[1]Pan Genxing. Soil organic carbon stock, dynamics and climate change mitigation of China[J].Advances in Climate Change Research, 2008,4(5): 282-289.[潘根兴. 中国土壤有机碳库及其演变与应对气候变化[J]. 气候变化研究进展, 2008, 4(5): 282-289.] [2]Li Qiquan, Yue Tianxiang, Fan Zemeng, et al. Spatial simulation of topsoil TN at the national scale in China[J]. Geographical Research, 2010, 29(11): 1 981-1 992.[李启权, 岳天祥, 范泽孟, 等. 中国表层土壤全氮的空间模拟分析[J]. 地理研究, 2010, 29(11): 1 981-1 992.] [3]Yang Lin, Zhu Axing, Qin Chengzhi, et al. Soil property mapping using fuzzy membership—A case study of a study area in Heshan farm of Heilongjiang province[J]. Acta Pedologica Sinica, 2009, 46(1): 9-15.[杨琳, 朱阿兴, 秦承志, 等. 运用模糊隶属度进行土壤属性制图的研究——以黑龙江鹤山农场研究区为例[J]. 土壤学报, 2009, 46(1): 9-15.] [4]Phachomphon K, Dlamini P, Chaplot V. Estimating carbon stocks at a regional level using soil information and easily accessible auxiliary variables[J]. Geoderma, 2010, 155(3/4): 372-380. [5]Grunwald S. Multi-criteria characterization of recent digital soil mapping and modeling approaches[J]. Geoderma, 2009, 152(3/4):195-207. [6]Zhu A X, Hudson B, Burt J, et al. Soil mapping using GIS, expert knowledge, and fuzzy logic[J]. Soil Science Society of America Journal, 2001, 65(5): 1 463-1 472. [7]Wu Lezhi, Cai Zucong. The relationship between the spatial scale and the variation of soil organic matter in China[J]. Advances in Earth Science, 2006, 21(9): 965-972.[吴乐知, 蔡祖聪. 中国土壤有机质含量变异性与空间尺度的关系[J]. 地球科学进展, 2006, 21(9): 965-972.] [8]Mishra U, Lal R, Liu D S, et al. Predicting the spatial variation of the soil organic carbon pool at a regional scale[J]. Soil Science Society of America Journal, 2010, 74(3): 906-914. [9]Bell J C, Grigal D F, Bates P C. A Soil Terrain Model for estimating spatial patterns of soil organic carbon[M]∥Wilson J P ed. Terrain Analysis: Principles and Applications.New York: John Wiley & Sons, 2000: 295-310. [10]McBratney A B, Mendonca Santos M L, Minasny B. On digital soil mapping[J]. Geoderma, 2003, 17(1/2): 3-52. [11]Li Qiquan, Yue Tianxiang, Fan Zemeng, et al. Study on method for spatial simulation of topsoil SOM at national scale in China[J]. Journal of Natural Resources, 2010, 25(8): 1 385-1 399.[李启权, 岳天祥, 范泽孟,等.中国表层土壤有机质空间分布模拟分析方法研究[J]. 自然资源学报, 2010, 25(8): 1 385-1 399.] [12]Al-Alawi S M, Abdul-Wahab S A, Bakheit C S. Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone[J]. Environmental Modelling & Software, 2008, 23(4): 396-403. [13]Sousa S I V, Martins F G, Alvim-Ferraz M C M, et al. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations[J]. Environmental Modelling & Software, 2007, 22(1): 97-103. [14]Erzin Y, Rao B H, Singh D N. Artificial neural network models for predicting soil thermal resistivity[J]. International Journal of Thermal Sciences, 2007, 47(10):1 347-1 358. [15]Zou P, Yang J S, Fu J R, et al. Artificial neural network and time series models for predicting soil salt and water content[J]. Agricultural Water Management, 2010, 97(12): 2 009-2 019. [16]Shen Zhangquan, Zhou Bin, Kong Fansheng, et al. Study on spatial variety of soil properties by means of generalized regression neural network[J]. Acta Pedologica Sinica, 2004, 41(3): 471-475.[沈掌泉, 周斌, 孔繁胜, 等. 应用广义回归神经网络进行土壤空间变异研究[J]. 土壤学报, 2004, 41(3): 471-475.] [17]Behrens T, Förster H, Scholten T, et al. Digital soil mapping using artificial neural networks[J]. Journal of Plant Nutrition and Soil Science, 2005, 168(1): 21-33. [18]Li Qiquan, Wang Changquan, Yue Tianxiang, et al. Method for spatial variety of soil organic matter based on radial basis function neural network[J]. Transactions of the CSAE, 2010, 26(1): 87-93.[李启权, 王昌全, 岳天祥, 等. 基于RBF神经网络的土壤有机质空间变异研究方法[J]. 农业工程学报, 2010, 26(1): 87-93.] [19]Meersmans J, Van Wesemael B, Goidts E, et al. Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands, 1960-2006[J]. Global Change Biology, 2011, 17(1): 466-479. [20]Pirie A, Singh B, Islam K. Ultra-violet, visible, near-infrared and mid-infrared diffuse reflectance spectroscopis techniques to predict several soil properties[J]. Australian Journal of Soil Research, 2005, 43(6): 713-721. [21]Razakamanarivo R H, Grinand C, Razafindrakoto M A, et al. Mapping organic carbon stocks in eucalyptus plantations of the central highlands of Madagascar: A multiple regression approach[J]. Geoderma, 2011, 162(3/4): 335-346. [22]Zhang Sumei, Wang Zongming, Zhang Bai, et al. Prediction of spatial distribution of soil nutrients using terrain attributes and remote sensing data[J]. Transactions of the CSAE, 2010, 26(5): 188-194.[张素梅, 王宗明, 张柏, 等. 利用地形和遥感数据预测土壤养分空间分布[J]. 农业工程学报, 2010, 26(5): 188-194.] [23]Johnson C E, Ruiz-Méndez J J, Lawrence G B. Forest soil chemistry and terrain attributes in a Catskills Watershed[J]. Soil Science Society of America Journal, 2000, 64(5): 1 804-1 814. [24]Schulp C J E, Verbrug P H. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region[J]. Agricultural, Ecosystems and Environment, 2009, 133(1/2): 86-97. [25]Thompson J A, Eugenia M, Pena Y, et al. Soil-landscape modeling across a physiographic region: Topographic patterns and model transportability[J]. Geoderma, 2006, 133(1/2): 57-70. [26]Meersmans J, De Ridder F, Canters F, et al. A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium)[J]. Geoderma, 2008, 143(1): 1-13. |