地球科学进展 ›› 2016, Vol. 31 ›› Issue (10): 1032 -1040. doi: 10.11867/j.issn.1001-8166.2016.10.1032

上一篇    下一篇

应用于流体包裹体CO 2碳同位素组成的拉曼光谱定量研究探讨
药瑛( ), 孙樯 *( )   
  1. 造山带与地壳演化教育部重点实验室,北京大学地球与空间科学学院,北京 100871
  • 收稿日期:2016-06-29 修回日期:2016-09-20 出版日期:2016-10-20
  • 通讯作者: 孙樯 E-mail:yaoying@pku.edu.cn;qiangsun@pku.edu.cn
  • 基金资助:
    国家自然科学基金项目“H 2O-NaCl-CO 2体系流体包裹体拉曼光谱定量研究”(编号:41373057)资助

Raman Quantitative Measurements for Carbon Isotopic Composition in CO 2-Rich Fluid Inclusion: A Preliminary Study

Ying Yao( ), Qiang Sun *( )   

  1. Key Laboratory of Orogenic Belt and Crustal Evolution (Ministry of Education), School of Earth and Space Sciences, Peking University, Beijing 100871, China
  • Received:2016-06-29 Revised:2016-09-20 Online:2016-10-20 Published:2016-10-20
  • Contact: Qiang Sun E-mail:yaoying@pku.edu.cn;qiangsun@pku.edu.cn
  • About author:

    First author:Yao Ying(1990-),female,Changzhi City,Shanxi Province,Master student. Research areas include experimental geochemistry.E-mail:yaoying@pku.edu.cn

    *Corresponding author:Sun Qiang(1970-),male,Taian City,Shandong Province,Associate Professor. Research areas include geochemistry.E-mail:qiangsun@pku.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Raman spectrum quantitative analysis of H 2O-NaCl-CO 2 system in fluid inclusions”(No.41373057)

CO2作为一种流体包裹体中常见的组分,对其中碳同位素的定量研究,能够提供很多地质历史时期地质流体源区的地球化学信息,并为地球碳循环的研究奠定基础。传统的质谱测试存在无法进行单个流体包裹体测试的缺点。拉曼光谱因其快速、无损、高精度的特点被广泛应用于地球科学各个研究领域,尤其在单一流体包裹体的研究中更为重要。当前,拉曼光谱在定性研究物质结构和成分方面已经十分成熟,相比之下,拉曼光谱定量研究仍显不足。结合前人的研究和实际的实验,根据对拉曼光谱基本原理的分析,提出激光拉曼光谱定量研究应当基于相对散射强度进行,且利用13CO212CO2的拉曼谱峰强度比( I + 13 / I + 12 )表征流体包裹体中CO2的碳同位素组成是可行的。而影响该方法应用的是其较低的准确度,解决这一问题的关键在于如何在单次实验中同时获得准确而强度较高的 I + 13 I + 12 的值。

Carbon dioxide is a common and important component in fluid inclusions. Because carbon isotopic ratio of CO2 in fluid inclusion can provide geochemical characteristics of source rocks, many works have been conducted to measure the carbon isotopic ratio (13C/12C) of CO2. In general, carbon isotopic composition (13C/12C) of CO2 fluid inclusions are measured by mass spectroscopy. However, mass spectroscopy is a destructive analytical technique, and can not be applied to measure single inclusion. Raman spectroscopy is an efficient non-contact and non-destructive method, and has been widely employed in many research fields. In fact, due to the difference of carbon atom mass, the Femi resonance of 13CO2 is lower than that of 12CO2, so they can be identified in Raman spectrum. In principle, the carbon isotopic composition (13CO2/12CO2) in CO2 is closely related to the Raman intensity ratio between 13CO2 and 12CO2 ( I + 13 / I + 12 ). Therefore, Raman spectroscopy can theoretically be utilized to measure the carbon isotopic composition (13CO2/12CO2) of CO2. However, this method is seriously hampered by the poor measurement accuracy and precision. In this study, based on the theoretical analysis, and in combination with previous Raman studies on carbon isotopic composition in CO2, a preliminary research on Raman quantitative measurement for carbon isotopic composition in CO2 was carried out.

中图分类号: 

图1 室温(25 ℃)下CO 2(g)拉曼光谱
Fig.1 Raman spectra of CO 2(g) at ambient temperature(25 ℃)
图2 不同扫描时间下流体包裹体中CO 2气相拉曼光谱
Fig.2 Raman spectra of CO 2(g) in fluid inclusion with different scan time
[1] Azbej T,Severs M J,Rusk B G,et al.In situ quantitative analysis of individual H2O-CO2 fluid inclusions by laser Raman spectroscopy[J].Chemical Geology,2007,237(3):255-263.
[2] Chen J, Zheng H,Xiao W,et al.Raman spectroscopic study of CO2 -NaCl-H2O mixtures in synthetic fluid inclusions at high temperatures 1[J].Geochimica et Cosmochimica Acta,2004,68(6):1 355-1 360.
[3] Zhang Zhou,Zhang Hongfu.Diamond and deep carbon cycle[J].Earth Science Frontier,2011,18(3):268-283.
[张舟,张宏福.金刚石与深部碳循环[J].地学前缘,2011,18(3):268-283.]
[4] Javoy M.The major volatile elements of the Earth:Their origin,behavior,and fate[J].Geophysical Research Letters,1997,24(2):177-180.
[5] Sleep N H,Zahnle K.Carbon dioxide cycling and implications for climate on ancient Earth[J].Journal of Geophysical Research Atmospheres,2001,106(E1):1 373-1 399.
[6] Zhao Xin,Shi Guanghai,Zhang Ji.Review of lithospheric diamonds and their mineral inclusions[J].Advances in Earth Science,2015,30(3):310-322.
[赵欣,施光海,张骥.岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J].地球科学进展,2015,30(3):310-322.]
[7] Deines P.The carbon isotope geochemistry of mantle xenoliths[J].Earth-Science Reviews,2002,58(3/4):247-278.
[8] Wang Xianbin, Wu Maobing,Zhang Mingjie.Stable isotope geochemistry of mantle fluids[J].Geology-Geochemistry,2000,28(3):69-73.
[王先彬,吴茂炳,张铭杰.地幔流体的稳定同位素地球化学综述[J].地质地球化学,2000,28(3):69-73.]
[9] Roedder E.Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts[J].American Mineralogist,1965,50:1 746-1 782.
[10] Xu Jiuhua,Ding Rufu,Xie Yuling,et al.Pure CO2 fluids of the Sarekoubu gold deposit in southern margin of Altai Mountains[J].Chinese Science Bulletin,2005,50(4):380-386.
[徐九华,丁汝福,谢玉玲,等.阿尔泰山南缘萨热阔布金矿床的纯CO2流体[J].科学通报,2005,50(4):380-386.]
[11] Chu Xuelei.Carbon isotopes in mantle[J].Advances in Earth Science,1996,11(5):446-452.
[储雪蕾. 地幔的碳同位素[J].地球科学进展,1996,11(5):446-452.]
[12] Chen Yanjing,Ni Pei,Fan Hongrui,et al.Diagnostic fluid inclusions of different types hydrothermal gold deposits[J].Acta Petrologica Sinica,2007,23(9):2 085-2 108.
[陈衍景,倪培,范洪瑞,等.不同类型热液金矿系统的流体包裹体特征[J].矿物学报,2007,23(9):2 085-2 108.]
[13] Mernagh T P,Bastrakov E N,Zaw K,et al.Comparison of fluid inclusion data and mineralization processes for Australian orogenic gold and intrusionrelated gold systems[J].Acta Petrologica Sinica,2007,23(1):21-32.
[14] Lu Huanzhang.Role of CO2 fluid in the formation of gold deposits: Fluid inclusion evidences[J].Geochemical, 2008, 37(4): 321-328.
[卢焕章. CO2流体与金矿化:流体包裹体的证据[J].地球化学,2008,37(4):321-328.]
[15] Phillips G N,Evans K A.Role of CO2 in the formation of gold deposits[J].Nature,2004,429(6 994):860-863.
[16] Klein E L,Fuzikawa K.Origin of the CO2-only fluid inclusions in the Palaeoproterozoic Cararvein-quartz gold deposit,Ipitinga Auriferous district,SE-Guiana Shield,Brazil: Implications for orogenic gold mineralisation[J].Ore Geology Reviews,2010,37(1):31-40.
[17] Li Jijun,Cao Xicheng,Wang Weiming,et al.Analysis and application of components and isotopic compositions of fluid inclusions in volcanic reservoirs of the Xujiaweizi fault depression[J].Oil & Gas Geology,2014,35(1):124-130.
[李吉君,曹喜铖,王伟明,等.徐家围子断陷火山岩包裹体组分和同位素组成分析及应用[J].石油与天然气地质,2014,35(1):124-130.]
[18] Wang Yong, Hou Zengqian,Mo Xuanxue,et al.Stable isotope characteristics and origin of ore-forming fluids in copper-gold polymetallic deposits within strike-slip pull-apart basin of Weishan-Yongping continental collision orogenic belt,Yunnan Province,China[J].Mineral Deposits,2006,25(1):60-70.
[王勇,侯增谦,莫宣学,等.云南巍山—永平碰撞造山带走滑拉分盆地铜金多金属矿成矿流体系统:稳定同位素特征及热液来源[J].矿床地质,2006,25(1):60-70.]
[19] Mumm A S,Oberthür T,Vetter U,et al.High CO2 content of fluid inclusions in gold mineralisations in the Ashanti Belt,Ghana:A new category of ore forming fluids?[J].Mineralium Deposita,1997,32(2):107-118.
[20] Xie Yihan,Fan Hongrui,Wang Yinglan.Hydrocarbon inclusions indicate hydrocarbon maturity and evolution[J].Marine Origin Petroleum Geology,1999,4(3):32-35.
[谢奕汉,范宏瑞,王英兰.石油包裹体与石油成熟度及油气演化[J].海相油气地质,1999,4(3):32-35.]
[21] Dai Jinxing,Dai Chunsen,Song Yan,et al.Inorganic genetic carbon dioxide gas accumulation and their characteristics in east part of China[J].China offshore Oil and Gas(Geology),1994,8(4):215-222.
[戴金星,戴春森,宋岩,等.中国东部无机成因的二氧化碳气藏及其特征[J].中国海上油气(地质),1994,8(4):215-222.]
[22] Li Hongwei,Feng Lianjun,Chen Jian.A rapid method for determination of carbon isotope of inclusions by sealed quartz tube decrepitation[J].Chinese Journal of Analytical Chemistry,2014,42(1):127-130.
[李洪伟,冯连君,陈健.密封石英管爆裂法快速分析包裹体中CO2碳同位素[J].分析化学,2014,42(1):127-130.]
[23] Fan Qicheng,Liu Ruoxin,Lin Zhuoran,et al.Preliminary study of carbon isotope in mantle CO2 fluid inclusion from eastern China[J].Geochimica,1996,25(3):264-269.
[樊祺诚,刘若新,林卓然,等.中国东部地幔CO2流体包裹体的碳同位素初步研究[J].地球化学,1996,25(3):264-269.]
[24] Nadeau S,Pineau F,Javoy M,et al.Carbon concentrations and isotopic ratios in fluid-inclusion-bearing upper-mantle xenoliths along the northwestern margin of North America[J].Chemical Geology,1990,81(4):271-297.
[25] Pineau F,Mathez E A.Carbon isotopes in xenoliths from the Hualalai Volcano,Hawaii,and the generation of isotopic variability[J].Geochimica et Cosmochimica Acta,1990,54(1):217-227.
[26] Liu Deliang,Sun Xianru,Li Zhensheng,et al.Carbon and oxygen isotope analysis of fluid inclusions in ordovician carbonate veins of Ordos Basin[J].Acta Petrolei Sinica,2007,28(3):68-74.
[刘德良,孙先如,李振生,等.鄂尔多斯盆地奥陶系碳酸盐岩脉流体包裹体碳氧同位素分析[J].石油学报,2007,28(3):68-74.]
[27] Ma Lichun,Tang Qingfeng,Zhang Qi,et al.Advances in chemical composition determination of individual inclusions trapped within evaporite minerals[J].Advances in Earth Science,2014,29(4):475-481.
[马黎春,汤庆峰,张琪,等.蒸发岩矿物单个流体包裹体成分测定方法研究进展[J].地球科学进展,2014,29(4):475-481.]
[28] Li Xiangxian,Gao Minguang,Xu Liang,et al.Carbon isotope ratio analysis in CO2 based on fourier transform infrared spectroscopy[J].Acta Physica Sinica,2013,62(3):7-15.
[李相贤,高闽光,徐亮,等.基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究[J].物理学报,2013,62(3):7-15.]
[29] Nieuwoudt M K,Simpson M P,Tobin M,et al.Synchrotron FTIR microscopy of synthetic and natural CO2-H2O fluid inclusions[J].Vibrational Spectroscopy,2014,75:136-148,doi:10.1016/j.vibspec.2014.08.003.
[30] Rosasco G J.Laser-excited raman spectroscopy for nondestructive partial analysis of individual phases in fluid inclusions in minerals[J].Science,1975,190(4 214):557-560.
[31] Xi Binbin,Shi Weijun,Jiang Hong,et al.Synthesis of N2 -CH4 and N2 -CO2 gas mixtures as an online standard and determination of their Raman quantification factors of CH4 and CO2[J].Rock and Mineral Analysis,2014,33(5):655-660.
[席斌斌,施伟军,蒋宏,等.N2-CH4(CO2)混合气体在线标样制备及其拉曼定量因子测定[J].岩矿测试,2014,33(5):655-660.]
[32] Chen Yong,Zhou Yaoqi,Zhang Dagang.Trying to determine the salinity of hydrous liquid by laser Raman Spectroscopy[J].Chinese Journal of Light Scattering,2003,14(4):216-223.
[陈勇,周瑶琪,章大港.几种盐水溶液拉曼工作曲线的绘制[J].光散射学报,2003,14(4):216-223.]
[33] Yang Dan,Xu Wenyi.Gauss-lorentz quantitative research on O-H stretching raman spectra of water in common chlorine salt solution[J].Spectroscopy and Spectral Analysis,2013,33(2):376-382.
[杨丹,徐文艺.常见氯盐溶液水的拉曼包络线高斯—洛仑兹去卷积分峰定量研究[J].光谱学与光谱分析,2013,33(2):376-382.]
[34] Wang Xiaolin,Hu Wenxuan,Chou I-Ming.Raman spectroscopic characterization on the OH stretching bands in NaCl-Na2CO3-Na2SO4-CO2-H2O systems: Implications for the measurement of chloride concentrations in fluid inclusions[J].Journal of Geochemical Exploration,2013,132(3):111-119.
[35] Sun Qiang,Zhao Lei,Li Nuo,et al.Raman spectroscopic study for the determination of Cl- concentration (molarity scale) in aqueous solutions:Application to fluid inclusions[J].Chemical Geology,2010,272(1/4):55-61.
[36] Li Shuling.Study on Raman spectra of CO2-H2O system[J].Rock and Mineral Analysis,1998,17(3):177-180.
[李淑玲. 二氧化碳—水体系的拉曼光谱研究[J].岩矿测试,1998,17(3):177-180.]
[37] Rosso K M,Bodnar R J.Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2[J].Geochimica et Cosmochimica Acta,1995,59(19):3 961-3 975.
[38] Mernagh T P,Wilde A R.The use of the laser Raman microprobe for the determination of salinity in fluid inclusions[J].Geochimica et Cosmochimica Acta,1989,53(4):765-771.
[39] Ding Junying,Ni Pei,Rao Bing,et al.Evaluation of the laser Raman microprobe method for the determination of salinity in a single fluid inclusion by using synthetic fluid inclusions[J].Geological Review,2004,50(2):203-209.
[丁俊英,倪培,饶冰,等.显微激光拉曼光谱测定单个包裹体盐度的实验研究[J].地质论评,2004,50(2):203-209.]
[40] Li Jing,Mao Shide,Zheng Haifei.Raman spectroscopic quantitative study of NaCl-CaCl2-H2O system at high temperatures and pressures[J].Spectroscopy and Spectral Analysis,2014,34(7):1 747-1 753.
[41] Bloom S D, Harney R C,Milanovich F P.Stable isotope ratio measurements in nitrogen and oxygen using Raman scattering[J].Applied Spectroscopy,1976,30(1):64-67.
[42] Huang Gang,Cao Xiaohua,Long Xinggui.Application of laser raman spectroscopy to hydrogen isotope analsis[J].Spectroscopy and Spectral Analysis,2011,31(1):30-33.
[黄刚,曹小华,龙兴贵.激光拉曼光谱分析氢同位素的应用[J].光谱学与光谱分析,2011,31(1):30-33.]
[43] Wang Shixia,Zheng Haifei.Research on the experiment of hydrogen isotope fractionation using diamond anvil cell and Raman spectra[J].Spectroscopy and Spectral Analysis,2011,31(3):230-236.
[王世霞,郑海飞.金刚石压腔结合拉曼光谱技术进行氢同位素分馏的实验研究[J].光谱学与光谱分析,2011,31(3):230-236.]
[44] Wang X,Chou I M,Hu W,et al.Raman spectroscopic measurements of CO2,density:Experimental calibration with High-Pressure Optical Cell (HPOC) and Fused Silica Capillary Capsule (FSCC) with application to fluid inclusion observations[J].Geochimica et Cosmochimica Acta,2011,75(14):4 080-4 093.
[45] Irmer G.Isotopes of C and O in CO2:A Raman study using gas standards and natural fluid inclusions[J].Acta Universitatis Carolinae-Geologica,2002,46(1):35-36.
[46] Afe O,Jaeger F,Wagner G.Detection of 13CO2 and 12CO2 using diode laser driven Raman scattering[J].Geophysical Research Abstracts,2007,9:3 071-3 072.
[47] He Ying,Zhu Xingguo,Xu Peicang.The isotopic compositions of CO2 for single fluid inclusions in volcanic rocks from Shengli Oil Field[J].Chinese Journal of Geology,1998,33(3):380-383.
[赫英,朱兴国,徐培苍.胜利油田火山岩单个包裹体碳同位素[J].地质科学,1998,33(3):380-383.]
[48] Menneken M,Geisler T.An evaluation of the potential of using Raman spectroscopy to determine the carbon isotope composition of CO2 inclusions[J].Journal of Geochemical Exploration,2009,101(1):70.
[49] Arakawa M,Yamamoto J,Kagi H.Developing micro-raman mass spectrometry for measuring carbon isotopic composition of carbon dioxide[J].Applied Spectroscopy, 2007, 61(7):701-705.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 胡棉舒, 李阔, 曹海月, 王兆国, 刘钦甫. 湘中寒婆坳矿区测水组无烟煤—煤系石墨变质温度研究[J]. 地球科学进展, 2021, 36(10): 1015-1025.
[3] 张凌, 王平, 陈玺赟, 殷勇. 碎屑锆石 U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.
[4] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[5] 魏瑞江, 王鑫. 气候适宜度国内外研究进展及展望[J]. 地球科学进展, 2019, 34(6): 584-595.
[6] 丛富云, 徐尚. 陆架边缘迁移轨迹研究现状及应用前景[J]. 地球科学进展, 2017, 32(9): 937-948.
[7] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[8] 向杰, 陈建平, 胡彬, 胡桥, 杨伟. 基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例[J]. 地球科学进展, 2016, 31(6): 603-614.
[9] 黄勋, 唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10): 1047-1055.
[10] 栾海军,田庆久,余 涛,胡新礼,黄彦,刘李,杜灵通,魏曦. 定量遥感升尺度转换研究综述[J]. 地球科学进展, 2013, 28(6): 657-664.
[11] 雷宝华. 生长断层活动强度定量研究的主要方法评述[J]. 地球科学进展, 2012, 27(9): 947-956.
[12] 黄国培,陈颖军,田崇国,唐建辉,潘晓辉,王艳,李军. 海洋溶解态黑碳的研究进展[J]. 地球科学进展, 2012, 27(12): 1326-1336.
[13] 牛清河,屈建军,李孝泽,董光荣,张克存,韩庆杰. 雅丹地貌研究评述与展望[J]. 地球科学进展, 2011, 26(5): 516-527.
[14] 陶欣,范闻捷,王大成,闫彬彦,徐希孺. 植被FAPAR的遥感模型与反演研究[J]. 地球科学进展, 2009, 24(7): 741-747.
[15] 朱雅琼,袁艳斌,周 尤,彭晶倩,詹云军. 金矿资源定量预测的粗糙集方法[J]. 地球科学进展, 2008, 23(2): 214-218.
阅读次数
全文


摘要