1 |
Blatt H, Jones R L. Proportions of exposed igneous, metamorphic, and sedimentary rocks[J]. Geological Society of America Bulletin, 1975, 86(8):1 085-1 088.
|
2 |
Zhang Shuo, Jian Xing, Zhang Wei. Sedimentary provenance analysis using detrital apatite: A review[J]. Advances in Earth Science, 2018,33(11): 1 142-1 153.
|
|
张硕,简星,张巍.碎屑磷灰石对沉积物源判别的指示[J].地球科学进展,2018,33(11):1 142-1 153.
|
3 |
Jian Xing,Guan Ping,Zhang Wei. Detrital rutile: A sediment provenance indicator[J]. Advances in Earth Science,2012,27(8): 828-846.
|
|
简星,关平,张巍.碎屑金红石:沉积物源的一种指针[J].地球科学进展,2012,27(8):828-846.
|
4 |
Garzanti E, Padoan M, Setti M, et al. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds[J]. Geochemistry Geophysics Geosystems, 2013, 14(2):292-316.
|
5 |
Nie Junsheng, Stevens T, Rittner M, et al. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications, 2015, 6:8 511.
|
6 |
Copeland P, Harrison T M. Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal fan[J]. Geology, 1990, 18(4):354.
|
7 |
Vermeesch P. Quantitative geomorphology of the White Mountains (California) using detrital apatite fission track thermochronology[J]. Journal of Geophysical Research Earth Surface, 2007, 112(F3). DOI: 10.1029/2006JF000671.
doi: 10.1029/2006JF000671
|
8 |
Stock G M, Ehlers T A, Farley K A. Where does sediment come from?Quantifying catchment erosion with detrital apatite (U-Th)/He thermochronometry[J]. Geology, 2006, 34(9):725.
|
9 |
Rahl J M, Reiners P W, Campbell I H, et al. Combined single-grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah[J]. Geology, 2003, 31(9): 761-764.
|
10 |
Codilean A T, Bishop P, Stuart F M, et al. Single-grain cosmogenic 21Ne concentrations in fluvial sediments reveal spatially variable erosion rates[J]. Geology, 2008, 36(2):159.
|
11 |
Pell S D, Williams I S, Chivas A R. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands[J]. Sedimentary Geology, 1997, 109(3):233-260.
|
12 |
Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78:355-368.
|
13 |
Vermeesch P, Garzanti E. Making geological sense of ‘Big Data’ in sedimentary provenance analysis[J]. Chemical Geology, 2015, 409:20-27.
|
14 |
Fedo C M. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):277-303.
|
15 |
Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3). DOI:10.1029/2007GC001805.
doi: 10.1029/2007GC001805
|
16 |
Shaulis B, Lapen T J, Toms A. Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICP-MS[J]. Geochemistry Geophysics Geosystems, 2010, 11(11).DOI:10.1029/2010GC003198.
doi: 10.1029/2010GC003198
|
17 |
Gehrels G. Detrital zircon U-Pb geochronology: Current methods and new opportunities[M]//Tectonics of Sedimentary Basins: Recent Advances. Blackwell Publishing Ltd., 2011: 45-62.
doi: 10.1002/9781444347166
|
|
DOI:10.1002/9781444347166.
doi: 10.1002/9781444347166
|
18 |
Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312: 190-194.
|
19 |
Spurlin, Matthew S. Special Paper 347: Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California Volume 347 [M]. California: Geological Society of America, 2000:89-98.
|
20 |
Schoene B. 4.10-U-Th-Pb Geochronology[J]. Treatise on Geochemistry, 2014, 4: 341-378.
|
21 |
Malusà M G, Carter A, Limoncelli M, et al. Bias in detrital zircon geochronology and thermochronometry[J]. Chemical Geology, 2013, 359: 90-107.
|
22 |
Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
|
23 |
Wetherill G W. Discordant uranium-lead ages, I[J]. Eos, Transactions American Geophysical Union, 1956, 37(3): 320-326.
|
24 |
Nemchin A A, Cawood P A. Discordance of the U-Pb system in detrital zircons: Implication for provenance studies of sedimentary rocks[J]. Sedimentary Geology, 2005, 182(1/4): 143-162.
|
25 |
Hiess J, Condon D J, McLean N, et al. 238U/235U systematics in terrestrial uranium-bearing minerals[J]. Science, 2012, 335(6 076): 1 610-1 614.
|
26 |
Tera F, Wasserburg G J. U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions[J]. Earth and Planetary Science Letters, 1972, 17(1): 36-51.
|
27 |
Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017. DOI:10.1029/2007GC001805.
doi: 10.1029/2007GC001805
|
28 |
Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology[J]. Geoscience Frontiers, 2016, 7(4): 581-589.
|
29 |
Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 441-451.
|
30 |
Dodson M H, Compston W, Williams I S, et al. A search for ancient detrital zircons in Zimbabwean sediments[J]. Journal of the Geological Society, 1988, 145(6): 977-983.
|
31 |
Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125.
|
32 |
Cottle J M, Horstwood M S A, Parrish R R. A new approach to single shot laser ablation analysis and its application to in situ Pb/U geochronology[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(10): 1 355-1 363.
|
33 |
Matthews W A, Guest B. A practical approach for collecting large-n detrital zircon U-Pb data sets by Quadrupole LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2017, 41(2): 161-180.
|
34 |
Pullen A, Ibá?ez-Mejía M, Gehrels G E, et al. What happens when n=1000?Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 971-980.
|
35 |
Daniels B G, Auchter N C, Hubbard S M, et al. Timing of deep-water slope evolution constrained by large-n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, Chile[J]. GSA Bulletin, 2018, 130(3/4): 438-454.
|
36 |
Smith D M, Bartlet J C. Calculation of the areas of isolated or overlapping normal probability curves[J]. Nature, 1961, 191(4 789):688-689.
|
37 |
Behboodian J. On a mixture of normal distributions[J]. Biometrika, 1970, 57(1):215-217.
|
38 |
Everitt B S, Hand D J. Finite mixture distribution[M]//Monographs on Statistics and Applied Probability. Dordrecht:Springer, 1981.
|
39 |
Titterington D M, Smith A F M, Makov U E. Statistical Analysis of Finite Mixture Distributions[M]. New York: Wiley, 1985.
|
40 |
Lo Y. Testing the number of components in a normal mixture[J]. Biometrika, 2001, 88(3):767-778.
|
41 |
Scott F R, Richard S, Getz W M, et al. Contingent kernel density estimation[J]. PLoS ONE, 2012, 7(2):e30549.
|
42 |
L?uter H, Silverman B W. Density Estimation for Statistics and Data Analysis[M]. New York: Chapman & Hall, 1986
|
43 |
Scott D W. Multivariate Density Estimation: Theory, Practice, and Visualization[M]. Berlin: John Wiley & Sons, 2015.
|
44 |
Yang Shouye, Zhang Feng, Wang Zhongbo. Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China[J]. Chemical Geology, 2012, 296: 26-38.
|
45 |
Delaigle A, Meister A. Density estimation with heteroscedastic error[J]. Bernoulli, 2008, 14(2):562-579.
|
46 |
Staudenmayer J, Buonaccorsi R J P. Density estimation in the presence of heteroscedastic measurement error[J]. Journal of the American Statistical Association, 2008, 103(482):726-736.
|
47 |
Carroll R J, Delaigle A, Hall P. Nonparametric prediction in measurement error models[J]. Journal of the American Statistical Association, 2009, 104(487):993-1 003.
|
48 |
Botev Z I, Grotowski J F, Kroese D P. Kernel density estimation via diffusion[J]. The Annals of Statistics, 2010, 38(5): 2 916-2 957.
|
49 |
Mcintyre J, Stefanski L A. Density estimation with replicate heteroscedastic measurements[J]. Annals of the Institute of Statistical Mathematics, 2011, 63(1): 81-99.
|
50 |
Shimazaki H, Shinomoto S. Kernel bandwidth optimization in spike rate estimation[J]. Journal of Computational Neuroscience, 2009, 29(1/2):171-182.
|
51 |
Stephens M A. Use of the Kolmogorov-Smirnov, Cramér-Von mises and related statistics without extensive tables[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1970,32(1):115-122.
|
52 |
Saylor J E, Sundell K E. Quantifying comparison of large detrital geochronology data sets[J]. Geosphere, 2016, 12(1): 203-220.
|
53 |
Saylor J E, Stockli D F, Horton B K, et al. Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia[J]. Geological Society of America Bulletin, 2012, 124(5/6):762-779.
|
54 |
Saylor J E, Knowles J N, Horton B K, et al. Mixing of source populations recorded in detrital zircon U-Pb age spectra of modern river sands[J]. The Journal of Geology, 2013, 121(1):17-33.
|
55 |
Wilk M B, Gnanadesikan R. Probability plotting methods for the analysis for the analysis of data[J]. Biometrika, 1968, 55(1):1-17.
|
56 |
Satkoski A M, Wilkinson B H, Hietpas J, et al. Likeness among detrital zircon populations—An approach to the comparison of age frequency data in time and space[J]. Geological Society of America Bulletin, 2013, 125(11/12):1 783-1 799.
|
57 |
Vermeesch P.Multi-sample comparison of detrital age distributions[J]. Chemical Geology, 2013, 341(2):140-146.
|
58 |
Wissink G K, Wilkinson B H, Hoke G D. Pairwise sample comparisons and multidimensional scaling of detrital zircon ages with examples from the North American platform, basin, and passive margin settings[J]. Lithosphere, 2018, 10(3): 478-491.
|
59 |
Torgerson W S. Multidimensional scaling: I. Theory and method[J]. Psychometrika, 1952, 17(4):401-419.
|
60 |
Carroll J D, Arabie P, Ho S M. Multidimensional scaling [M]//Applied Multivariate Statistical Analysis. Heidelberg:Springer Berlin, 2007.
|
61 |
Kruskal J B. Nonmetric multidimensional scaling: A numerical method[J]. Psychometrika, 1964, 29(2):115-129.
|
62 |
Vermeesch P. Dissimilarity measures in detrital geochronology[J]. Earth-Science Reviews, 2018, 178: 310-321.
|
63 |
He Mengying, Zheng Hongbo, Bookhagen B, et al. Controls on erosion intensity in the Yangtze River basin tracked by U-Pb detrital zircon dating[J]. Earth-Science Reviews, 2014, 136: 121-140.
|
64 |
Jia Juntao, Zheng Hongbo, Huang Xiangtong, et al. Detrital zircon U-Pb ages of late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin, 2010, 55(4/5): 350-358.
|
|
贾军涛, 郑洪波, 黄湘通,等. 长江三角洲晚新生代沉积物碎屑锆石U-Pb年龄及其对长江贯通的指示[J]. 科学通报, 2010, 55(4/5): 350-358.
|
65 |
Tian Ziqiang, Wang Yongsheng, Hu Zhaoqi, et al. LA-ICP MS zircon U-Pb dating of metasedimentary rocks in Dabie orogenic belt and its tectonic implications[J]. Advances in Earth Science,2018,33(9):945-957.
|
|
田自强, 王勇生, 胡召齐,等. 大别造山带内部变沉积岩锆石 LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957.
|
66 |
Zhang Wenhui, Wang Cuizhi, Li Xiaomin, et al. Zircon SIMS U-Pb age,Hf and O isotopes of mafic dikes,southwest Fujian Province[J]. Advances in Earth Science,2016,31(3):320-334.
|
|
张文慧, 王翠芝, 李晓敏,等.闽西南基性岩脉中捕获锆石SIMS U-Pb年龄及Hf,O同位素特征[J]. 地球科学进展, 2016, 31(3): 320-334.
|
67 |
Wissink G K, Hoke G D. Eastern margin of Tibet supplies most sediment to the Yangtze River[J]. Lithosphere, 2016, 8(6): 601-614.
|
68 |
Roe G. On the interpretation of Chinese loess as a paleoclimate indicator[J]. Quaternary Research, 2009, 71(2): 150-161.
|
69 |
Wang Xunming, Dong Zhibao, Zhang Jiawu, et al. Modern dust storms in China: An overview[J]. Journal of Arid Environments, 2004, 58(4): 559-574.
|
70 |
Kapp P, Pelletier J D, Rohrmann A, et al. Wind erosion in the Qaidam basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau[J]. GSA Today, 2011, 21(4/5): 4-10.
|
71 |
Rohrmann A, Heermance R, Kapp P, et al. Wind as the primary driver of erosion in the Qaidam Basin, China[J]. Earth and Planetary Science Letters, 2013, 374: 1-10.
|
72 |
Pullen A, Kapp P, McCallister A T, et al. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications[J]. Geology, 2011, 39(11): 1 031-1 034.
|
73 |
Vandenberghe J, Renssen H, van Huissteden K, et al. Penetration of Atlantic westerly winds into Central and East Asia[J]. Quaternary Science Reviews, 2006, 25(17/18): 2 380-2 389.
|
74 |
Licht A, Pullen A, Kapp P, et al. Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau[J]. Bulletin, 2016, 128(5/6): 944-956.
|
75 |
Ludwig K R. ISOPLOT for MS-DOS, A Plotting and Regression Program for Radiogenic-isotope Data, for IBM-PC Compatible Computers, Version 1.00[R]. Denver:US Geological Survey, 1988.
|
76 |
Ludwing K R. Using Isoplot/Ex Version 2, A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronological Special Publications, 1999: 1-47.
|
77 |
Ludwig K R. A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003, 4: 1-70.
|
78 |
Vermeesch P. Isoplot R: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1 479-1 493.
|
79 |
Saylor J E, Jordan J C, Sundell K E, et al. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau[J]. Basin Research, 2017,30 (3):544-563.
|
80 |
Sharman G R, Sharman J P, Sylvester Z. DetritalPy: A Python-based toolset for visualizing and analysing detrital geo-thermochronologic data[J]. The Depositional Record, 2018, 4(2), 202-215.
|
81 |
Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312: 190-194.
|