[1] Kooistra L, Wehrens R, Leuven R S E W, et al. Possibilities of visible near infrared spectroscopy for the assessment of soil contamination in river floodplains[J].Analytica Chimica Acta,2001,446(1/2): 97-105. [2] Chi Guangyu, Liu Xinhui, Liu Suhong, et al. Spectral characteristics of vegetation in environment pollution monitoring[J].Environmental Science and Technology,2005, 28(suppl.): 16-19.[迟光宇, 刘新会, 刘素红,等. 环境污染监测中的植被光谱效应研究[J]. 环境科学与技术, 2005, 28(增刊): 16-19.] [3] Wu Y, Chen J, Wu X, et al. Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils[J].Applied Geochemistry,2005,(20): 1 051-1 059. [4] Efron B, Hastie T, Johnstone I, et al. Least angle regression[J]. The Annals of Statistics,2004, 32(2): 407-451. [5] Kooistra L, Wanders J, Epema G F, et al. The potential of field spectroscopy for the assessment of sediment properties in river floodplains[J].Analytica Chimica Acta,2003,484(2): 189-200. [6] Reeves J B, Mccarty G W, Mimmo T. The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils[J].Environmental Pollutution,2002,(116): 277-284. [7] Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning[M].New York: Addison-Wesley, 1989. [8] Holland J H. Adaption in Natural and Artificial systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence[M].Cambridge, MA: MIT Press, 1992. [9] Broadhurst D, Goodacre R, Jones A, et al. Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry[J].Analytica Chimica Acta,1997, 8(34): 71-86. |