地球科学进展 ›› 2004, Vol. 19 ›› Issue (5): 789 -792. doi: 10.11867/j.issn.1001-8166.2004.05.0789

综述与评述 上一篇    下一篇

湖泊沉积物色度在短尺度古气候研究中的应用
吴艳宏;李世杰   
  1. 中国科学院南京地理与湖泊研究所,江苏 南京 210008
  • 收稿日期:2003-06-30 修回日期:2003-11-07 出版日期:2004-12-20
  • 通讯作者: 吴艳宏(1969-),男,江苏人,副研究员,主要从事湖泊沉积与全球变化研究. E-mail:E-mail:yhwu@niglas.ac.cn
  • 基金资助:

    国家自然科学基金项目“青藏高原半混合型湖泊沉积过程与湖泊环境纹泥记录”(编号:40071001)资助

SIGNIFICANCE OF LAKE SEDIMENT COLOR FOR SHORT TIME SCALE CLIMATE VARIATION

WU Yan-hong, LI Shi-jie   

  1. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
  • Received:2003-06-30 Revised:2003-11-07 Online:2004-12-20 Published:2004-10-01

在ODP对大西洋海洋沉积物的研究中,色度作为最直观和简便的指标被普遍用于反映千年尺度的气候环境变化。能否用湖泊沉积物色度反映短时间尺度的气候环境变化?利用CIE/L a b表色系,通过青藏高原可可西里苟仁错湖泊沉积物的 L、a和 b值与有关地球化学指标的统计相关关系分析,对湖泊色度指标在短尺度古气候研究中的意义进行了探讨,并据此分析了 1440年以来苟仁错地区的古气候演变。研究表明,L值(亮度)与沉积物碳酸盐含量正相关,L高时,气候冷干,碳酸盐含量较高;反之,气温上升,湿度增加;a值(红-绿彩度)与沉积物中Mg含量相关,高 a值对应于沉积物中高MgO含量和高Mg/Ca比值,反映气温较高;b(黄-蓝彩度)值与三价铁的含量相关,较高的 b值代表了湖泊处于较强的氧化条件下,因此 b值可以用于反映湖水深度变化,反映有效湿度的变化,b值高,湖水浅,氧化作用增强;苟仁错沉积物 a值和 b值曲线镜像对称进一步反映了冷干-暖湿的气候组合特征。根据沉积物的色度意义,判断苟仁错地区自 1430年进入小冰期,至1890年结束。近40年来气候变化与邻近气象站的器测相吻合。

Deap-sea sediment-color record from Atlantic has been widely used to reconstruct climate variation on millennial time scales. Can lake sediment color be used to reflect climate change in shorter timescale? In this paper we have discussed it based on statistical correlation between L*, a*, b* (CIE/L*a*b* color system) and some geochemical proxies. L* (brightness) is positive correlated with carbonate content, and higher L* value corresponds to higher carbonate content and cold and dry climate, and vice versa. a* value (red-green color) is correlated with Mg content in sediments. Higher a* value corresponds to higher MgO content in sediments and higher Mg/Ca ratio of sediments which reflect warmer climate. b* value is positively correlated with Fe3+ content. Higher b* value represents sediments formed in oxidation condition, and  b* value can indirectly reflect lake water depth change and efficient moisture change. To sediments of Gourenco Lake, the curve of a* value is mirrored with that of b* which reflects the climatic combination of cold and dry or warm and wet in this area. Based on the significance of lake sediment color in Gourenco Lake, the climate change in this area can be deduced since 1400 AD. Since 1400 AD, climate in this area has undergone several times of fluctuations. The Little Ice Age began from 1430 AD and ended at 1890 AD. Climate change in recent 40 years is coincided with instrument record of nearby meteorological stations. 

中图分类号: 

[1]Guo Z T, Liu T S, Fedoroff N, et al. Climate extremes in loess of China coupled with the strength of deep-water formation in the north Atlantic [J]. Global and Planetary Change, 1998,18:113-128.
[2]Seiya Nagao, Satoru Nakashima. The factors controlling vertical color variations of north Atlantic Maderia Abyssal plain sediments[J]. Marine Geology, 1992, 109(1~2):83-94.
[3]Jan P Helmke, Michael Schulz, Henning A Bauch. Sediment-Color record from the Northeast Atlantic reveals patterns of millennial-scale climate variability during the past 500 000 years[J]. Quaternary Research, 2002, 57:49-57.
[4]William L Balsam, Bobby C Deaton, John E Damuth. Evaluating optical lightness as aproxy for carbonate content in marine sediment cores[J]. Marine Geology, 1991,161:141-153.
[5]Hu Dongsheng(胡东生). Investigation and study on lake resources in Kekexili Region [J]. Arid Land Geography(干旱区地理), 1992,15(3): 50-57(in Chinese).
[6]Wang Sumin(王苏民), Dou Hongshen(窦鸿身). Chinese Lake Records[M]. Beijing: Sciences Press, 1998(in Chinese).
[7]Lin Zhenyao(林振耀), Wu Xiangding(吴祥定). A priminary analysis about the tracks of moisture transportation on the Qinghai-Xizang Plateau[J]. Geographic Research(地理研究), 1990, 9(3):33-40(in Chinese).
[8]Wang Shaowu(王绍武). Studieson climate of the Little Ice Age[J]. Quaternary Sciences(第四纪研究), 1995,(3):202-212(in Chinese).
[9]Wang Shaowu(王绍武), Ye Jinlin(叶瑾琳), Gong Daoyi(龚道溢). Climate in China during the Little Ice Age[J]. Quaternary Sciences(第四纪研究),1998,(1):54-64(in Chinese).
[10]Wang Shaowu(王绍武), Cai Jingning(蔡静宁), Mu Qiaozhen(慕巧珍), et al. Climate change of annual precipitation in western China [J]. Journal of Natural Resources(自然资源学报), 2002,17(4): 415-422(in Chinese).

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[12] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[13] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[14] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[15] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
阅读次数
全文


摘要