地球科学进展 ›› 2012, Vol. 27 ›› Issue (3): 292 -303. doi: 10.11867/j.issn.1001-8166.2012.03.0292

综述与评述 上一篇    下一篇

地表粗糙度参数化研究综述
江冲亚 1,方红亮 1,魏珊珊 1,2   
  1. 1.中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101;2.东北师范大学城市与环境科学学院地理系,吉林长春130024
  • 收稿日期:2011-03-16 修回日期:2012-01-13 出版日期:2012-03-10
  • 通讯作者: 江冲亚(1985-),男,江苏南京人,博士研究生,主要从事植被与土壤定量遥感研究. E-mail:chongya@126.com
  • 基金资助:

    中国科学院“百人计划”项目“遥感信息地学参数的获取及其与地表过程模型的同化”(编号:09W90030ZZ)资助.

Review of Land Surface Roughness Parameterization Study

Jiang Chongya 1, Fang Hongliang 1, Wei Shanshan 1,2   

  1. 1.State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China; 2.Department of Geography, School of Urban and Environmental Sciences, Northeast Normal University, Changchun130024, China
  • Received:2011-03-16 Revised:2012-01-13 Online:2012-03-10 Published:2012-03-10

粗糙度反映了地表的起伏程度,是许多陆面过程的关键影响因子。然而,人们对地表系统认识的不足,造成现有的各种地表粗糙度参数化方案均存在一定的问题。从地表测量技术、粗糙度相关参数和遥感研究3个方面对地表粗糙度参数化研究现状进行了综述。针式廓线法和激光廓线法是当前主流的地表测量技术,而三维激光扫描和摄影测量技术已展示出了较大的潜力。基于统计方法和基于分形理论的粗糙度相关参数具有截然不同的物理意义,但地表复杂的多尺度特性使得很难用一类参数进行描述。光学遥感与微波遥感均具有广阔的前景,其中前者需要注意与经典粗糙度参数化方案相结合,后者则需拓展在下一代遥感平台上的技术与方法。还针对不同尺度粗糙度参数的比较与转换,地表粗糙度的空间异质性与各向异性,以及三维表面粗糙度参数化等当前地表粗糙度参数化研究中的一些关键问题进行了讨论。

Roughness, reflecting the smooth degree of the surface, is a key factor of many land surface processes. There are various methods of parameterization, but questions still exist since the characterization of land surface system has far from been fully understood. This paper reviews the research progress on land surface roughness characterization from three aspects, including land surface measurement techniques, roughness parameters, and remote sensing researches. So far, pin profiler and laser profiler are still main-stream land surface measurement approaches, while 3D laser scan and photogrammetry techniques have shown their potentials. Parameters defined by statistical methods and fractal theories are quite distinct from each other, but it is hard to describe land surface using either category of parameters due to the the complexity of its multi-scaled feature. As for remote sensing researches, both optical and microwave techniques have broad prospects, and the former needs to do better in match with classical parameterization, while the latter has to make improvement on techniques and methods for next generation remote sensing platform. Many key problems encountered in roughness parameterization study, such as comparison and transformation of parameters between different scales, heterogeneity and anisotropy of land surface, as well as roughness parameterization based on 3D surface data, have also been discussed.

中图分类号: 

[1]Lü Yuelai, Li Guangyi. Land surface and soil erosion[J]. Progress in Soil Science,1992,20(6): 38-42.[吕悦来, 李广毅. 地表粗糙度与土壤风蚀[J]. 土壤学进展, 1992, 20(6): 38-42.]
[2]Engman E T. Roughness coefficients for routing surface runoff[J]. Journal of Irrigation and Drainage Engineering,1986, 112(1): 39-53.
[3]Gomez J, Vanderlinden K, Nearing M. Spatial variability of surface roughness and hydraulic conductivity after disk tillage: Implications for runoff variability[J]. Journal of Hydrology,2005, 311(1/4): 143-156.
[4]Onstad C. Depressional storage on tilled soil surfaces[J]. Transactions of the American Society of Agricultural Engineers,1984, 27(3): 729-732.
[5]Guzha A. Effects of tillage on soil microrelief, surface depression storage and soil water storage[J]. Soil and Tillage Research,2004, 76(2): 105-114.
[6]Burwell R, Larson W. Infiltration as influenced by tillage-induced random roughness and pore space[J].Soil Science Society of Ameria,1969,33(3):449-452.
[7]Russell J, Betteridge K, Costall D, et al. Cattle treading effects on sediment loss and water infiltration[J]. Journal of Range Management, 2001,54(2): 184-190.
[8]Chepil W. Properties of soil which influence wind erosion: I. The governing principle of surface roughness[J]. Soil Science,1950, 69(2): 149.
[9]Whicker J J, Breshears D D, Wasiolek P T, et al. Temporal and spatial variation of episodic wind erosion in unburned and burned semiarid shrubland[J]. Journal of Environmental Quality,2002, 31(2): 599-612.
[10]Ulaby F T, Batlivala P P, Dobson M C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part I—Bare soil[J]. IEEE Transactions on Geoscience Electronics,1978, 16(4): 286-295.
[11]Jacquemoud S, Baret F, Hanocq J F. Modeling spectral and bidirectional soil reflectance[J]. Remote Sensing of Environment,1992, 41(2/3): 123-132.
[12]Shepard M K, Campbell B A, Bulmer M H, et al. The roughness of natural terrain: A planetary and remote sensing perspective[J]. Journal of Geophysical Research,2001, 106(E12): 32 777-32 795.
[13]Kuipers H. A relief meter for soil cultivation studies[J]. Netherlands Journal of Agricultural Science,1957, 5(4): 255-262.
[14]Mattia F, Davidson M W J, Toan T L, et al. A comparison between soil roughness statistics used in surface scattering models derived from mechanical and laser profilers[J]. IEEE Transactions on Geoscience and Remote Sensing,2003, 41(7):1 659-1 671.
[15]Saleh A. Soil roughness measurement: Chain method[J]. Journal of Soil and Water Conservation,1993, 48(6): 527-529.
[16]Jin Rui, Che Tao, Cao Yongpan, et al. WATER: Dateset of Surface Roughness Measurements in the A′rou Foci Experimental Area[Z]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,2008, doi:10.3972/water973.0022.db.[晋锐, 车涛, 曹永攀,等.黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集[Z].兰州:中国科学院寒区旱区环境与工程研究所,2008,doi:10.3972/water 973.0022.db.]
[17]Ma Mingguo, Liu Qiang, Yan Guangjian, et al. Simultaneous remote sensing and ground-based experiment in the Heihe River Basin: Experiment of forest hydrology and arid region hydrology in the middle reaches[J]. Advances in Earth Science,2009, 24(7): 681-695.[马明国, 刘强, 阎广建,等.黑河流域遥感—地面观测同步试验:森林水文和中游干旱区水文试验[J]. 地球科学进展, 2009, 24(7): 681-695.]
[18]Gilley J E, Kottwitz E R. Random roughness assessment by the pin and chain method[J]. Applied Engineering in Agriculture,1995, 12(1):39-43.
[19]Jester W, Klik A. Soil surface roughness measurement—Methods, applicability, and surface representation[J]. Catena, 2005, 64(2/3): 174-192.
[20]Podmore T H, Huggins L F. An automated profile meter for surface roughness measurements[J]. Transations of American Society of Agricultural Engineers, 1981, 24(3): 663-665,669.
[21]Harral B B, Cove C A. Development of an optical displacement transducer for the measurement of soil surface profiles[J]. Journal of Agricultural Engineering Research,1982, 27(5): 421-429.
[22]Huang C. A noncontact laser system for measuring soil surfcae topography[J]. Soil Science Society of America Journal,1988, 52(2): 350-355.
[23]Bertuzzi P, Caussignac J M, Stengel P, et al. An automated, noncontact laser profile meter for measuring soil roughness in situ[J]. Soil Science, 1990, 149(3):169-178.
[24]Ma Yufeng, Yan Ping, Shi Yunying, et al. Application of laser 3D scanner in soil erosion research—Taking gully erosion monitoring in Weiliantan, Gonghe Basin, Qinghai province as an example[J]. Bullitin of Soil and Water Conservation,2010,30(2): 177-179.[马玉凤, 严平, 时云莹,等. 三维激光扫描仪在土壤侵蚀监测中的应用——以青海省共和盆地威连滩冲沟监测为例[J]. 水土保持通报, 2010, 30(2): 177-179.]
[25]Li M C, Cheng L, Gong J Y, et al. Post-earthquake assessment of building damage degree using LiDAR data and imagery[J]. Science in China (Series E),2008, 51: 133-143.
[26]Welch R, Jordan T R, Thomas A W. A photogrammetric technique for measuring soil erosion[J]. Journal of Soil and Water Conservation,1984, 39(3): 191-194.
[27]Gold T. Observations of a remarkable glazing phenomenon on the lunar surface[J]. Science,1969, 165: 1 345-1 349.
[28]Gold T. Apollo 11 and 12 close-up photography[J]. Icarus,1970, 12(3): 360-375.
[29]Lumme K, Karttunen H, Irvine W M. Roughness of the lunar soil[J]. Earth, Moon, and Planets,1985, 33(1):19-29.
[30]Kirby R P. Measurement of surface roughness in desert terrain by close range photogrammetry[J]. The Photogrammetric Record,1991, 13(78): 855-875.
[31]Oelze M L, Sabatier J M, Raspect R. Roughness measurements of soil surfaces by acoustic backscatter[J]. Soil Science Society of America Journal,2003, 67(1): 241-250.
[32]Kolstad O C, Schuler R T. An ultrasonic rillmeter for soil surface measurements[C]American Society of Agricultural Engineers Paper No. NCR80-303. St Joseph: American Society of Agricultural Engineers, 1980.
[33]Robichaud P R, Molnau M. Measuring soil roughness changes with an ultrasonic profiler[J]. Transations of American Society of Agricultural Engineers, 1990, 33(6): 1 851-1 858.
[34]Romkens M J M, Wang J Y. Effect of tillage on surface roughness[J]. Transactions of the American Society of Agricultural Engineers,1986, 29(2): 429-433.
[35]Darboux F H. An instantaneous-profile laser scanner to measure soil surface microtopography[J]. Soil Science Society of America Journal,2003,67(1):92.
[36]Rieke-Zapp D, Wegmann H, Santel F, et al. Digital photogrammetry for measuring soil surface roughness[C]Proceedings of the year 2001 annual conference of the American Society for Photogrammetry & Remote Sensing ASPRS, Gateway to the New Millennium. St. Louis, Missouri, USA, 2001.
[37]French J. Airborne LiDAR in support of geomorphological and hydraulic modelling[J]. Earth Surface Processes and Landforms,2003, 28(3): 321-335.
[38]Warner W S. Mapping a three-dimensional soil surface with hand-held 35 mm photography[J]. Soil and Tillage Research,1995, 34(3): 187-197.
[39]Aguilar M, Aguilar F, Negreiros J. Off-the-shelf laser scanning and close-range digital photogrammetry for measuring agricultural soils microrelief[J]. Biosystems Engineering,2009, 103(4): 504-517.
[40]Carbonneau P E, Lane S N, Bergeron N E. Cost-effective non-metric close-range digital photogrammetry and its application to a study of coarse gravel river beds[J]. International Journal of Remote Sensing,2003, 24(14): 2 837-2 854.
[41]Allmaras R R, Burwell R E, Larson W E. Total Porosity and Random Roughness of the Interrow Zone as Influenced by Tillage[M]. Washington: U.S. Department of Agriculture,1966.
[42]Sayles R S, Thomas T R. Surface topography as a nonstationary random process[J].Nature,1978,271:431-434.
[43]Callens M, Verhoest N E C, Davidson M W J. Parameterization of tillage-induced single-scale soil roughness from 4-m profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4): 878-888.
[44]Oh Y, Hong J Y. Effect of surface profile length on the backscattering coefficients of bare surfaces[J].IEEE Transactions on Geoscience and Remote Sensing,2007, 45(3): 632-638.
[45]Oh Y, Kay Y C. Condition for precise measurement of soil surface roughness[J].IEEE Transactions on Geoscience and Remote Sensing,1998, 36(2): 691-695.
[46]Ogilvy J, Foster J. Rough surfaces: Gaussian or exponential statistics?[J]. Journal of Physics D: Applied Physics,1989, 22(9): 1 243-1 251.
[47]Zobeck T M, Onstad C A. Tillage and rainfall effects on random roughness: A review[J]. Soil and Tillage Research,1987, 9(1): 1-20.
[48]Bertuzzi P, Rauws G, Courault D. Testing roughness indices to estimate soil surface roughness changes due to simulated rainfall[J]. Soil and Tillage Research,1990, 17(1/2): 87-99.
[49]USDA ARS Grazinglands Research Lab. Washita ′92[EB/OL].  http:∥hydrolab.arsusda.gov/washita92/wash92.htm,1992.
[50]Che Tao, Bai Yunjie, Cao Yongpan, et al. WATER: Dateset of Surface Roughness Measurements in the Biandukou Foci Experimental Area[Z]. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences; Beijing Normal University,2008,doi:10.3972/water973.0036.db.[车涛, 白云洁, 曹永攀,等.黑河综合遥感联合试验:扁都口草地加密观测区地表粗糙度观测数据集[Z].中国科学院寒区旱区环境与工程研究所,北京师范大学,2008,doi:10.3972/water973.0036.db.]
[51]Farr T G. Microtopographic evolution of lava flows at cima volcanic field, mojave desert, california[J]. Journal of Geophysical Research,1992, 97(B11): 15 171-15 179.
[52]Boiffin J. La de′gradation Structurale des Couches Superficielles Sous L′action Des Pluies[D]. Paris: The Ttraraux Universitaires, 1984.
[53]Linden D R, Van Doren D M. Parameters for characterizing tillage-induced soil surface roughness[J]. Soil Science Society of America Journal, 1986, 50(6): 1 560-1 565.
[54]Kamphorst E C, Jetten V, Gue′rif J, et al. Predicting depressional storage from soil surface roughness[J]. Soil Science Society of America Journal, 2000, 64(5): 1 749-1 758.
[55]Mandelbrot B B. The Fractal Geometry of Nature[M]. New York: WH Freeman, 1983.
[56]Korvin G. Fractal Models in the Earth Sciences[M]. Elsevier Amsterdam, 1992.
[57]Armstrong A. On the fractal dimensions of some transient soil properties[J]. Journal of Soil Science,1986, 37(4): 641-652.
[58]Turcotte D R. Fractals and Chaos in Geology and Geophysics[M]. New York: Cambridge University Press, 1997.
[59]Malinverno A. A simple method to estimate the fractal dimension of a self-affine series[J]. Geophysical Research Letters,1990, 17(11): 1 953-1 956.
[60]Jahn R, Truckenbrodt H. A simple fractal analysis method of the surface roughness[J]. Journal of Materials Processing Technology,2004, 145(1): 40-45.
[61]Shepard M K, Brackett R A, Arvidson R E. Self-affine (fractal) topography: Surface parameterization and radar scattering[J]. Journal of Geophysical Research, 1995, 100(E6): 11 709-11 718.
[62]Vidal Vázquez E, Vivas Miranda J, Paz Gónzalez A. Characterizing anisotropy and heterogeneity of soil surface microtopography using fractal models[J]. Ecological Modelling,2005, 182(3/4): 337-353.
[63]Davidson M W J, Thuy Le T, Mattia F, et al. On the characterization of agricultural soil roughness for radar remote sensing studies[J].IEEE Transactions on Geoscience and Remote Sensing,2000, 38(2): 630-640.
[64]Milton E J, Webb J P. Ground radiometry and airborne multispectral survey of bare soils [J]. International Journal of Remote Sensing,1987,8(1):3-14.
[65]Hapke B. A theorical photometric function for the lunar surface[J]. Journal of Geophysical Research,1963, 68: 4 571-4 586.
[66]Hapke B. On the particle size distribution of lunar soil[J]. Planetary and Space Science,1968, 16: 101.
[67]Jarlan L, Mougin E, Mazzega P, et al. Using coarse remote sensing radar observations to control the trajectory of a simple Sahelian land surface model[J]. Remote Sensing of Environment,2005, 94(2): 269-285.
[68]Trombetti M, Riao D, Rubio M, et al. Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA[J]. Remote Sensing of Environment,2008, 112(1): 203-215.
[69]Xu Xiru. Remote Sensing Physics[M]. Beijing: Peking University Press, 2005.[徐希孺. 遥感物理[M]. 北京:北京大学出版社, 2005.]
[70]Hapke B. Bidirectional reflectance spectroscopy: 3. Correction for macroscopic roughness[J].Icarus, 1984, 59(1): 41-59.
[71]Wu Junzhao, Lu Huayu, Liu Qiang. Inversion of the asymmetry factor for desert areas of China[J]. Science in China (Series D),2010, 40(2): 232-238.[吴昀昭, 鹿化煜, 刘强. 沙漠地区光学散射非对称因子反演研究[J]. 中国科学:D辑, 2010, 40(2): 232-238.]
[72]Xu Yuanliu. Roughness Retrieval and Topographic Correction Based on Bare Surface Radiative Transfer Model[D]. Beijing: China University of Geosciences, 2009.[徐元柳. 基于裸露地表辐射传输模型的粗糙度反演与地形校正[D]. 北京: 中国地质大学, 2009.]
[73]Despan D, Bedidi A, Cervelle B. Bidirectional reflectance of rough bare soil surfaces[J]. Geophysical Research Letters,1999, 26(17): 2 777-2 780.
[74]Despan D, Bedidi A, Cervelle B, et al. Bidirectional reflectance of gaussian random surfaces and its scaling properties[J]. Mathematical Geology,1998, 30(7): 873-888.
[75]Álvarez-Mozos J, Campo M , Giménez R, et al. Implications of scale, slope, tillage operation and direction in the estimation of surface depression storage[J]. Soil and Tillage Research,2011, 111(2): 142-153.
[76]Huang C, Bradford J M. Applications of a laser scanner to quantify soil microtopography[J]. Soil Science Society of America Journal,1992, 56(1): 14.
[77]Norman J M, Welles J M, Walter E A. Contrasts among bidirectional reflectance of leaves, canopies, and soils[J]. IEEE Transactions on Geoscience and Remote Sensing,1985,(5): 659-667.
[78]Cierniewski J. A model for soil surface roughness influence on the spectral response of bare soils in the visible and near-infrared range[J]. Remote Sensing of Environment,1987, 23(1): 97-115.
[79]Cierniewski J. The influence of the viewing geometry of bare rough soil surfaces on their spectral response in the visible and near-infrared range[J]. Remote Sensing of Environment,1989, 27(2): 135-142.
[80]Irons J R, Campbell G S, Norman J M, et al. Prediction and measurement of soil bidirectional reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing,1992, 30(2): 249-260.
[81]Haupt S E. The Nature of Optimization[M]∥Haupt S E, Pasini A, Marzban C. Artificial Intelligence Methods in the Environmental Sciences. Springer, 2009:379.
[82]Roujean J L, Leroy M, Deschamps P Y. A bidirectional reflectance model of the Earth′s surface for the correction of remote sensing data[J]. Journal of Geophysical Research,1992, 97(D18): 20 455-20 468.
[83]Hapke B. Bidirectional reflectance spectroscopy 1. Theory[J]. Journal of Geophysical Research,1981, 86(B4): 3 039-3 054.
[84]Chappell A, Strong C, McTainsh G, et al. Detecting induced in situ erodibility of a dust-producing playa in Australia using a bi-directional soil spectral reflectance model[J]. Remote Sensing of Environment,2007, 106(4): 508-524.
[85]Chappell A, Zobeck T M, Brunner G. Using bi-directional soil spectral reflectance to model soil surface changes induced by rainfall and wind-tunnel abrasion[J]. Remote Sensing of Environment,2006, 102(3/4): 328-343.
[86]Nolin A W, Fetterer F M, Scambos T A. Surface roughness characterizations of sea ice and ice sheets: Case studies with MISR data[J]. IEEE Transactions on Geoscience and Remote Sensing,2002, 40(7): 1 605-1 615.
[87]Nolin A W, Payne M C. Classification of glacier zones in western Greenland using albedo and surface roughness from the Multi-angle Imaging SpectroRadiometer (MISR)[J]. Remote Sensing of Environment,2007, 107(1/2): 264-275.
[88]Zribi M, Baghdadi N, Holah N, et al. Evaluation of a rough soil surface description with ASAR-ENVISAT radar data[J]. Remote Sensing of Environment,2005, 95(1): 67-76.
[89]Ulaby F T, Dubois P C, Van Zyl J. Radar mapping of surface soil moisture[J]. Journal of Hydrology, 1996, 184(1/2): 57-84.
[90]Baghdadi N, Holah N, Zribi M. Soil moisture estimation using multi-incidence and multi-polarization ASAR data[J]. International Journal of Remote Sensing,2006, 27(10): 1 907-1 920.
[91]Zribi M, Dechambre M. A new empirical model to retrieve soil moisture and roughness from C-band radar data[J]. Remote Sensing of Environment,2002, 84(1): 42-52.
[92]Oh Y, Sarabandi K, Ulaby F T. An empirical model and an inversion technique for radar scattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing,1992, 30(2): 370-381.
[93]Dubois P C, Van Zyl J, Engman T. Measuring soil moisture with imaging radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 915-926.
[94]Shi J, Wang J, Hsu A Y, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1 254-1 266.
[95]Fung A K, Li Z, Chen K S. Backscattering from a randomly rough dielectric surface[J]. IEEE Transactions on Geoscience and Remote Sensing,1992, 30(2): 356-369.
[96]Chen K S, Tzong-Dar W, Leung T, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing,2003, 41(1): 90-101.
[97]Baghdadi N, Aubert M, Cerdan O, et al. Operational mapping of soil moisture using synthetic aperture radar data: Application to the Touch basin (France)[J]. Sensors, 2007, 7(10): 2 458-2 483.
[98]Bindlish R, Barros A P. Multifrequency soil moisture inversion from SAR measurements with the use of IEM[J]. Remote Sensing of Environment,2000, 71(1): 67-88.
[99]Mattia F, Le Toan T, Souyris J C, et al. The effect of surface roughness on multifrequency polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4): 954-966.
[100]Zribi M, Taconet O, Le Hegarat-Mascle S, et al. Backscattering behavior and simulation comparison over bare soils using SIR-C/X-SAR and ERASME 1994 data over Orgeval[J]. Remote Sensing of Environment,1997, 59(2): 256-266.
[101]Ulaby F T, Kouyate F, Fung A K, et al. A backscatter model for a randomly perturbed periodic surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982(4): 518-528.
[102]Mattia F, Le Toan T. Backscattering properties of multi-scale rough surfaces[J]. Journal of Electromagnetic Waves and Applications, 1999, 13(4): 493-527.
[103]Verhoest N, De Baets B, Mattia F, et al. A possibilistic approach to soil moisture retrieval from ERS synthetic aperture radar backscattering under soil roughness uncertainty[J]. Water Resources Research,2007, 43(7): W07435.
[104]Baghdadi N, Gherboudj I, Zribi M, et al. Semi-empirical calibration of the IEM backscattering model using radar images and moisture and roughness field measurements[J]. International Journal of Remote Sensing,2004, 25(18): 3 593-3 623.
[105]Rahman M M, Moran M S, Thoma D P, et al. A derivation of roughness correlation length for parameterizing radar backscatter models[J]. International Journal of Remote Sensing,2007, 28(18): 3 995-4 012.
[106]Campbell B A, Shepard M K. Lava flow surface roughness and depolarized radar scattering[J]. Journal of Geophysical Research,1996, 101(E8): 18 941-18 951.
[107]Bryant R, Moran M S, Thoma D P, et al. Measuring surface roughness height to parameterize radar backscatter models for retrieval of surface soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing Letters,2007, 4(1): 137-141.
[108]Álvarez-Mozos J, Verhoest N E, Larrañaga A, et al. Influence of surface roughness spatial variability and temporal dynamics on the retrieval of soil moisture from SAR observations[J]. Sensors,2009, 9(1): 463-489.
[109]Zhixiong L, Nan C, Perdok U D, et al. Characterisation of soil profile roughness[J]. Biosystems Engineering,2005, 91(3): 369-377.

[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[3] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[4] 王飞, 陶宇, 欧维新. 景观格局变化的水质净化服务响应关系研究进展[J]. 地球科学进展, 2021, 36(1): 17-28.
[5] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[6] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[7] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[8] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[9] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[10] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[11] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[12] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[13] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[14] 郝志新,吴茂炜,张学珍,刘洋,郑景云. 过去千年中国年代和百年尺度冷暖阶段的干湿格局变化研究[J]. 地球科学进展, 2020, 35(1): 18-25.
[15] 康文敏,蔡芫镔,郑慧祯. 福州城市地表温度时空变化与贡献度研究[J]. 地球科学进展, 2020, 35(1): 88-100.
阅读次数
全文


摘要