosystem. Therefore, further study will be necessary to help water resources managers to deal with such issues as fiood mitigation, groundwater exploitation, and biodiversity conservation in a more integrated and sustainable manner.

中图分类号: 

[1]Baird A J, Wilby R L. Eco-hydrology: Plants and Water in Terrestrial and Aquatic Environments[M]. London: Routledge, 1999.
[2]Wan Li, Cao Wenbing, Hu Fusheng, et al. Eco-hydrology and eco-hydrology[J]. Geological Bulletin of China, 2005,24(8):700-703.[万力,曹文炳,胡伏生,等.生态水文学与生态水文地质学[J]. 地质通报,2005,24(8):700-703.]
[3]Wang Lei, Zhang Guangxin. Hydro-chemical interaction between surface water and groundwater in Zhalong wetland[J]. Wetland Science, 2007, 5(2): 165-173.[王磊,章光新. 扎龙湿地地表水与浅层地下水的水文化学联系研究[J].湿地科学,2007,5(2): 165-173.]
[4]Schmalz B, Springer P, Fohrer N. Variability of water quality in a riparian wetland with interacting shallow groundwater and surface water[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(6): 757-768.
[5]McEwan K L, Jolly I D, Holland K L, et al. Salinization risk in semi-arid floodplain wetlands subjected to engineered wetting and drying cycles[J]. Hydrological Processes, 2009, 23(24): 3 440-3 452.
[6]Han Aiguo, Sun Ying, Han Kunli. Discussion on the relationship between wetlands restoration and groundwater resource in Beijing area[J]. Research of Soil and Water Conservation,2006, 13(4):61-63.[韩爱果,孙颖,韩坤立.浅谈北京地区湿地修复与地下水资源的关系[J].水土保持研究,2006,13(4):61-63.]
[7]Furi W, Razack M, Haile T, et al. The hydrogeology of Adama-Wonji basin and assessment of groundwater level changes in Wonji wetland, Main Ethiopian rift: Results from 2D tomography and electrical sounding methods[J].Environmental Earth Science, 2011, 62 (6):1 323-1 335.
[8]Li F D, Zhang Q Y, Tang C Y, et al. Denitrifying bacteria and hydro-geochemistry in a natural wetland adjacent to farmlands in Chiba, Japan[J]. Hydrological Processes, 2011, 25(14): 2 237-2 245.
[9]Dong Liqin, Zhang Guangxin. Review of the impacts of climate change on wetland ecohydrology[J]. Advances in Water Science, 2011,22(3):429-436.[董李勤,章光新.全球气候变化对湿地生态水文的影响研究综述[J].水科学进展,2011,22(3):429-436.]
[10]Candela L, Igel W V, Elorza F J, et al. Impact assessment of combined climate and management scenarios on groundwater reources and associated wetland (Majorca, Spain)[J]. Journal of Hydrology, 2009, 376(3/4): 510-527.
[11]Boulton A J, Findlay S, Marmonier P, et al. The functional significance of the hyporheic zone in streams and rivers[J]. Annual Review of Ecology, Evolution, and Systematics,1998, 29(1): 59-81.
[12]Jolly I D, McEwan K L, Holland K L. A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology[J].Ecohydrology, 2008, 1(1):43-58.
[13]Rosenbary D O, Winter T C. Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota[J].Journal of Hydrology,1997,191(1/4): 266-289.
[14]Joris I, Feyen J. Modelling water flow and seasonal soil moisture dynamics in an alluvial groundwater-fed wetland[J].Hydrology and Earth System Sciences, 2003, 7(1): 57-66.
[15]Sophocleous M. Interactions between groundwater and surface water: The state of the science [J].Hydrogeology Journal, 2002, 10(1): 52-67.
[16]Litaor M I, Eshel G, Sade R, et al. Hydrogeological characterization of an altered wetland [J]. Journal of Hydrology, 2008, 349(3/4): 333-349.
[17]Fraser C, Roulet N, Lafleur M. Groundwater flow pattern in a large peatland [J]. Journal of Hydrology, 2001, 246(1/4):142-154.
[18]Xu Huashan, Zhao Tongqian, Meng Hongqi, et al. Relationship between groundwater level in riparian wetlands and water level in the river[J]. Environmental Science, 2011, 32(2):362-367.[徐华山,赵同谦,孟红旗,等.滨河湿地地下水位变化及其与河水响应关系研究[J].环境科学,2011,32(2):362-367.][19]Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems [J]. Freshwater Biology, 2009, 54(4):649-677.
[20]Lian Yingli. Variation Characteristics and Mechanism of Groundwater Response to Climate Change in Zhangye Basin[D]. Beijing: Chinese Academy of Geological Sciences, 2011.[连英立.张掖盆地地下水对气候变化响应特征与机制研究[D].北京:中国地质科学院,2011.]
[21]Schoning K, Charman D J, Wastegard S. Reconstructed water tables from two ombrotrophic mires in eastern central Sweden compared with instrumental meteorological data[J].Holocene, 2005, 15(1):111-118.
[22]Nielsen D L, Brock M A. Modified water regime and salinity as a consequence of climate change: Prospects for wetlands of Southern Australia[J].Climatic Change, 2009,95(3/4):523-533.
[23]Sanderson J S, Cooper D J. Ground water discharge by evapotranspiration in wetlands of an arid intermountain basin[J]. Journal of Hydrology, 2008, 351(3/4): 344-359.
[24]Richardson C J, Flanagan N E, Ho M, et al. Integrated stream and wetland restoration: A watershed approach to improved water quality on the landscape[J]. Ecological Engineering, 2011, 37(1): 25-39.
[25]Johansen O M, Pedersen M L, Jensen J B. Effect of groundwater abstraction on fen ecosystems [J]. Journal of Hydrology, 2011, 402(3/4): 357-366.
[26]Chen Yongjin, Chen Yaning, Liu Jiazhen. Variations in groundwater chemistry and the movement of salt infuenced by the dikes in the wetlands of middle reaches of Tarim river[J]. Journal of Liaocheng University (Natural Science), 2009, 22(4):79-85.[陈永金,陈亚宁,刘加珍.堤防建设对塔里木河中游湿地地下水化学特征及水盐运移的影响[J].聊城大学学报:自然科学版, 2009, 22(4):79-85.]
[27]Lucassen E C H E T, Smolders A J P, Lamers L P M, et al. Water table fluctuations and groundwater supply are important in preventing phosphate-eutrophication in sulphate-rich fens: Consequences for wetland restoration[J]. Plant and Soil, 2005, 269(1/2):109-115.
[28]Du Xinqiang, Ye Xueyan, Lu Ying, et al. Advances in clogging research of artificial recharge [J]. Advances in Earth Science, 2009,24(9):973-980.[杜新强,冶雪艳,路莹,等.地下水人工回灌堵塞问题研究进展[J].地球科学进展,2009,24(9):973-980.]
[29]Pavelic P, Dillon P J, Mucha M, et al. Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems[J]. Water Research, 2011, 45(10): 3 153-3 163.
[30]Turon C, Comas J, Poch M. Constructed wetland clogging: A proposal for the integration and reuse of existing knowledge[J]. Ecological Engineering, 2009, 35 (12): 1 710-1 718.
[31]Langergraber G, haberl R, Laber J, et al. Evaluation of substrate clogging processes in vertical flow constructed wetlands[J]. Water Resources Research, 2003, 48(5):25-34.
[32]Cahoon D. A review of major storm impacts on coastal wetland elevations[J]. Estuaries and Coasts, 2006, 29(6): 889-898.
[33]Hong S K, Nakagoshi N, Fu B J, et al. Landscape Ecological Applications in Man-influenced Areas: Linking Man and Nature Systems[M]. Berlin: Springer Science, 2008:209-233.
[34]Lago M E, Miralles-Wilhelm F, Mahmoudi M, et al. Numerical modeling of the effects of water flow, sediment transport and vegetation growth on the spatiotemporal patterning of the ridge and slough landscape of the Everglades wetland[J]. Advances in Water Resources, 2010, 33(10): 1 268-1 278.
[35]Kehew A E, Passero R N, Krishnamurthy R V, et al. Hydrogeochemical interaction between a wetland and an unconfined glacial drift aquifer, Southwestern Michigan[J]. Ground Water, 1998, 36(5): 849-856.
[36]Hancock P J, Boulton A J, Humphreys W F. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater[J]. Hydrogeology Journal,2005,13(1):98-111.
[37]Tang C, Azuma K, Iwami Y, et al. Nitrate behaviour in the groundwater of a headwater wetland, Chiba, Japan[J]. Hydrological Processes, 2004, 18(16):3 159-3 168.
[38]Jacks G, Norrstrom A C. Hydrochemistry and hydrology of forest riparian wetlands[J]. Forest Ecology and Management, 2004, 196(2/3):187-197.
[39]Lorah M M, Cozzarelli I M, Bhlke J K. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume[J]. Journal of Contaminant Hydrology, 2009, 105(3/4): 99-117.
[40]Lucassen E C H E T, Smolders A J P, van Der Salm, et al. High groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlands[J]. Biogeochemistry, 2004, 67(2): 249-267.
[41]Röcker K, Schrautzer J. Nutrient retention function of a stream wetland complex—A high-frequency monitoring approach[J]. Ecological Engineering, 2010, 36(5): 612-622.
[42]Pattern D T, Rouse L, Stromberg J C. Isolated spring wetlands in the Great Basin and Mojave Deserts, USA potential response of vegetation to groundwater withdrawal [J]. Environmental Management, 2008, 41(3): 398-413.
[43]Wassen M J, Barendregt A, Bootsma M C, et al. Groundwater chemistry and vegetation of gradients from rich fen to poor fen in the Naardermeer (the Netherlands)[J]. Plant Ecology, 1989, 79(3): 117-132.
[44]Hart B T, Bailey P, Edwards R, et al. A review of the salt sensitivity of the Australian freshwater biota[J]. Hydrobiologia, 1991, 210(1/2): 105-144.
[45]Benjamin K, Dalton A, Carolyn P, et al. Seasonal influences on the ecology of Testate Amoebae (Protozoa) in a small Sphagnum peatland in Southern Ontario, Canada[J]. Microbial Ecology, 2007, 54(1): 91-100.
[46]Benjamin K, Dalton A, Carolyn P, et al. The salinity tolerance of eggs and hatchlings of selected aquatic macroinvertebrates in southeast Australia and South Africa[J]. Hydrobiologia, 2004, 517(1/3): 179-192.
[47]Mitchell P I B. Methanogenesis in the sediments of an Australian freshwater wetland: Comparison with aerobic decay, and factors controlling methanogenesis[J]. Fems Micriobiology Ecology, 1995, 18(3): 175-190.
[48]Maassen S, Dagmar B. Impact of hydrodynamics (ex-and infiltration) on the microbially controlled phosphorus mobility in running water sediments of a cultivated northeast German wetland[J]. Ecological Engineering, 2010, 36(9): 1 146-1 155.
[49]Hunt R, Strand M, Walker J. Measuring groundwater-surface water interaction and its effect on wetland stream benthic productivity, Trout Lake watershed, northern Wisconsin, USA[J]. Journal of Hydrology, 2006, 320(3/4): 370-384.
[50]Wise W, Annable M, Walser J, et al. A wetland-aquifer interaction test[J]. Journal of Hydrology, 2000, 227(1/4): 257-272.
[51]Bye J A T, Narayan K A. Groundwater response to the tide in wetlands: Observations from the Gillman Marshes, South Australia[J]. Estuarine, Coastal and Shelf Science, 2009, 84(2): 219-228.
[52]Maicher E H, Phelan D J, Lorah M M, et al. Characterization of Preferential Ground-water Seepage from a Chlorinated Hydrocarbon-contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland[R]. Maryland: U.S. Geological Survey, 2002:17-18.
[53]Bravo H R, Jiang F, Hunt R J. Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system[J]. Water Resources Research, 2002, 38(8): 1-15.
[54]Ladouche B, Weng P. Hydrochemical assessment of the Rochefort marsh: Role of surface and groundwater in the hydrological functioning of the wetland[J]. Journal of Hydrology, 2005, 314(1/4): 22-42.
[55]Turner J, Townley L. Determination of groundwater flow-through regimes of shallow lakes and wetlands from numerical analysis of stable isotope and chloride tracer distribution patterns[J]. Journal of Hydrology, 2006, 320(3/4): 451-483.
[56]Parsons D F, Hayashi M, van Der Kamp G. Infiltration and solute transport under a seasonal wetland Bromide tracer experiments in Saskatoon, Canada[J]. Hydrological Processes, 2004, 18(11): 2 011-2 027.
[57]Laidig K J, Zampella R A, Brown A M, et al. Development of vegetation models to predict the potential effect of groundwater withdrawals on forested wetlands[J]. Wetlands, 2010, 30(3): 489-500.
[58]Cook P G, Wood C, White T, et al. Groundwater inflow to a shallow, poorly-mixed wetland estimated from a mass balance of radon [J]. Journal of Hydrology, 2008, 354(1/4): 213-226.
[59]Feng Xiaqing, Zhang Guangxin, Yin Xiongrui. Study on the hydrological response to climate change in Wuyur River basin based on the Swat model [J]. Progress in Geography,2010,29(7):827-832.[冯夏清,章光新,尹雄锐.基于SWAT模型的乌裕尔河流域气候变化的水文响应[J].地理科学进展,2010,29(7):827-832.]
[60]Grygoruk M, Batelaan O, Okruszko T, et al. Groundwater modelling and hydrological system analysis of wetlands in the Middle Biebrza Basin[J]. Earth and Environmental Science, 2011:89-109, doi: 10.1007/978-3-642-19059-9_6.
[61]Dall′O′M, Kluge W, Bartles F. FEUWAnet: A multi-box water level and lateral exchange model for riparian wetlands[J].Journal of Hydrology,2001, 250(1/4): 40-62.
[62]Lee T M, Sacks L A, Hughes J D. Effect of Groundwater Levels and Headwater Wetlands on Stream Flow in the Charlie Creek Basin, Peace River Watershed, West-Central Florida[R]. Maryland: U.S. Geological Survey, 2010.
[63]Liang Liqiao, Yan Minhua, Deng Wei. Headway of measurement and estimation in evapotranspiration from wetland[J]. Wetland Science, 2005, 3(1): 74-80.[梁丽乔,闫敏华,邓伟.湿地蒸散测算方法进展[J].湿地科学,2005,3(1):74-80.]
[64]Cole C A, Brooks R P. A comparison of the hydrologic characteristics of natural and created mainstem floodplain wetlands in Pennsylvania[J]. Ecological Engineering, 2000, 14(3):221-231.
[65]Zhang Guangxin, Yin Xiongrui, Feng Xiaqing. Review of the issues related to wetland hydrology research[J]. Wetland Science, 2008, 6(2): 105-115.[章光新,尹雄锐,冯夏清.湿地水文研究的若干热点问题[J].湿地科学,2008,6(2):105-115.]
[66]Feng Xiaqing. Study on Water Resources Rational Allocation of Watersheds and Wetlands based on Hydrological Cycle Simulation[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2011.[冯夏清. 基于水循环模拟的流域湿地水资源合理配置研究[D].长春:中国科学院东北地理与农业生态研究所,2011.]

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[3] 涂梦昭,刘志锋,何春阳,任强,卢文路. 基于 GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656.
[4] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[5] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
[6] 王思佳,刘鹄,赵文智,李中恺. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[7] 王文科, 宫程程, 张在勇, 陈立. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018, 33(7): 702-718.
[8] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[9] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[10] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[11] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[12] 唐志敏, 侯青叶, 游远航, 杨忠芳, 李括. 珠三角平原区第四系剖面重金属分布特征及其影响因素[J]. 地球科学进展, 2017, 32(8): 885-898.
[13] 李建国, 王文超, 濮励杰, 刘丽丽, 张忠启, 李强. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.
[14] 安正韬, Wei Yongping. 澳大利亚湿地水环境管理和技术的有机结合[J]. 地球科学进展, 2016, 31(2): 213-224.
[15] 刘菲, 陈亮, 王广才, 陈鸿汉. 地下水渗透反应格栅技术发展综述[J]. 地球科学进展, 2015, 30(8): 863-877.
阅读次数
全文


摘要