地球科学进展 ›› 2004, Vol. 19 ›› Issue (5): 793 -801. doi: 10.11867/j.issn.1001-8166.2004.05.0793

综述与评述 上一篇    下一篇

土壤碳动力学同位素示踪研究进展
陶贞 1, 2;沈承德 1;易惟熙 1;高全洲 2   
  1. 中国科学院广州地球化学研究所,广东广州510640;中山大学地理科学与规划学院,广东广州510275
  • 收稿日期:2003-10-16 修回日期:2004-03-19 出版日期:2004-12-20
  • 通讯作者: 陶贞(1965-),女,河南省沁阳人,博士研究生,主要从事地球化学与第四纪地质研究. E-mail:E-mail: eesgqz@zsu.edu.cn
  • 基金资助:

    国家自然科学基金重点项目“典型气候带森林土壤碳循环及碳汇估算的同位素示踪研究” (编号:40231015); 广东省自然科学基金项目“典型水文过程流域生源物质侵蚀通量及性质研究 ” (编号:031548); 国家重点基础研究发展规划项目“我国生存环境演变和北方干旱化趋势预测”(编号:G1999043401);中国科学院知识创新工程重要方向项目“我国自然环境分异偶合过程与发展趋势” (编号:KZCX2-SW-118)资助

PROGRESSES IN THE STUDY OF CARBON ISOTOPES TRACING OF THE SOIL CARBON DYNAMICS

TAO Zhen 1, 2,SHEN Cheng-de 1,YI Wei-xi 1,GAO Quan-zhou 2   

  1. 1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;2. School of Geography and Planning, Zhongshan University, Guangzhou 510275, China
  • Received:2003-10-16 Revised:2004-03-19 Online:2004-12-20 Published:2004-10-01

土壤是陆地生态系统中最大的碳库。土壤碳动力学旨在研究土壤有机碳库的大小及更新速率。土壤有机碳库可分为 3个亚碳库:"活动"、"缓慢"和"稳定"碳库。碳同位素特别是 14 C可作为研究土壤碳动力学的理想示踪剂;δ 13 C值是定量研究C3和C4植被更替历史的有效手段; 14 C示踪及年代测定与 13 C信号联合使用,可以估算土壤碳库的大小和驻留时间。碳同位素示踪应用于土壤碳动力学研究取得了较大进展,但是由于缺乏可靠的全球数据库和标准方法来量化土壤有机碳库,导致对土壤各亚碳库的大小和更新速率以及土壤CO2的估算仍存在较大的不确定性,从而难以估计土壤碳库大小的变化对大气CO 2浓度和全球气候变化的潜在贡献。

Soils are the largest carbon reservoir in terrestrial ecosystems. Soil organic matter contains generally three identifiable carbon pools: “active” pool; “slow” pool and “passive” pool. The dynamics of the soil carbon cycle focus on mostly carbon turnover times and input rates and size of soil carbon pools on various time scales. Many researchers indicated that natural abundance of carbon isotopes, in particular radiocarbon,is useful tracers in the study of the soil carbon cycle. δ13C values of soil organic matter provide a unique tool for quantifying historical shifts between C3 and C4 ecosystems over decadal to millennial time scales. 14C signature, the combination of 14C dating and 13C signature can be used to determine the size and turnover rates of the labile and stable soil organic matter pools. Despite the advances in the study of the soil carbon cycle by means of carbon isotopes signature in  recent decades, the isotopic approaches to the study of the soil carbon cycle have limitations. Tremendous uncertainties exist in the estimation of sizes and turnover times of soil carbon pools as well as the amount of  14C content of SOM derived CO2 because of a lack of reliable global database and a lack of standard methods available to quantify labile and stable soil organic matter pools. It is very difficult to estimate any change in the size of the soil C pool that could potentially alter the atmospheric CO2concentration and the global climate.

中图分类号: 

[1]Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of Earth’s ecosystems[J].Science,1997, 277: 494-499.
[2]Rodhe H. A comparison of the contribution of various gases to the greenhouse effect[J].Science,1990, 248: 1 217-1 219.
[3]Sommerfeld R A, Mosier A R, Musselman R C. CO2, CH4and N2O flux through a Wyoming snow pack and implications for global budgets[J].Nature,1993, 361: 140-142.
[4]Rastetter E B, McKane R B, Shaver, G R. Changes in C storage by terrestrial ecosystems: How C N interactions restrict responses to CO2and temperature[J].Water, Air and Soil Pollution, 1992, 64: 327-344.
[5]Schimel D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology, 1995, 1: 77-91.
[6]Fan S, Gloor M, Mahlman J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models[J].Science, 1998, 282: 442-446.
[7]Tanaka Masayuki(田中正之). The Earth is Warming Up[M]. Shi Guangyu(石广玉), Li Changming(李昌明),translated.Beijing: Meteorologic Press,1992.132(in Chinese).
[8]Guo Liping(郭李萍), Lin Erda(林而达).Research advances on mitigating global warming and greenhouse gas sequestration[J].Advances in Earth Science(地球科学进展),1999,14(4): 384-390(in Chinese).
[9]Schindler D W. Carbon cycling: The mysterious missing sink[J]. Nature, 1999, 398: 105-107.
[10]Dixon R K, Brown S, Houghton R A,et al. Carbon pools and flux of global forest ecosystems[J].Science,1994, 263: 185-190.
[11]Cao M K, Woodward F I. Dynamics responses of terrestrial ecosystem carbon cycling to global climate change[J].Nature, 1998, 393: 249-252.
[12]Prentice I C, Lioyd J. C-quest in the Amazon Basin[J].Nature,1998, 396: 619-620.
[13]Gifford R M. The global carbon cycle: A viewpoint on the missing sink[J].Australian Journal of Plant Physiology, 1994, 21: 1-15.
[14]Keeling C D, Chin J F S, Whorf T P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements[J].Nature,1996, 382: 146-149.
[15]Robert B M, Edward B R, Gaius R S,et al. Reconstruction and analysis of historical changes in carbon storage in Arctic tundra[J].Ecology, 1997, 78(4): 1 188-1 198.
[16]Dai Minhan(戴民汉), Zhai Weidong(翟惟东), Lu Zhongming(鲁中明),et al. Regional studies of carbon cycles in China: Progress and perspectives[J]. Advances in Earth Science(地球科学进展), 2004, 19(1): 120-130(in Chinese).
[17]Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils[J].Nature, 1990, 348: 232-234.
[18]Schlesinger W H. An overview of the global carbon cycle[A]. In: Lal R, Kimble J, Levine E,et al,eds. Soils and Global Change[C]. Boca Raton: Lewis Publishers,1995. 9-25.
[19]Kimble L R J, Stewart B A. World soils as a source or sink for radiatively active gases[A]. In: Lal R, Kimble J, Levine E,et al, eds. Soils and Global Change[C]. Boca Raton: Lewis Publishers,1995.1-7.
[20]Post W M, Izaurralde R C, Mann L K, et al. Monitoring and verifying soil organic carbon sequestration[A]. In: Rosenberg N, Izaurralde R, Malone E, eds. Carbon Sequestration in Soils: Science, Monitoring, and Beyond:Proceedings of the St. Michaels Workshop[C]. Columbus: Battelle Press,1999. 41-66.
[21]Metting F B, Smith J L, Amthor J S. Science needs and new technology for soil carbon sequestration[A]. In: Rosenberg N, Izaurralde R, Malone E, eds. Carbon Sequestration in Soils: Science, Monitoring, and Beyond:Proceedings of the St. Michaels Workshop[C]. Columbus: Battelle Press,1999. 1-34.
[22]Trumbore S E. Potential responses of soil organic carbon to global environmental change[J].Proceedings of the National Academy Science, 1997, 94: 8 284-8 291
[23]Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J].Nature, 1982, 298:156-159.
[24]Eswaran H, Berg E V D, Reich P. Organic carbon in soils of the world[J].Soil Science Society of America Journal, 1993, 57: 192-194.
[25]German Advisory Council on Global Change. WBGU Special Report: The Accounting of Biological Sinks and Sources Under the Kyoto Protocol—A Step Forwards or Backwards for Global Environmental Protection? [R]. 1998.
[26]Saine G R. Organic metter as a measure of bulk density of soil[J].Nature, 1966, 210: 1 295-1 296.
[27]Bolin B. The carbon cycle[J].American Scientist, 1970, 223: 136-146.
[28]Schlesinger W H. Carbon balance in terrestrial detritus[J].Annual Review of Ecology and Systematics, 1977, 8: 51-81.
[29]Post W P, Pastor J, Zinke P J,et al. Global patterns of soil nitrogen storage[J].Nature, 1985, 317: 613-616.
[30]Bohn H. Estimate of organic carbon in world soil[J].Soil Science Society of America Journal, 1976, 40: 468-470.
[31]Monger H D, Martinez Rios J J. Inorganic carbon sequestration in grazing lands[A]. In: Follett R F, Kimble J M, Lal R , eds. The Potential of US Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect[C]. Boca Raton: Lewis Publishers, 2001. 87-118.
[32]Burke I C, Laurenroth W K, Milchunas D G. Biogeochemistry of managed grasslands in central North America[A]. In: Paul E A, Paustian K, Elliott E T,et al, eds. Soil Organic Matter in Temperate Agro-ecosystems: Long term Experiments in North America[C]. Boca Raton: CRC Press, Inc,1997.85-102.
[33]Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi arid mixed grass and short grass rangelands[J].Environmental Pollution, 2002, 116(3): 457-463.
[34]Thorp J. How soils develop under grass[A]. In: Anderson C P, ed. Grass: The Yearbook of Agriculture[C].Washington: United States Department of Agriculture, US Government Printing Office,1948.
[35]Paul E A, Clark F E. Soil Microbiology and Biochemistry(2nd)[M]. San Diego CA: Academic Press,1996.
[36]Weaver J E, Hougen V H, Weldon M D. Relation of root distribution to organic matter in prairie soil[J].The Botanical Gazette, 1935,96(3): 389-420.
[37]Gill R A. Biotic controls over the depth distribution of soil organic matter[D].Colorado State University, Fort Collins, CO,1998.
[38]Reeder J D, Franks C D, Milchunas D G. Root biomass and microbial processes[A]. In: Follett R F, Kimble J M, Lal R, eds. The Potential of US Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect[C]. Boca Raton: Lewis Publishers, 2001. 139-166.
[39]Cheng Genwei(程根伟), Luo Ji(罗辑).The carbon accumulation and dissipation features of sub-alpine woodland in Mt. Gongga[J].Acta Geographica Sinica(地理学报),2003, 58(2): 179-185(in Chinese).
[40]Trumbore S E, Davidson E A, Barbosa de Camargo,et al. Belowground cycling of carbon in forest and pastures of Eastern Amazonia[J].Global Biogeochemical Cycles, 1995, 9: 515-528.
[41]Shen Chengde, Liu Dongsheng, Peng Shaolin,et al. A study on 14C measurements of the forest soils in Dinghushan Biosphere Reserve[J].Chinese Science Bulletin, 1999, 44(3): 251-256.
[42]Veldkamp E. Organic carbon turnover in three tropical soils under pasture after deforestation[J].Soil Science Society of America Journal,1994, 58: 175-180.
[43]Detwiler R P. Land use change and the global carbon cycle: The role of tropical soils[J].Biogeochemistry, 1986, 2: 67-93.
[44]Campbell C A, Paul E A, Rennie D A,et al. Applicability of the carbon dating method of analysis to soil humus studies[J].Soil Science, 1967, 104: 217-224.
[45]O'Brien B J, Stout J D. Movement and turnover of soil organic matter as indicated by carbon isotope measurements[J].Soil Biology & Biochemistry, 1978, 10: 309-317.
[46]O’Leary M H. Carbon isotope fractionation in plants[J].Phytochemistry, 1981, 20: 553-567.
[47]Mook W G.13C in atmospheric CO2[J].Netherlands Journal of Sea Research, 1986, 20: 221-223.
[48]Deines P. The isotopic composition of reduced organic carbon[A]. In: Fritz P, Fontes J C, eds. Handbook of Environmental Isotope Geochemistry(vol.1):The Terrestrial Environment[C]. Amsterdam: Elsevier,1980. 329-406.
[49]O'Leary M H. Carbon isotopes in photosynthesis[J].Biosciences, 1988, 38: 328-336.
[50]Chen Jinshi(陈锦石), Chen Wenzheng(陈文正). Survey of Carbon Isotopic Geology [M]. Beijing: Geologic Press, 1983(in Chinese).
[51]Dzurec R S, Boutton T W, Caldwell M M,et al. Carbon isotope ratios of soil organic matter and their use in assessing community composition changes in Carlew Valley, Utah[J].Oecologia, 1985, 66: 17-24.
[52]Gulliet B, Faivre P, Mariotti A,et al. The 14C dates and 13C/12C ratios of soil organic matter as a means of studying the past vegetation in intertropical regions: Examples from Colombia (South America)[J].Palaeogeography, Palaeoclimatology and Palaeoecology, 1988, 65: 51-58.
[53]Schwartz D, Mariotti A, Lanfranchi R,et al. 13C/12C ratios of soil organic matter as indicators of vegetation changes in the Congo[J].Geoderma, 1986, 39: 97-103.
[54]Balesdent J, Mariotti A, Guillet B. Natural 13C abundance as a tracer for studies of soil organic matter dynamics[J].Soil Biology & Biochemistry, 1987, 19: 25-30.
[55]Ehleringer J, Buchmann N, Flanagan L. Carbon isotope ratios in belowground carbon cycle processes[J].Ecological Applications,2000, 10: 412-422.
[56]Balesdent J, Wagner G H, Mariotti A. Soil organic matter turnover in long term field experiments as revealed by carbon 13 natural abundance[J].Soil Science Society of America Journal,1988, 52: 118-124.
[57]Stuiver M, Polach H. Reporting of 14C data[J].Radiocarbon, 1977, 19: 355-363.
[58]Cherkinsky A E, Brovkin V A. Dynamics of radiocarbon in soils[J].Radiocarbon, 1993, 35(3): 363-367.
[59]Trumbore S, Chadwick O, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change[J].Science, 1996, 272: 393-396.
[60]Chen Q Q, Sun Y M, Shen C D,et al. Organic matter turnover rates and CO2flux from organic matter decomposition of mountain soil profiles in the subtropical area, south China[J].Catena, 2002, 49: 217-229.
[61]Chen Qingqiang(陈庆强), Shen Chengde(沈承德), Yi Weixi(易惟熙),et al. Progresses in soil carbon cycles researches[J].Advances in Earth Science(地球科学进展), 1998, 13(6): 555-563(in Chinese).
[62]Wang Y, Amundson R, Trumbore S. The impact of land use change on C turnover in soils[J].Global Biogeochemical Cycles, 1999, 13: 47-57.
[63]Hsieh Y P. Radiocarbon signatures of turnover rates in active soil organic carbon pools[J].Soil Science Society of America Journal, 1993, 57: 1 020-1 022.
[64]Suess H. Radiocarbon concentration in modern wood[J].Science, 1955, 122: 415-417.
[65]Stuiver M. Carbon 14 content of 18th and 19th century wood: Variations correlated with sunspot activity[J].Science,1965, 149: 533-535.
[66]Levin I, Kromer B, Schoch Fischer H,et al. 25 years of tropospheric 14C observations in central Europe[J].Radiocarbon, 1985, 27: 1-19.
[67]Manning M R, Melhuish W H, Wallace G,et al. The use of radiocarbon measurements in atmospheric studies[J].Radiocarbon, 1990, 32: 37-58.
[68]Wang Y, Jahren H, Amundson R. Potential for 14C dating of biogenic carbonate in Hackberry (Celtis) Endocarps[J]. Quaternary Research, 1997, 47: 337-343.
[69]Trumbore S E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements[J].Global Biogeochemical Cycles, 1993, 7: 275-290.
[70]Harrison K, Broecker W, Bonani G. The effect of changing land use on soil radiocarbon[J].Science, 1993, 262: 725-726.
[71]Trumbore S E, Vogel J S, Southon J R. AMS 14C measurements of fractionated soil organic matter: An approach to deciphering the soil carbon cycle[J].Radiocarbon, 1989, 31: 644-654.
[72]Wang Y, Hsieh Y P. Uncertainties and novel prospects in the study of the soil carbon dynamics[J].Chemosphere, 2002, 49: 791-804.
[73]Hsieh Y P. Size and mean age of stable soil organic carbon in cropland[J].Soil Science Society of America Journal, 1992, 56: 460-464.
[74]Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments[J].Soil Science, 1977, 123: 298-305.
[75]Hsieh Y P. Soil organic carbon pools of two tropical soils inferred by carbon signatures[J]. Soil Science Society of America Journal, 1996, 60: 1 117-1 121.
[76]Douwe van Dam, Edzo Veldkamp, Nico van Breemen. Soil organic carbon dynamics: Variability with depth in forested and deforested soils under pasture in Costa Rica[J].Biogeochemistry, 1997, 39: 343-375.
[77]Wang Y, Amundson R, Niu X F. Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 flux[J].Global Biogeochemical Cycles,2000, 14: 199-211.
[78]Zhang Jinxia(张金霞), Cao Guangmin(曹广民), Zhou Dangwei(周党卫),et al. Diel and seasonal changes of carbon dioxide emission from mollic cryic cambisols on degraded grassland[J].Acta Pedologica Sinica(土壤学报), 2001, 38(1): 32-39(in Chinese).
[79]Houghton R A, Davidson E A, Woodwell G M. Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance[J].Global Biogeochemical Cycles,1998, 12: 25-34.
[80]Melillo J M, Steudler P A, Aber J D,et al. Soil warming and carbon cycle feedbacks to the climate system[J].Science, 1993, 298: 2 173-2 175.

[1] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[2] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[3] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[4] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[5] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[6] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[7] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[8] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[9] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[10] 药瑛, 孙樯. 应用于流体包裹体CO 2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[11] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[12] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[13] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[14] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[15] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
阅读次数
全文


摘要