地球科学进展 ›› 2017, Vol. 32 ›› Issue (8): 867 -874. doi: 10.11867/j.issn.1001-8166.2017.08.0867

上一篇    下一篇

铁碳共沉作用对土壤重金属的吸附性能研究进展
赵转军( ), 杨艳艳 *( ), 庞瑜, 赵立芳, 管宇立, 张兆虎   
  1. 兰州大学资源环境学院,甘肃 兰州 730000
  • 收稿日期:2017-05-30 修回日期:2017-07-06 出版日期:2017-10-20
  • 通讯作者: 杨艳艳 E-mail:zhj_zhao@lzu.edu.cn;yangyy2015@lzu.edu.cn
  • 基金资助:
    国家自然科学基金项目“纳米级铁碳共沉物对西北农田土壤重金属Cd/Pb的固定吸附作用研究”(编号:41771341);甘肃省尾矿库企业环境风险预控及应急管理工作要点调查研究项目 (编号:20170117000896)资助

A Review of Study on Fe-C Interaction and Their Adsorption Properties to Soil Heavy Metal

Zhuanjun Zhao( ), Yanyan Yang *( ), Yu Pang, Lifang Zhao, Yuli Guan, Zhaohu Zhang   

  1. College of Earth and Environmental Sciences,Lanzhou University, Lanzhou 730000, China
  • Received:2017-05-30 Revised:2017-07-06 Online:2017-10-20 Published:2017-08-20
  • Contact: Yanyan Yang E-mail:zhj_zhao@lzu.edu.cn;yangyy2015@lzu.edu.cn
  • About author:

    First author:Zhao Zhuanjun(1977-), female, Tianshui City,Gansu Province, Associate professor. Research areas include treatment and remediation of heavy metal pollution in water and soil.E-mail:zhj_zhao@lzu.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Adsorption and Immobilization of Cd and Pb by Nano-sized Fe-C coprecipitates in the agricultural soils, arid region of Northwest China”(No.41771341);Investigation and Research Project of Environmental Risk Pre-control and Emergency Management of Tailings Bank in Gansu Province(No.20170117000896)

随着铁碳(Fe-C)共沉机理被越来越多的学者认可,Fe-C共沉物成为近年环境科学领域内的研究热点之一。在探讨铁氧化物和有机质的相互作用及Fe-C共沉物对重金属的吸附研究进展基础上,阐述了共沉物在固定土壤重金属离子方面的潜力:在有机质参与作用下,铁氧化物的表面性质、吸附性能等均发生了规律性变化,这些变化是决定土壤环境中重金属离子迁移转化的前提。在影响因素方面,pH值、有机质含量、铁氧化物种类及表面性质对共沉物的吸附效果影响较为显著。通过研究可以看出,一定条件下Fe-C共沉物所拥有的优良吸附性能将为土壤重金属污染场地修复治理工作提供重要理论基础。

Nowadays, the Fe-C coprecipitate mechanism is recognized by more and more scholars and becomes the hot topic in the environmental science. On the basis of discussing the interaction between iron oxide and organic matter, and the adsorption research progress of Fe-C complexes on heavy metals, the immobilization potential of Fe-C complexes on heavy metals in polluted soil were illustrated. The surface properties and physical characterizations of iron oxide are changed regularly with the interaction of organic matter, which lead to the higher adsorption capacity of Fe-C complexes in contrast to single iron oxide. Besides, the influences of pH values, organic matter types and surface properties of iron oxides on the adsorption capacity of Fe-C complexes on heavy metals were discussed. The excellent adsorption performance of Fe-C complexes in certain conditions will provide important theoretical basis for contaminated soil remediation.

中图分类号: 

图1 不同C/Fe比例下水铁矿及其碳的共沉物的XRD图谱 [ 32 ]
Fig.1 X-Ray Diffractograms of pure ferrihydrite, some coprecipitates with different C/Fe ratios [ 32 ]
图2 针铁矿及针铁矿—腐殖酸复合物的XRD图 [ 35 ]
Fig.2 X-Ray Diffraction patterns of the goethite and goethite-humic acid complex [ 35 ]
图3 水铁矿及不同C/Fe下水铁矿—胡敏酸复合物的SEM图像 [ 32 ]
Fig.3 Scanning Electron Microscopy of ferrihydrite and ferrihydrite-humic acid complex with different C/Fe ratios [ 32 ]
图4 胡敏酸(a)、针铁矿(b)及针铁矿—胡敏酸复合物(c)的TEM图像 [ 36 ]
Fig.4 Transmission Electron Micrographs of humic acid(a), goethite(b) and goethite-humic acid complex(c) [ 36 ]
图5 pH值对3种复合物吸附Hg 2+的影响 [ 53 ]
Fig.5 Effect of pH on adsorption of three complex on Hg 2+[ 53 ]
[1] Tao Xue, Yang Hu, Ji Rong,et al.Stabilizers and their applications in remediation of heavy metal-contaminated soil[J].Soils,2016, 48(1): 1-11.
[陶雪,杨琥,季荣,等. 固定剂及其在重金属污染土壤修复中的应用[J].土壤,2016,48(1):1-11.]
[2] Wang Yujun, Cheng Nengchang, Liu Cun, et al.Effect measures to prevent heavy metal pollution: Management and control methods based loading capacity of soil: To international years of soils, IYS 2015[J]. Journal of Agro-Environment Science, 2015, 34(4): 613-618.
[王玉军,陈能场,刘存,等.土壤重金属污染防治的有效措施:土壤负载容量管控法——献给2015“国际土壤年”[J].农业环境科学学报,2015,34(4):613-618.]
[3] Chen Tongbin, Lei Mei, Yang Jun,et al.Discussion on zoning of soil environmental risk control and remediation contaminated by heavy metals on regional scale[J]. Bulletin of Chinese Academy of Sciences, 2014, 29(3):321-326.
[陈同斌,雷梅,杨军,等.关于重金属污染土壤风险控制区划的研究与建议[J].中国科学院院刊,2014,29(3):321-326.]
[4] Huang Yizong, Hao Xiaowei, Lei Ming, et al.The remediation technology and remediation practice of heavy metals-contaminated soil[J]. Journal of Agro-Environment Science, 2013, 32(3):409-417.
[黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报,2013,32(3):409-417.]
[5] Wu Lieshan, Zeng Dongmei, Mo Xiaorong, et al.Immobilization impact of different fixatives on heavy metals contaminated soil[J]. Environmental Sciences, 2015, 36(1):309-313.
[吴烈善,曾东梅,莫小荣,等.不同钝化剂对重金属污染土壤稳定化效应的研究[J].环境科学,2015,36(1): 309-313.]
[6] Wang Xiaoming, Yang Kaiguang, Sun Shifa, et al.The structure and composition of ferrihydrite and its environmental geo-chemical behaviors[J]. Earth Science Frontiers,2011,18(2):339-347.
[王小明,杨凯光,孙世发,等.水铁矿的结构、组成及环境地球化学行为[J].地学前缘,2011, 18(2):339-347.]
[7] Eusterhues K, Rennert T, Knicker H,et al.Fractionation of organic matter due to reaction with ferrihydrite: Coprecipitation versus adsorption[J].Environmental Science and Technology,2011,45(2):527-533.
[8] Cao Huimin.Study on Preparation and Properties of Iron Oxide[D]. Hefei: Anhui University,2014.
[曹慧敏. 纳米铁氧化物及其复合物的制备与应用研究[D].合肥:安徽大学,2014.]
[9] Rout K, Mohapatra M, Anand S.2-Line ferrihydrite: Synthesis, characterization and its adsorption behaviour for removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions[J].Dalton Transactions, 2012, 41(11):3 302-3 312.
[10] Cismasu A C, Michel F M, Tcaciuc A P,et al.Composition and structural aspects of naturally occurring ferrihydrite[J]. Comptes Rendus Geoscience, 2011, 343(2):210-218.
[11] Liu H, Chen T, Frost R L.An overview of the role of goethite surfaces in the environment[J].Chemosphere, 2014, 103(5):1-11.
[12] Cornell R M, Schwertmann U.The iron oxides: Structure, properties, reactions, occurrence and uses [J].Mineralogical Magazine, 1997, 61(5):740-741.
[13] Huang Chongling.Effect of Different Iron Oxides on the Bioavailability of Soil Cadmium and Cadmium Accumulation in Rice[D].Nanning: Guangxi University, 2013.
[黄崇玲. 不同铁氧化物对土壤镉有效性及水稻累积镉的影响[D].南宁:广西大学, 2013.]
[14] Xie Yawei.Adsorption and Desorption Characteristics of Arsenate on/from Iron Oxides and Their Complexes with Humic Acids[D]. Chongqing: Southwest University, 2012.
[谢亚巍. 铁氧化物及其腐殖酸复合物对As的吸持特性研究[D].重庆:西南大学, 2012.]
[15] Wang Danli, Dong Xiaodan, Wang Ende.Adsorption of heavy metal ions on goethite[J].Gold,2002,23(2):44-46.
[王丹丽,董晓丹,王恩德.针铁矿对重金属离子的吸附作用[J].黄金,2002,23(2):44-46.]
[16] Cui Huiying, Liang Chenghua, Du Liyu, et al.Study on charactetistics of adsorption of As(Ⅲ) by ferrihydrite[J].Acta Agriculturae Zhejiangensis, 2012,24(3):490-493.
[崔慧瑛,梁成华,杜立宇,等.水铁矿对As(Ⅲ)的吸附性能的研究[J].浙江农业学报, 2012,24(3):490-493.]
[17] Yuan Lin, Xiao Ping, Wei Shiqiang, et al.Characteristics and influence factors of Pb2+ adsorption by goethite[J].Environmental Pollution & Control, 2009, 31(11):5-8.
[袁林,肖萍,魏世强,等.针铁矿对Pb2+的吸附特征及影响因素研究[J].环境污染与防治,2009,31(11):5-8.]
[18] Zhang Wei.Adsorption and Coprecipitation Research of Ferrihydrite on Cadmium[D]. Chengdu: Chengdu University of Technology, 2014.
[张伟. 水铁矿对镉的吸附共沉淀[D].成都:成都理工大学,2014.]
[19] Ahmad M, Rajapaksha J, Lim M,et al.Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014,99(3):19-33.
[20] Li Fang.Study on Adsorption/Desorption Characteristics of Hg on/from Iron Oxide, Humic Acid and Their Complex[D]. Chongqing: Southwest University, 2012.
[李放. 铁氧化物腐殖酸复合物对重金属汞的吸持特性研究[D].重庆:西南大学, 2012.]
[21] Angelico R,Ceglie A, He J Z, et al.Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite[J]. Chemosphere, 2014, 99(1):239-247.
[22] Schwertmann U, Wagner F, Knicker H,et al.Ferrihydrite-humic associations: Magnetic hyperfine interactions[J]. Soil Science Society America Journal, 2005, 69(4):1 009-1 015.
[23] Rahman M S, Whalen M, Gagnon G A.Adsorption of Dissolved Organic Matter (DOM) onto the synthetic iron pipe corrosion scales (goethite and magnetite): Effect of pH[J].Chemical Engineering Journal, 2013, 234(12):149-157.
[24] Mikutta R, Lorenz D, Guggenberger G.Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption[J].Geochimica et Cosmochimica Acta, 2014, 144: 258-276.
[25] Claar V D Z, Roberts D R, Rancourt D G, et al. Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments[J]. Geology, 2003, 31(11): 993-996.
[26] Shaker A M, Komy Z R, Heggy S E M,et al. Kinetic study for adsorption humic acid on soil minerals[J]. The Journal of Physical Chemistry A,2012,116(45):10 889-10 896.
[27] Colombo C, Palumbo G, Sellitto V M,et al.Stability of coprecipitated natural humic acid and ferrous iron under oxidative conditions[J]. Journal of Geochemical Exploration, 2015,151: 50-56.
[28] Wang H, Zhu J, Fu Q L, et al.Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes[J]. Pedosphere, 2015, 25(3): 405-414.
[29] Zhu J, Pigna M, Cozzolino V,et al.Competitive sorption of copper (II), chromium (III)and lead (II) on ferrihydrite and two organomineral complexes[J]. Geoderma, 2010,159(3/4):409-416.
[30] Shimizu M, Zhou J D, Schroder C, et al.Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates[J]. Environment Science Technology, 2013, 47(23):13 375-13 384.
[31] Lewin A, Moore G R, Le Brun N E. Formation of proteincoated iron minerals[J].Dalton Transaction, 2005, 22(22): 3 597-3 610.
[32] Pang Yu.Effects of Humic Acid and Ferrihydrite and Their Coprecipitate on Lead’s Speciation and Bioavailability in Soil[D].Lanzhou: Lanzhou University,2017.
[庞瑜. 腐植酸、水铁矿及其共沉物对土壤Pb形态及生物有效性的影响[D].兰州:兰州大学,2017.]
[33] Karin E, Friedriche W, Wernerh A, et al.Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and mossbauer spectroscopy[J]. Environmental Science and Technology, 2008,42(21):7 891-7 897.
[34] Mikutta C, Kretzschmar R.Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part II: Siderophore-promoted dissolution[J].Geochimica et Cosmochimica Acta, 2008, 72(4):1 111-1 127.
[35] Zhang Jing, Guo Xuetao, Ge Jianhua,et al.Sorption of tylosin by goethite-humic acid complex[J].Chinese Journal of Environmental Engineering, 2016, 10(3):1 145-1 151.
[张晶, 郭学涛, 葛建华,等. 针铁矿—腐殖酸的复合物对泰乐菌素的吸附[J].环境工程学报,2016, 10(3):1 145-1 151.]
[36] Wang Rui, Zhu Chaoju, Xiang Wenjun, et al. Interactions between goethite and humic acid and stability of goethite-Humic acid complex[J/OL]. Environmental Sciences. (2017-06-28)[2017-09-19]. http://kns.cnki.net/kcms/detail/11.1895.X.20170628.1935.050.html,doi:10.13227/j.hjkx.201704110.
[王锐,朱朝菊,向文军,等.针铁矿与胡敏酸的交互作用及其复合物的稳定性[J/OL]. 环境科学.(2017-06-28)[2017-09-19]. http://kns.cnki.net/kcms/detail/11.1895.X.20170628.1935.050.html,doi:10.13227/j.hjkx.201704110.]
[37] Weng L P, Willem H, Riemsdijk V, et al.Adsorption of humic acids onto goethite: Effects of molar mass, pH and ionic strength[J]. Journal of Colloid and Interface Science, 2007,314(1):107-118.
[38] Henneberry Y K, Kraus T E C, Nico P S,et al.Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions[J].Organic Geochemistry, 2012, 48(7):81-89.
[39] Colombo C, Palumbo G, Sellitto V M,et al.Characteristics of insoluble, high molecular weight iron-humic substances used as plant iron sources[J]. Soil Science Society America Journal, 2012,76(4):1 246-1 256.
[40] Pedrot M, Boudec A L, Davranche M, et al.How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction[J]. Colloid Interface Science, 2011, 359(1):75-85.
[41] Zhu J, Pigna M, Cozzolino V, et al.Sorption of arsenite and arsenate on ferrihydrite: Effect of organic and inorganic ligands[J].Journal of Hazardous Material, 2011,189(1/2):564-571.
[42] Iglesias A, Lopez R, Gondar D,et al.Adsorption of paraquat on goethite and humic acid-coated goethite[J]. Journal of Hazardous Materials, 2010,78(11): 664-668.
[43] Seda N N, Iron Oxide-Organic Matter Coprecipitates and Controls on Copper Availability[D].Connecticut, USA: University of Connecticut, 2014.
[44] Weng L P, Koopal L K, Hiemstra T,et al.Interactions of calcium and fulvic acid at the goethite-water interface[J]. Geochimica et Cosmochimica Acta, 2005, 69(2): 325-339.
[45] Weng L P, Willem H, Van Riemsdijk,et al.Cu2+ and Ca2+adsorption to goethite in the presence of fulvic acids[J].Geochimica et Cosmochimica Acta, 2008,72(24):5 857-5 870.
[46] Sundman A, Karlsson T, Sjöberg S, et al.Complexation and precipitation reactions in the ternary As(V)-Fe(III)-OM(organic matter) system[J]. Geochimica et Cosmochimica Acta, 2014, 145(28):297-314.
[47] Luo Wenqian, Wei Shiqiang.Adsorption and desorption behaviors of cadmium on/from goethite, humic acid and its compound colloid with humic acids[J].Chinese Agricultural Science Bulletin, 2009, 25(3): 255-259.
[罗文倩, 魏世强. 镉在针铁矿、腐殖酸及其复合胶体上吸持行为比较研究[J].中国农学通报, 2009,25(3):255-259.]
[48] Wang Danli, Wang Ende.Adsorption of heavy metal ions in aqueous-solution onto goethite and humin[J].Journal of Safety and Environment,2001,1(4):1-4.
[王丹丽, 王恩德. 针铁矿及腐殖质对水体重金属离子的吸附作用[J].安全与环境学报, 2001,1(4):1-4.]
[49] Yan Rui, Chen Hong, Wei Shiqiang.The characters of adsorption and desorption of cadmium by goethite under the effect of fulvic acid[J]. Chinese Agricultural Science Bulletin, 2009,25(4): 252-255.
[严锐,陈宏,魏世强.富里酸影响下针铁矿对镉吸持—解吸特征研究[J].中国农学通报, 2009, 25(4):252-255.]
[50] Li Mengjie.The Effects of Humic Acid, Iron Oxides and Their Combinations on the Occurrence State and Biological Activity of Mercury in Soils[D]. Chongqing: Southwest University, 2012.
[李梦婕.腐殖酸,铁氧化物及其共存时对土壤汞赋存状态及生物活性的影响[D].重庆:西南大学, 2012.]
[51] Yingmin Q, Xuemei Z, Jiao X, et al.Removal of hexavalent chromium from wastewater using magnetotactic bacteria[J]. Separation and Purification Technology,2014,136:10-17.
[52] Li Xuemei, Xiao Ping, Jiang Tao, et al.Adsorption characteristics of lead (Pb2+) on goethite and humic acid complex colloid[J].China Environmental Science, 2012, 32(7):1 274-1 279.
[李雪梅, 肖萍, 江韬, 等.胡敏酸—针铁矿复合胶体对Pb2+的吸附特征[J].中国环境科学, 2012, 32(7):1 274-1 279.]
[53] Luo Chang.The Secondary Adsorption of and on Iron Oxides Complexed with Humic Acids[D]. Chongqing: Southwest University, 2015.
[罗畅. 铁氧化物吸持腐殖酸对AsO43-、Hg2+次级吸附行为的影响研究[D].重庆:西南大学,2015.]
[54] Seda N N, Koenigsmark F, Vadas T M.Sorption and coprecipitation of copper to ferrihydrite and humic acid organomineral complexes and controls on copper availability[J]. Chemosphere, 2016,147:272-278.
[55] Yang Y, Saiers J E, Barnett M O.Impact of interactions between natural organic matter and metal oxides on the desorption kinetics of uranium from heterogeneous colloidal suspensions[J].Environmental Science & Technology, 2013,47(6):2 661-2 669.
[56] Huang L,Hu H Q,Li X Y,et al.Influences of low molar mass organic acids on the adsorption of Cd2+ and Pb2+ by goethite and montmorillonite[J].Applied Clay Science,2010,49(3):281-287.
[57] Luo C, Xie Y, Li F, et al.Adsorption of arsenate on iron oxides as influenced by humic acids[J].Journal of Environmental Quality, 2015, 44(6):1 729-1 737.
[58] Thomas B, Yokomasue R, Avik K, et al.Phosphate imposed limitations on biological reduction and alteration of ferrihydrite[J]. Environmental Science and Technology,2007,41(1):166-172.
[59] Ruggero A, Andrea C, He J Z,et al.Particle size, charge and colloidal stability of humic acids coprecipitated with ferrihydrite[J]. Chemosphere, 2014, 99(1):239-247.
[60] Xiao Ping.Environmental Behaviors of Heavy Metal Lead on Goethite as Influeneed by Humic Acids[D]. Chongqing: Southwest University, 2009.
[肖萍. 胡敏酸作用下针铁矿对重金属铅环境行为的影响[D].重庆:西南大学,2009.]
[1] 陈庆强, 王雪悦, 姚振兴, 杨钦川. 长江口不同年代围垦区土壤有机质结构组成特征[J]. 地球科学进展, 2022, 37(9): 915-924.
[2] 曾辉, 周启星. 二硫化钼在水环境修复中的应用前景分析[J]. 地球科学进展, 2022, 37(5): 462-471.
[3] 段勋, 李哲, 刘淼, 邹元春. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 2022, 37(2): 202-211.
[4] 张兵, 唐书恒, 郗兆栋, 蔺东林, 叶亚培. 湘西北五峰—龙马溪组层序地层特征及有机质富集探讨——以 XY-3井为例[J]. 地球科学进展, 2021, 36(10): 1026-1038.
[5] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[6] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[7] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[8] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[9] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[10] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[11] 宗庆霞, 窦磊, 侯青叶, 杨忠芳, 游远航, 唐志敏. 基于土地利用类型的土壤重金属区域生态风险评价:以珠江三角洲经济区为例[J]. 地球科学进展, 2017, 32(8): 875-884.
[12] 唐志敏, 侯青叶, 游远航, 杨忠芳, 李括. 珠三角平原区第四系剖面重金属分布特征及其影响因素[J]. 地球科学进展, 2017, 32(8): 885-898.
[13] 蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[14] 杜佳媛, 魏永鹏, 刘菲菲, 代燕辉, 赵建, 王震宇. 氧化石墨烯对环境污染物的吸附行为及吸附机理[J]. 地球科学进展, 2016, 31(11): 1125-1136.
[15] 沈传波, 刘泽阳, 肖凡, 胡迪, 杜嘉祎. 石油系统Re-Os同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2): 187-195.
阅读次数
全文


摘要