地球科学进展 ›› 2012, Vol. 27 ›› Issue (3): 284 -291. doi: 10.11867/j.issn.1001-8166.2012.03.0284

综述与评述 上一篇    下一篇

黄土高原地区晚中新世以来陆地植被C 3/C 4植物相对丰度演化研究进展
李朝柱 1,张晓 2,许元斌 2,饶志国 2*   
  1. 1.中国地质科学院地质力学研究所,北京100081;
    2.兰州大学西部环境教育部重点实验室,甘肃兰州730000
  • 收稿日期:2011-09-18 修回日期:2012-02-18 出版日期:2012-03-10
  • 通讯作者: 饶志国(1978-),男,湖南长沙人,副教授,主要从事地球化学与第四纪地质研究.  E-mail:raozhg@lzu.edu.cn
  • 基金资助:

    教育部科学技术研究重点项目“黄土高原中部地区晚中新世以来C3/C4植物相对丰度变化及其驱动机制”(编号:109151);兰州大学中央高校基本科研业务费自由探索面上项目“秦安大地湾全新世黄土黑碳研究”(编号:lzujbky-2010-117);中国地质科学院地质力学研究所基本科研业务费项目“EA3000元素分析仪的调试及其在第四纪环境研究中的应用”(编号:DZLXJK200903)资助.

Reviews on the Reconstructed C 3/C 4 Variations since the Late Miocene in the Chinese Loess Plateau

Li Chaozhu 1, Zhang Xiao 2, Xu Yuanbin 2, Rao Zhiguo 2   

  1. 1.Institute of Geomehanics, Chinese Academy of Geological Sciences, Beijing100081, China;2. Key Laboratory of Western China′s Environmental Systems, Ministry of Education, Lanzhou University, Lanzhou730000, China
  • Received:2011-09-18 Revised:2012-02-18 Online:2012-03-10 Published:2012-03-10

晚中新世以来陆地生态系统中C3/C4植物相对丰度的演化历史是国际地学界关心的热点问题。我国黄土高原地区也有数个剖面开展了相关的研究,然而基于土壤碳酸盐碳同位素的研究结果在C4植物扩张开始的时间、过程、区域和全球一致性、C4植物相对丰度的空间梯度等主要的地质历史事实以及该区域C4植物扩张的主要驱动因素等方面的认识均存在较大的差异,这可能表明了代用指标本身存在的问题。而来自动物化石的碳同位素研究结果与碳酸盐碳同位素研究结果同样差异比较大,认为直到第四纪时期,C4植物才成为区域植被当中一个重要组分。从代用指标可靠性以及时间分辨率2个方面考虑,建议在后续的研究工作中,大力加强有机质碳同位素方面的研究,进一步查明黄土高原地区晚中新世以来C4植物扩张的历史和可能的驱动机制。

 The study of the variations of C3/C4 relative abundance in terrestrial ecosystem since the Late Miocene has been  the “hotspot” of international community of geosciences during the past decades. In the Chinese Loess Plateau, several profiles have been studied to get the knowledge of past C3/C4 variations since the Late Miocene in this area. However, stable carbon isotopic data of pedogenic carbonate from this area have many inconsistencies in different aspects, such as: the beginning time of C4 expansion, the process of C4 expansion, the consistency of regional and global C4 expansion, and spatial gradient of C4 relative abundance and the main driven factor of C4 expansion in this area. This may reveal the internal unreliability of carbon isotopic composition of pedogenic carbonate as an indicator of past C3/C4 variations in this area. At the mean time, carbon isotopes of animal fossil from Linxia Basin of this area are remarkably different with carbon isotopes of pedogenic carbonate, which indicated that C4 plants became a significant fraction of local ecosystemm, which only existed in the Quaternary. Considering the reliability and timescale resolution of proxy indicator, we suggest that studies on organic matters should be reinforced in ongoing works in the future, in order to make the fact and driven mechanics of terrestrial C3/C4variations since the Late Miocene in the Chinese Loess Plateau clear.

中图分类号: 

[1]Quade J, Solounias N, Cerling T E. Stable isotopic evidence from paleosol carbonate and fossil teeth in Greece for forest or woodlands over the past 11 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1994, 108: 41-53.
[2]Ségalen L, Renard M, Lee-Thorp J A, et al. Neogene climate change and emergence of C4 grasses in the Namib, southwestern Africa, as reflected in ratite 13C and 18O[J]. Earth and Planetary Science Letters,2006,244:725-734.
[3]Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the Latest Miocene in northern Pakistan[J]. Nature,1989, 342: 163-166.
[4]Quade J, Cerling T E. Expansion of C4 grasses in the Late Miocene of northern Pakistan: Evidence from stable isotopes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1995, 115:9-116.
[5]Cerling T E, Wang Y, Quade J, et al. Expansion of C4 ecosystems as in indicator of global ecological change in the Late Miocene[J].Nature,1993, 361: 344-345.
[6]Cerling T E, Harris J M, MacFadden B J, et al. Global vegetation change through the Miocene/ Pliocene boundary[J].Nature,1997, 389: 153-158.
[7]Morgan M E, Kingston J D, Marino B D. Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya[J].Nature,1994, 367: 162-165.
[8]Quade J, Cerling T E. Expansion of C4 grasses in the Late Miocene of northern Pakistan: Evidence from stable isotopes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1995, 115: 91-116.
[9]Sanyal P, Bhattacharya S K, Kumar R, et al. Mio-Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 205: 23-41.
[10]Freeman K H, Colarusso L A. Molecular and isotopic records of C4  grassland expansion in the Late Miocene[J]. Geochimica et Cosmochimica Acta,2001, 65: 1 439-1 454.
[11]Huang Y S, Clemens S C, Liu W G, et al. Large-scale hydrological change drove the Late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula[J]. Geology, 2007, 35: 531-534.
[12]Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature,2002, 416: 159-163.
[13]Chen Mingyang, Zhao Huimin. The carbon isotope records and paleo-monsoon of the loess plateau in China between 7.3~1.9 Ma[J]. Chinese Science Bulletin,1997,42(2):174-177.[陈明扬,赵惠敏. 7.3~1.9 Ma期间中国黄土高原碳同位素记录与古季风气候[J]. 科学通报,1997,42(2): 174-177.]
[14]Yang Shiling, Ding Zhongli, Gu Zhaoyan, et al. The carbon istope records and their indicative significance of paleo-vegetation in the Lingtai red clay-loess profile from Late Miocene [J]. Chinese Science Bulletin,1998,43(21): 2 323-2 326.[杨石岭,丁仲礼,顾兆炎,等. 灵台红粘土—黄土剖面晚中新世以来钙质结核的碳同位素记录及其古植被指示意义[J]. 科学通报,1998,43(21): 2 323-2 326.] 
[15]Jiang Wenying, Peng Shuzhen, Hao Qingzhen, et al. The relationship between the carbon istope records and the uplift of Tibetan Plateau[J]. Chinese Science Bulletin,2001,46(24): 2 065-2 068.[姜文英,彭淑贞,郝青振,等. 上新世红黏土的碳同位素记录与青藏高原隆升的关系[J]. 科学通报,2001,46(24): 2 065-2 068.] 
[16]Jiang Wenying, Han Jiamao, Liu Tungsheng. Aridification and its influence on carbon isotope composition of pedogenic carbonate [J].Quaternary Sciences,2001, 21(5): 427-435.[姜文英,韩家懋,刘东生. 干旱化对成土碳酸盐碳同位素组成的影响[J]. 第四纪研究,2001,21(5): 427-435.]
[17]Wang Y, Deng T. A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2005, 236: 322-338.
[18]Kaakinen A, Sonninen E, Pekka Lunkka J. Stable isotope record in paleosol carbonates from the Chinese Loess Plateau: Implications for Late Neogene paleoclimate and paleovegetation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2006, 237: 359-369.
[19]Ding Z L, Yang S L. C3/C4 vegetation evolution over the Last 7.0 Myr in the Chinese Loess Plateau: Evidence from pedogenic carbonate  δ13C[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 16: 291-299.
[20]An Z S, Huang Y S, Liu W G, et al. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation[J].Geology,2005, 33(9): 705-708.
[21]Fan M J, Dettman D L, Song C H, et al. Climatic variation in the Linxia basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma: The stable isotope record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247: 313-328.
[22]Zhang Yu, Xiong Shangfa, Ding Zhongli, et al. Carbon-oxygen isotope records of pedogenic carbonate from the Early Miocene-Pleistocene loess-red clay in the vicinity of the Liupanshan region and its implications for the early origin of C4 plants in the Chinese Loess Plateau [J]. Quaternary Sciences, 2011, 31(5): 800-811.[张瑜,熊尚发,丁仲礼,等. 中新世以来六盘山邻区黄土—红粘土成土碳酸盐碳氧同位素记录及其对C4植物早期扩张的指示[J]. 第四纪研究, 2011,31(5): 800-811.]
[23]Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71:229-240.
[24]Cerling T E, Quade J, Wang Y, et al. Carbon isotopes in soil and paleosols as ecologic and paleoecologic indicators[J]. Nature, 1989, 341:138-139.
[25]Rao Z G, Zhu Z Y, Chen F H, et al. Does δ13C carb of the Chinese loess indicate past C3/C4 abundance? A review of research on stable carbon isotopes of the Chinese loess[J]. Quaternary Science Reviews, 2006, 25: 2 251-2 257.
[26]Xue Q, Rao Z G, Wang S P, et al. Stable carbon and oxygen isotopic study of carbonate along a loess/paleosol section in Lantian County, Shaanxi  province, on the southeastern edge of the Chinese Loess Plateau[J]. Environmental Earth Sciences, 2011, 64:237-246.

[1] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[2] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[3] 张薇. 现代碳酸盐叠层石的重要进展及意义[J]. 地球科学进展, 2020, 35(1): 70-78.
[4] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[5] 刘景昱,方念乔. 海因里希事件与类海因里希事件[J]. 地球科学进展, 2019, 34(6): 618-628.
[6] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[7] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[8] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[9] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[10] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[11] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[12] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[13] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[14] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[15] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
阅读次数
全文


摘要