地球科学进展 ›› 2021, Vol. 36 ›› Issue (10): 1026 -1038. doi: 10.11867/j.issn.1001-8166.2021.077

能源地质进展 上一篇    下一篇

湘西北五峰—龙马溪组层序地层特征及有机质富集探讨——以 XY-3井为例
张兵 1 , 2 , 3( ), 唐书恒 1 , 2 , 3( ), 郗兆栋 1 , 2 , 3, 蔺东林 1 , 2 , 3, 叶亚培 1 , 2 , 3   
  1. 1.中国地质大学(北京)能源学院,北京 100083
    2.海相储层演化与油气富集机理教育部重点实验室,北京 100083
    3.非常规天然气地质评价与开发工程北京市重点实验室,北京 100083
  • 收稿日期:2021-05-06 修回日期:2021-07-19 出版日期:2021-10-10
  • 通讯作者: 唐书恒 E-mail:2106190036@cugb.edu.cn;tangsh@cugb.edu.cn
  • 基金资助:
    国家科技重大专项“四川盆地及周缘页岩气富集规律与重点目标评价”(2017ZX05035)

Sequence Stratigraphic Characteristics and Organic Matter Enrichment of Wufeng-Longmaxi Formation in Northwestern HunanA Case Study of Well XY-3

Bing ZHANG 1 , 2 , 3( ), Shuheng TANG 1 , 2 , 3( ), Zhaodong XI 1 , 2 , 3, Donglin LIN 1 , 2 , 3, Yapei YE 1 , 2 , 3   

  1. 1.School of Energy Resources,China University of Geosciences (Beijing),Beijing 100083,China
    2.Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism,Ministry of Education,Beijing 100083,China
    3.Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering,Beijing 100083,China
  • Received:2021-05-06 Revised:2021-07-19 Online:2021-10-10 Published:2021-11-19
  • Contact: Shuheng TANG E-mail:2106190036@cugb.edu.cn;tangsh@cugb.edu.cn
  • About author:ZHANG Bing (1995-), male, Anqing City, Anhui Province, Master student. Research areas include unconventional gas geology. E-mail: 2106190036@cugb.edu.cn
  • Supported by:
    the National Science and Technology Major Project "Assessment on the enrichment law and key targets of shale gas in Sichuan Basin and its periphery"(2017zx05035)

湘西北地区上奥陶统五峰组—下志留统龙马溪组海相黑色页岩发育广泛,且厚度大、热演化高、埋深相对适中,具有较好的页岩气勘探开发前景。为了研究湘西北五峰—龙马溪组地层层序特征,基于XY-3井GR测井曲线的小波变换,结合元素地球化学特征、有机质丰度、笔石类型和岩性特征,建立研究区内五峰—龙马溪组层序格架,并探讨层序格架内有机质差异富集的特征。结果表明:XY-3井五峰—龙马溪组共划分为2个三级层序SQ-1和SQ-2,4个体系域分别为TST1、HST1、TST2和HST2。而HST1和HST2体系域内有机质丰度相对较低,总有机碳平均值为0.89%和0.26%,其沉积于沉积速率相对较高、古生产力较高,且陆源输入量相对高的氧化环境中;TST1和TST2体系域内有机质丰度相对较高,总有机碳平均值为1.46%和1.35%。其沉积于沉积速率相对较小、古生产力较高,陆源碎屑输入较少的贫氧化环境中。与长宁、焦石坝地区五峰—龙马溪组内同期揭露的富有机质层位相比,湘西北XY-3井富有机质层段沉积于氧化性相对较强、古生产力相对较高的环境中,而在沉积速率相对较低的情况下,其富有机质页岩的沉积厚度和有机质丰度明显偏低。这可为湘西北地区进行页岩气勘探开发提供指导意义。

The marine black shale from Wufeng Formation of Upper Ordovician to Longmaxi Formation of Lower Silurian is widely developed in Northwest Hunan, with large thickness, high thermal evolution and relatively moderate buried depth, which has a good prospect for shale gas exploration and development. In order to study the stratigraphic sequence characteristics of Wufeng-Longmaxi Formation in Northwest Hunan, based on the wavelet transform of GR logging curve of Well XY-3, combined with element geochemical characteristics, organic matter abundance, graptolite type and lithologic characteristics, the sequence framework of Wufeng-Longmaxi Formation in the study area is established, and the characteristics of differential enrichment of organic matter in the sequence framework are discussed. The results show that the Wufeng-Longmaxi Formation of Well XY-3 is divided into two third-order sequences: SQ-1 and SQ-2, and the four system tracts are TST1, HST1, TST2 and HST2 respectively. However, the abundance of organic matter in HST1 and HST2 system tracts is relatively low, and the average TOC is 0.89% and 0.26%. The deposition was in an oxidizing environment with relatively high deposition rate, high paleoproductivity and relatively high terrigenous input;the abundance of organic matter in TST1 and TST2 system tracts is relatively high, and the average TOC is 1.46% and 1.35%. It was deposited in a poor oxidation environment with relatively small deposition rate, high paleoproductivity and less terrigenous clastic input. Compared with the organic rich horizons exposed in Wufeng-Longmaxi Formation in Changning and Jiaoshiba areas at the same time, the organic rich interval of Well XY-3 in Northwest Hunan was in an environment with relatively strong oxidation and relatively high paleoproductivity. Under the condition of relatively low deposition rate, the deposition thickness and organic matter abundance of organic rich shale are obviously low. The research results provide guiding significance for shale gas exploration and development in Northwest Hunan.

中图分类号: 

图1 上奥陶统—下志留统上扬子地台区域地质背景图(据参考文献[ 9 ]修改)
(a)上奥陶统全球古地理图;(b)上扬子地台古地理图;(c) 湘西北XY-3井五峰—龙马溪组岩性柱状图
Fig. 1 Regional geological background map of Upper Ordovician Lower Silurian upper Yangtze Platform modified after reference 9 ])
(a) Paleogeography of Upper Ordovician global;(b) Paleogeography of Upper Yangtze Platform;(c) Lithologic histogram of Wufeng-Longmaxi Formation of Well XY-3 in northwest Hunan
图2 湘西北XY-3井五峰—龙马溪组部分岩心及电子显微镜下照片
(a)灰黑色粉砂质泥岩, 五峰组,正交偏光,2 104.8 m;(b)灰黑色炭质硅质岩,五峰组,正交偏光,2 101.3 m;(c)灰黑色粉砂质泥岩,五峰组,2 102.3 m; (d)灰色瘤状灰岩,临湘组,2 107.0 m; (e)灰黑色泥岩,龙马溪组, 2 084.4 m;(f)灰黑色泥炭质粉砂岩,龙马溪组,正交偏光,2 024.2 m;(g)灰白色粉砂岩,新滩组, 2 001.2 m
Fig. 2 Partial core and electron microscope photos of Wufeng-Longmaxi Formation in Well XY-3 in northwest Hunan
(a) Gray black silty mudstone, Wufeng Formation, orthogonally polarized, 2 104.8 m; (b) Grayish black carbonaceous siliceous rocks, Wufeng Formation, orthogonally polarized, 2 101.3 m; (c) Gray black silty mudstone, Wufeng Formation, 2 102.3 m; (d) Grey odular limestone, Linxiang Formation, 2 107.0 m; (e) Grey black Mudstone, Longmaxi Formation, 2 084.4 m; (f) Gray black peat siltstone, Longmaxi Formation, orthogonally polarized, 2 024.2 m;(g) Gray white Siltstone, Xintan Formation, 2 001.2 m
图3 湘西北XY-3GR曲线层序格架构建分析
Fig. 3 Sequence framework analysis of Well XY-3 in northwest Hunan
图4 湘西北XY-3井地球化学元素、有机质、矿物特征及有机质干酪根类型指数综合分析图
Fig. 4 Comprehensive analysis of geochemical elements organic matter mineral characteristics and organic matter kerogen type index of Well XY-3 in Northwest Hunan
图5 湘西北XY-3井岩心中典型笔石图版
(a) Dicellograptus tumidus chen, TST1, 2 105.6 m;(b) Appendispinograptus supernus, TST1, 2 101.6 m;(c) Normalogr extraordinarius, HST1, 2 099.4 m;(d) Akidograptus ascensus, TST2, 2 095.4 m; (e) Cystograptus vesiculousus, TST2, 2 092.4 m; (f) Streptograptus Yin, HST2, 2 065.2 m
Fig. 5 Typical graptolite plate in the core of of Well XY-3 in northwestern Hunan
表1 湘西北 XY-3井五峰—龙马溪组干酪根类型鉴定表
Table 1 Kerogen type identification of Wufeng Longmaxi Formation in Well XY-3 in northwest Hunan
图6 湘西北XY-3井五峰—龙马溪组U/Tha)、Ni/Cob)、Ti/Alc)、Baxsd)与TOC相关性
Fig. 6 Analysis of the relationships between U/Th a)、Ni/Cob)、Ti/Al c)、Baxsd and TOC of the Wufeng-Longmaxi Formation of Well XY-3 in northwestern Hunan
图7 扬子地区五峰组—龙马溪组笔石带划分(据参考文献[ 27 ]修改)
Fig. 7 Subdivision of the Ordovician-Silurian graptolite biozones in the Yangtze regionmodified after reference 27 ])
图8 湘西北XY-3井五峰—龙马溪组沉积演化特征(据参考文献[ 13 ]修改)
Fig. 8 Sedimentary evolution map of Wufeng-Longmaxi Formation in Well XY-3 in Northwestern Hunanmodified after reference 13 ])
图9 四川盆地长宁地区宁211井—焦石坝JY-1—湘西北XY-3井体系域内TOC的空间分布特征(据参考文献[ 28 ]修改)
Fig. 9 The spatial distribution of TOC in Well Changning 211-Well Jiaoshiba JY-1-Well XY-3 system tract Sichuan Basin modified after reference 28 ])
1 YANG Yueming, CHEN Yulong, LIU Shenyang, et al. Status,potential and prospect of shale gas exploration and development in the Sichuan Basin and in its periphery[J]. Nature Gas Industry, 2021, 41(1): 42-58.
杨跃明, 陈玉龙, 刘燊阳, 等. 四川盆地及其周缘页岩气勘探开发现状、潜力与展望[J]. 天然气工业, 2021, 41(1): 42-58.
2 GUO Wei, FENG Qinglai, MALIHA Zareen Khan. Organic matter enrichment mechanism of black shale in Wufeng-Longmaxi Formations:a case study from Jiaoye143-5 Well at Chongqing[J]. Earth Science, 2021, 46(2): 572-582.
郭伟, 冯庆来, MALIHA Zareen Khan. 重庆焦页143-5井五峰组—龙马溪组黑色页岩有机质富集机理[J]. 地球科学, 2021, 46(2): 572-582.
3 CHEN Xu, CHEN Qing, ZHEN Yongyi, et al. Circumja⁃cent distribution pattern of the Lungmachian Graptolitic Black Shale(Early Silurian) on the Yichang Uplift and its peripheral region[J]. Earth Science, 2018, 48(9): 1 198-1 206.
陈旭, 陈清, 甄勇毅,等. 志留纪初宜昌上升及其周缘龙马溪组黑色笔石页岩的圈层展布模式[J]. 地球科学, 2018, 48(9): 1 198-1 206.
4 POSAMENTIER H W. Eustatic control on clastic deposition I:conceptual framework[J]. Special Publication-Social of Economic Paleontologists and Mineralogists, 1988, 42: 109-124.
5 LI Fengfeng, GUO Rui, YU Yichang. Progress and prospect of the division of sequence stratigraphy[J]. Geological Science and Technology Information, 2019, 38(4): 215-224.
李峰峰, 郭睿, 余义常. 层序地层划分方法进展及展望[J]. 地质科技情报, 2019, 38(4): 215-224.
6 CHEN Xu, RONG Jiayu, FAN Juanxuan, et al. A global correlation of biozones across the Ordovician-Silurian boundary[J]. Journal of Paleontology, 2000, 39(1): 100-114.
陈旭, 戎嘉余, 樊隽轩, 等. 奥陶—志留系界线地层生物带的全球对比[J]. 古生物学报, 2000, 39(1): 100-114.
7 CHEN L, LU Y C, JIANG S, et al. Heterogeneity of the Lower Silurian Longmaxi marine shale in the southeast Sichuan Basin of China[J].Marine and Petroleum Geology, 2015, 65: 232-246.
8 GUO Xusheng. Sequence stratigraphy and evolution model of the Wufeng-Longmaxi shale in the Upper Yangtze area[J]. Earth Science, 2017, 42(7): 1 069-1 082.
郭旭升. 上扬子地区五峰组—龙马溪组页岩层序地层及演化模式[J]. 地球科学, 2017, 42(7): 1 069-1 082.
9 CHEN C, MU C L, ZHOU K K, et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China[J]. Marine & Petroleum Geology, 2016, 76: 159-175.
10 FORTEY R A, COCKL R M. Palaeontological evidence bearing on global Ordovician-Silurian Continental reconstructions[J]. Earth-Science Reviews, 2003, 61(3/4): 245-307.
11 CHEN Xu, RONG Jiayu, ZHOU Zhiyi, et al. Central Guizhou Uplift and Yichang uplift at the intersection of Ordovician and Silurian in the upper Yangtze region[J]. Chinese Science Bulletin, 2001, 46(12): 1 052-1 056.
陈旭, 戎嘉余, 周志毅, 等. 上扬子区奥陶系—志留系之交的黔中隆起和宜昌上升[J]. 科学通报, 2001, 46(12): 1 052-1 056.
12 ZHANG Linna, FAN Juanxuan, CHEN Qing. Spatial distribution and paleogeographic reconstruction of the upper Ordovician Guanyinqiao formation in South China[J]. Chinese Science Bulletin, 2016, 61(18): 2 053-2 063.
张琳娜, 樊隽轩, 陈清. 华南上奥陶统观音桥层的空间分布和古地理重建[J]. 科学通报, 2016, 61(18): 2 053-2 063.
13 ZHANG Bing, TANG Shuheng, XI Zhaodong,et al. Biostratigraphic characteristics and exploration significance of Wufeng Longmaxi Formation in northwestern Hunan[J]. Lithologic Reservoirs, 2021, 33(4): 1-11.
张兵, 唐书恒, 郗兆栋,等. 湘西北地区五峰组—龙马溪组生物地层特征及勘探意义[J]. 岩性油气藏, 2021, 33(4): 1-11.
14 LI Jiangtao, YU Jifeng, LI Zengxue. Sequence division based on wavelet transform of logging data[J]. Coal Geology & Exploration, 2004, 3(6): 48-50.
李江涛, 余继峰, 李增学. 基于测井数据小波变换的层序划分[J]. 煤田地质与勘探, 2004, 3(6): 48-50.
15 YU Jifeng, LI Zengxue. Wavelet transform of logging data and its geological significance[J]. Journal of China University of Mining & Technology, 2003, 32(3): 336-339.
余继峰, 李增学. 测井数据小波变换及其地质意义[J]. 中国矿业大学学报, 2003, 32(3): 336-339.
16 ZHANG Weisheng, ZHANG Chunming. Application of wavelet analysis in sequence unit division[J]. China Science and Technology Information, 2012(11): 65-91.
张维生, 张春明. 小波分析在层序单元划分中的应用[J]. 中国科技信息, 2012(11): 65-91.
17 JU Yiwen,QI Yu,FANG Lizhi,et al. Chinese shale gas reservoir types and their controlling factors[J]. Advances in Earth Science,2016, 31(8): 782-799.
琚宜文, 戚宇, 房立志, 等. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016, 31(8):782-799.
18 LIU Jiangtao, LIU Shuanglian, LI Yongjie, et al. Geochemistry characteristics and its geological significance of shale in the Ordovician Wufeng Formation and Silurian Longmaxi Formation, Jiaoshiba area[J]. Petroleum Geology and Recovery Efficiency,2016, 23(3): 53-57.
刘江涛, 刘双莲, 李永杰, 等. 焦石坝地区奥陶系五峰组—志留系龙马溪组页岩地球化学特征及地质意义[J]. 油气地质与采收率, 2016, 23(3): 53-57.
19 CANFIELD D E. Factors influencing organic carbon preaervation in marine sediments [J]. Chemical Geology, 1994, 114(3): 315-329.
20 TRIBOVILLA R D N,ALGEO T J,LYONS T,et al. Trace-metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232: 12-32.
21 CALVERT S E, PEDERSEN T F, NAIDU P D, et al. On the organiccarbon maximum on the continental slope of the Arabian Sea[J]. Journal of Mairne Reaearch, 1995, 53: 269-296.
22 XIONG Z F, LI T G, ALGEO T, et al. Paleoproductivity and paleoredox condition during latePleistocene accumulation of laminated diatom mats in the tropical West Pacific[J]. Chemical Geology, 2012, 334: 77-91.
23 PI D H,LIU C Q, SHIELDS-ZHOU G A, et al. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou Province, South China:constraints for redox environments and origin of metal enrichments[J]. Precambrian Research, 2013, 225: 218-229.
24 TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution[M]. Oxiford: Black Well Scientific Publications, 1985.
25 PASSEY Q R,BOHACS K M,ESCH W L,et al. From oil-prone source rock to gas-producing shale reservoir-geologic and petrophy characterization of unconventional shale gas reservoir[C]// International Oil and Gas Conference, 2010.
26 PEDERSEN T F, CALVERT S E. Anoxia vs. productivity: what conrols the formation of organic carbon rich sediments and sedimentary rocks[J]. AAPG Bulletin, 1990, 4: 454-466.
27 CHEN Xu,FAN Juanxuan,ZHANG Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface area of the Yangtze Platform[J]. Journal of Stratigraphy,2015, 39(4): 351-358.
陈旭, 樊隽轩, 张元动, 等. 五峰组及龙马溪组黑色页岩在扬子覆盖区的划分与圈定[J]. 地层学杂志, 2015, 39(4): 351-358.
28 ZHANG Di, YU Qian, LU Junze, et al. Graptolite Biozonation of the Wufeng and Longmaxi Formations and its environmental implications from the Xindi 2 Borehole in Yongshan-Daguan area,NE Yunnan[J]. Earth Science, 2020, 45(3): 739-751.
张娣, 余谦, 陆俊泽, 等. 云南永善—大关地区五峰组—龙马溪组黑色页岩生物地层划分与沉积环境探讨: 以新地2井为例[J]. 地球科学, 2020, 45(3): 739-751.
29 YE Yuehao. Formation mechanism of shale reservoir in Wufeng-Longmaxi Formation in Sichuan Basin[D]. Chengdu:Chengdu Univerisity of Technology, 2018.
叶玥豪. 四川盆地五峰—龙马溪组页岩储层形成机理[D]. 成都:成都理工大学, 2018.
30 LUO Chao, WANG Shenglan, SHI Xuewen, et al. Biostratigraphy of the Wufeng to Longmaxi Formation at Well Ning 211 of Changning shale gas field [J]. Journal of Stratigraphy, 2017, 41(2): 143-152.
罗超, 王生兰, 石学文, 等. 长宁页岩气田宁211井五峰组—龙马溪组生物地层[J]. 地层学杂志, 2017, 41(2): 142-152.
31 GAN Yuqing, WANG Chao, FANG Dongliang, et al. Element geochemical characteristics of the Wufeng-Longmaxi shale in Jiaoshiba area, Sichuan Basin and their significance to shale gas development[J].Petroleum Geology and Experiment, 2018, 40(1): 78-89.
甘玉青, 王超, 方栋梁, 等. 四川盆地焦石坝地区五峰—龙马溪组页岩元素地球化学特征及对页岩气开发的意义[J]. 石油实验地质,2018, 40(1): 78-89.
32 GUO Xusheng, HU Dongfeng, WEN Zhidong, et al. The main controlling factors of enrichment and high yield of Lower Paleozoic marine shale gas in Sichuan Basin and its surrounding areas: a case study of Wufeng-Longmaxi Formation in Jiaoshiba area [J]. Geology in China, 2014, 41(3): 893-901.
郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组—龙马溪组为例[J]. 中国地质, 2014, 41(3): 893-901.
[1] 张英杰,王龙. 显生宙一级层序的银河年旋回响应:重要的进展与争论[J]. 地球科学进展, 2020, 35(3): 275-285.
[2] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[3] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[4] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[5] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[6] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[7] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[8] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[9] 蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[10] 沈传波, 刘泽阳, 肖凡, 胡迪, 杜嘉祎. 石油系统Re-Os同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2): 187-195.
[11] 武玉, 徐刚, 吕迎春, 邵宏波. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1): 68-79.
[12] 李朝柱,张晓,许元斌,饶志国. 黄土高原地区晚中新世以来陆地植被C 3/C 4植物相对丰度演化研究进展[J]. 地球科学进展, 2012, 27(3): 284-291.
[13] 李启权,王昌全,岳天祥,张文江,余勇. 基于神经网络模型的中国表层土壤有机质空间分布模拟方法[J]. 地球科学进展, 2012, 27(2): 175-184.
[14] 朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364.
[15] 朱如凯,邹才能,白斌,苏玲,高志勇,罗忠. 全球油气勘探研究进展及对沉积储层研究的需求[J]. 地球科学进展, 2011, 26(11): 1150-1161.
阅读次数
全文


摘要