地球科学进展 ›› 2020, Vol. 35 ›› Issue (4): 414 -430. doi: 10.11867/j.issn.1001-8166.2020.030

构造地貌学专栏 上一篇    下一篇

碎屑锆石 U-Pb年代学数据获取、分析与比较
张凌 1( ),王平 2, 3( ),陈玺赟 2,殷勇 1   
  1. 1.南京大学地理与海洋科学学院,江苏 南京 210023
    2.南京师范大学地理科学学院,江苏 南京 210023
    3.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023
  • 收稿日期:2020-01-30 修回日期:2020-03-03 出版日期:2020-04-10
  • 通讯作者: 王平 E-mail:tigerwp@njnu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“古金沙江南流寻踪——青藏高原东南缘古近纪盆地的沉积纪录”(41572154)

Review in Detrital Zircon U-Pb Geochronology: Data Acquisition, Analysis and Comparison

Ling Zhang 1( ),Ping Wang 2, 3( ),Xiyun Chen 2,Yong Yin 1   

  1. 1.School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023,China
    2.School of Geographical Sciences, Nanjing Normal University, Nanjing 210023,China
    3.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023,China
  • Received:2020-01-30 Revised:2020-03-03 Online:2020-04-10 Published:2020-05-08
  • Contact: Ping Wang E-mail:tigerwp@njnu.edu.cn
  • About author:Zhang Ling (1993-), male, Yancheng City, Jiangsu Province, Master student. Research areas include U-Pb dating provenance of detrital zircons. E-mail: 35515594@qq.com
  • Supported by:
    the National Natural Science Foundation of China “Tracing the southward-flowing paleo-Jinsha River—Sedimentary records from the Paleogene basins along the southeastern margin of Tibetan Platea”(41572154)

碎屑锆石U-Pb年代学是探寻沉积物物源的重要手段,在沉积学、大地构造学和地貌学等领域应用广泛。从数据获取、分析和比较3个方面综述了碎屑锆石U-Pb年代学研究的最新进展。在数据获取方面,从基本原理出发阐述了样品制备方法、同位素年龄数据选取和测试数量问题;在数据分析方面,对比了概率密度图、核密度估计图和累积年龄分布图的数据可视化方法;在数据比较方面,结合实例分析了定量比较的基本算法和应用优势,包括基于非参数性假设检验(K-S检验)、年龄谱对比(互相关系数)和多维定标法的相似(差异)性量化分析等。最后介绍了3款常用软件,并在数据获取、分析与比较方面分别给出了建议,供以后的研究者参考。

The U-Pb chronology of detritus zircon is an important method to explore sediment provenance, which is widely used in sedimentology, geotectonics, geomorphology and other fields. This paper reviewed the recent progress of the U-Pb chronology of detrital zircon from three aspects: data acquisition, analysis and comparison. In terms of data acquisition, the sample preparation method, isotope age data selection and test quantity were expounded from the basic principle; In terms of data analysis, the data visualization methods of Probability Density Plot (PDP), Kernel Density Estimate (KDE) and Cumulative Age Distribution (CAD) were compared; In terms of data comparison, the basic algorithm and application advantages of quantitative comparison were analyzed with examples, including (dis)similarity measures based on non-parametric hypothesis tests (K-S test), (dis)similarity measures based on age spectrum comparison (Cross-correlation coefficients) and (dis)similarity measures based on Multi-Dimensional Scali (MDS). Finally, three commonly used software tools were introduced. Suggestions were given in terms of data acquisition, analysis and comparison for future research.

中图分类号: 

图1 3种不同的锆石U-Pb年代获取方法示意图(据参考文献[20]修改)
(a)同位素稀释—热电离质谱法;(b) 二次离子探针法; (c) 激光剥蚀—等离子质谱
Fig.1 Schematic diagram of three U-Pb dating methods for zircon(modified after reference[20])
(a)Isotope Dilutionthermal Ionization Mass Spectrometry(ID-TIMS);(b)Secondary Ion Mass Spectrometry(SIMS);(c)Laser Ablation-inductively Coupled Plasma-Mass Spectrometry(LA-ICPMS)
图2 河流沉积物样品采用颗粒自然沉降(靶1)与手工随机挑选(靶2)制靶结果对比
粒径由ImageJ图像分析并计算等效粒径得到,直方图分别代表了2个靶的碎屑锆石U-Pb年龄的分布,在靶1中获得了5颗小于50 Ma的锆石年龄组分且粒径较小(54~75 μm),而在靶2中仅获得了1颗小于50 Ma的锆石年龄且粒径较大(约为90 μm)
Fig.2 River sediment samples were compared by natural particle sedimentation (target 1) and by manual random selection (target 2)
The particle size was obtained by analyzing the ImageJ image and calculating the equivalent particle size. The histogram represents the distribution of U-Pb ages of detrital zircons of the two targets. Five zircons of <50 Ma were obtained from target 1 with small size (54~75 μm), while only one zircon of <50 Ma was obtained from target 2 with large size (about 90 μm)
图3 206Pb/238U207Pb/235U年龄比值计算得到的U-Pb协和图
数据点的测试误差1σ(95%置信区间)或者2σ(68%置信区间)以椭圆的形式表示;平行x轴方向代表了 207Pb/ 235U的年龄误差,平行y轴方向代表了 206Pb/ 238U的误差,短轴方向代表了 206Pb/ 207Pb的年龄误差
Fig.3 The U-Pb concordia diagram obtained from the age ratios of 206Pb/238U, 207Pb/235U
The test error of 1 (95% confidence interval) or 2 (68% confidence interval) in the form of ellipses. The parallel x axis represents the age error of 207Pb/ 235U, the parallel y axis represents the error of 206Pb/ 238U, and the short axis represents the age error of 206Pb/ 207Pb
图4 5 200个锆石样品的U-Pb分析获得的206Pb/238U年龄和206Pb/207Pb年龄结果
展示了不同的年龄结果与其测试误差(1σ)的对应关系,明显看出在年龄较小(如小于1 000 Ma)的情况下, 206Pb/ 238U年龄的测试误差较小,而在年龄较大(大于1 200 Ma)的情况下, 206Pb/ 207Pb年龄的测试误差较小(据参考文献[27]修改)
Fig.4 U-Pb analysis of 5 200 zircon samples yielded 206Pb/238U and 206Pb/207Pb ages
Figure shows the corresponding relationship between the results of different ages and the test error (1σ). It is obvious that the test error of 206Pb/ 238U age is smaller when the age is younger (such as less than 1 000 Ma), while the test error of 206Pb/ 207Pb age is smaller when the age is older (more than 1 200 Ma)(modified after reference[27])
图5 碎屑锆石测试数量(k)与某一年龄组分被检测失败的概率(p)之间的关系
m代表样品中包含的年龄组分数, f为某一年龄组分的占比( f=1/ m);交点A表示只测试60颗锆石,年龄组分检测失败的概率高达64%,交点B表示测试117颗锆石,年龄组分检测失败的概率可以降至5%(据参考文献[29]修改)
Fig.5 The relationship between the number of detrital zircons tested (k) and the probability of failure of a given age group (p)
m represents the number of age groups contained in the sample, and f represents the proportion of a certain age group ( f=1/ m). Intersection A means that only 60 zircons have been tested, and the probability of failure in age component detection is as high as 64%. Intersection B means 117 zircons have been tested, and the probability of failure in age component detection can be reduced to 5%(modified after reference[29])
图6 碎屑锆石U-Pb 年代学数据可视化示例(以长江口崇明岛为例[44]
(a)概率密度图;(b)核密度估计图;(c)累积年龄分布图
Fig.6 An example of the age distribution of detrital zircons (a case study of Chongming Island in the Changjiang Estuary[44])
(a) Probability Density Plot (PDP);(b) Kernal Density Estimate (KDE);(c) Cumulative Age Distributions (CAD)
图7 虚拟碎屑锆石样品相似(差异)性量化分析结果
(a) 用于计算的两个虚拟样品的PDP,分别具有5个年龄组分,每个不确定度为10%;(b) 基于CAD图的Kolmogorov-Smirnov Test (K-S) D值和 Kuiper Test V值, K-S和Kuiper Test中不包含与每个模拟年龄相关的不确定性或带宽;(c) 基于PDP的I和II交叉图的互相关系数(决定系数,虚线);(d) 基于PDP计算的I和II的相似度系数;(e) 基于PDP计算的I和II的似然系数(据参考文献[52]修改)
Fig.7 Quantitative analysis of similarity (difference) of virtual detrital zircon samples
(a) Probability Density Plot (PDP) of age distributions with five modal ages, each with an associated uncertainty of 10%; (b) Kolmogorov-Smirnov (K-S) D value and Kuiper V values of based on CAD. K-S and Kuiper tests do not incorporate uncertainties or bandwidth associated with each modal age; (c) Cross-correlation coefficient of cross-plots based on PDPs I and II (coefficient of determination, dashed line); (d) Similarity for PDPs I and II; (e) Likeness PDPs I and II (modified after reference [52])
图8 4个年龄组分[(100±10) Ma、(200±10) Ma、(300±10) Ma和(400±10) Ma]经不同比例混合得到的多个虚拟样品的2D-MDS3D-MDS结果
(a)2D-MDS图,其中灰色的实线和虚线连接的点表示最相似的和次相似的样品;(b)2D-MDS的谢帕德图,点位分散说明样品间差异与转换结果之间的线性关系差;(c)3D-MDS(圆圈的大小仅用于增强视觉效果);(d)3D-MDS的谢帕德图,点位相对集中1∶1线附近,改进后的拟合结果验证了增加的维数在解决样品差异方面的价值(据参考文献[58]修改)
Fig.8 The results of 2D-MDS and 3D-MDS of multiple virtual samples obtained by mixing four component[(100±10) Ma、(200±10) Ma、(300±10) Ma and(400±10) Ma] in different proportions
(a) Two-dimensional MDS solid and dashed gray lines = nearest and next-nearest neighbors; (b) Shepard plot for two-dimensional MDS, The poor linearity between dissimilarities and distances indicates poor translation of the dissimilarity matrix; (c) Three-dimensional MDS (circle sizes are scaled to reflect distance of the circle from point of view of viewer, smaller is more distant); (d) Shepard plot for three-dimensional MDS. Points are relatively concentrated around the 1∶1 line. The improved fit demonstrates the value of the added dimension in resolving sample difference(modified after reference [58] )
图9 长江全流域样品似然系数和2D-MDS图(据参考文献[67]修改)
(a)使用似然系数量化:干流—干流、干流—支流和支流—支流的样品间比较, N表示每个直方图的比较次数,似然系数值越高表示两两比较之间的相似性越高;(b)非度量MDS图(主图)和谢帕德图(插图);主干河流样本以填充色表示,较温暖的颜色(红橙黄)表示较下游的采样;支流边缘的颜色表示下游的位置,实线和虚线分别表示最邻近和次邻近的两个样品
Fig.9 Intersample likeness and 2D-MDS (modified after reference [67])
(a) Using the likeness comparison metric: Compare intersample of trunk-to-trunk, trunk-to-tributary, and tributary-to-tributary. N equals the number of comparisons per histogram. Higher values indicate higher similarity between pairwise comparisons. (b)The nonmetric MDS (main) and Shepard plot (inset). Trunk stream samples are given as filled colors, with warmer colors (red-orange-yellow) indicating farther downstream sampling; Tributary edge colors indicate downstream location. Solid and dashed lines indicate the closest neighbors and second closest neighbors in likeness, respectively
表1 常用碎屑锆石 U-Pb年代学分析软件
Table 1 The commonly analysis software of U-Pb chronology of detrital zircons
1 Blatt H, Jones R L. Proportions of exposed igneous, metamorphic, and sedimentary rocks[J]. Geological Society of America Bulletin, 1975, 86(8):1 085-1 088.
2 Zhang Shuo, Jian Xing, Zhang Wei. Sedimentary provenance analysis using detrital apatite: A review[J]. Advances in Earth Science, 2018,33(11): 1 142-1 153.
张硕,简星,张巍.碎屑磷灰石对沉积物源判别的指示[J].地球科学进展,2018,33(11):1 142-1 153.
3 Jian Xing,Guan Ping,Zhang Wei. Detrital rutile: A sediment provenance indicator[J]. Advances in Earth Science,2012,27(8): 828-846.
简星,关平,张巍.碎屑金红石:沉积物源的一种指针[J].地球科学进展,2012,27(8):828-846.
4 Garzanti E, Padoan M, Setti M, et al. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds[J]. Geochemistry Geophysics Geosystems, 2013, 14(2):292-316.
5 Nie Junsheng, Stevens T, Rittner M, et al. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications, 2015, 6:8 511.
6 Copeland P, Harrison T M. Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal fan[J]. Geology, 1990, 18(4):354.
7 Vermeesch P. Quantitative geomorphology of the White Mountains (California) using detrital apatite fission track thermochronology[J]. Journal of Geophysical Research Earth Surface, 2007, 112(F3). DOI: 10.1029/2006JF000671.
doi: 10.1029/2006JF000671    
8 Stock G M, Ehlers T A, Farley K A. Where does sediment come from?Quantifying catchment erosion with detrital apatite (U-Th)/He thermochronometry[J]. Geology, 2006, 34(9):725.
9 Rahl J M, Reiners P W, Campbell I H, et al. Combined single-grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah[J]. Geology, 2003, 31(9): 761-764.
10 Codilean A T, Bishop P, Stuart F M, et al. Single-grain cosmogenic 21Ne concentrations in fluvial sediments reveal spatially variable erosion rates[J]. Geology, 2008, 36(2):159.
11 Pell S D, Williams I S, Chivas A R. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands[J]. Sedimentary Geology, 1997, 109(3):233-260.
12 Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78:355-368.
13 Vermeesch P, Garzanti E. Making geological sense of ‘Big Data’ in sedimentary provenance analysis[J]. Chemical Geology, 2015, 409:20-27.
14 Fedo C M. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):277-303.
15 Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3). DOI:10.1029/2007GC001805.
doi: 10.1029/2007GC001805    
16 Shaulis B, Lapen T J, Toms A. Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICP-MS[J]. Geochemistry Geophysics Geosystems, 2010, 11(11).DOI:10.1029/2010GC003198.
doi: 10.1029/2010GC003198    
17 Gehrels G. Detrital zircon U-Pb geochronology: Current methods and new opportunities[M]//Tectonics of Sedimentary Basins: Recent Advances. Blackwell Publishing Ltd., 2011: 45-62.
doi: 10.1002/9781444347166    
DOI:10.1002/9781444347166.
doi: 10.1002/9781444347166    
18 Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312: 190-194.
19 Spurlin, Matthew S. Special Paper 347: Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California Volume 347 [M]. California: Geological Society of America, 2000:89-98.
20 Schoene B. 4.10-U-Th-Pb Geochronology[J]. Treatise on Geochemistry, 2014, 4: 341-378.
21 Malusà M G, Carter A, Limoncelli M, et al. Bias in detrital zircon geochronology and thermochronometry[J]. Chemical Geology, 2013, 359: 90-107.
22 Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
23 Wetherill G W. Discordant uranium-lead ages, I[J]. Eos, Transactions American Geophysical Union, 1956, 37(3): 320-326.
24 Nemchin A A, Cawood P A. Discordance of the U-Pb system in detrital zircons: Implication for provenance studies of sedimentary rocks[J]. Sedimentary Geology, 2005, 182(1/4): 143-162.
25 Hiess J, Condon D J, McLean N, et al. 238U/235U systematics in terrestrial uranium-bearing minerals[J]. Science, 2012, 335(6 076): 1 610-1 614.
26 Tera F, Wasserburg G J. U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions[J]. Earth and Planetary Science Letters, 1972, 17(1): 36-51.
27 Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017. DOI:10.1029/2007GC001805.
doi: 10.1029/2007GC001805    
28 Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology[J]. Geoscience Frontiers, 2016, 7(4): 581-589.
29 Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 441-451.
30 Dodson M H, Compston W, Williams I S, et al. A search for ancient detrital zircons in Zimbabwean sediments[J]. Journal of the Geological Society, 1988, 145(6): 977-983.
31 Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125.
32 Cottle J M, Horstwood M S A, Parrish R R. A new approach to single shot laser ablation analysis and its application to in situ Pb/U geochronology[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(10): 1 355-1 363.
33 Matthews W A, Guest B. A practical approach for collecting large-n detrital zircon U-Pb data sets by Quadrupole LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2017, 41(2): 161-180.
34 Pullen A, Ibá?ez-Mejía M, Gehrels G E, et al. What happens when n=1000?Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 971-980.
35 Daniels B G, Auchter N C, Hubbard S M, et al. Timing of deep-water slope evolution constrained by large-n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, Chile[J]. GSA Bulletin, 2018, 130(3/4): 438-454.
36 Smith D M, Bartlet J C. Calculation of the areas of isolated or overlapping normal probability curves[J]. Nature, 1961, 191(4 789):688-689.
37 Behboodian J. On a mixture of normal distributions[J]. Biometrika, 1970, 57(1):215-217.
38 Everitt B S, Hand D J. Finite mixture distribution[M]//Monographs on Statistics and Applied Probability. Dordrecht:Springer, 1981.
39 Titterington D M, Smith A F M, Makov U E. Statistical Analysis of Finite Mixture Distributions[M]. New York: Wiley, 1985.
40 Lo Y. Testing the number of components in a normal mixture[J]. Biometrika, 2001, 88(3):767-778.
41 Scott F R, Richard S, Getz W M, et al. Contingent kernel density estimation[J]. PLoS ONE, 2012, 7(2):e30549.
42 L?uter H, Silverman B W. Density Estimation for Statistics and Data Analysis[M]. New York: Chapman & Hall, 1986
43 Scott D W. Multivariate Density Estimation: Theory, Practice, and Visualization[M]. Berlin: John Wiley & Sons, 2015.
44 Yang Shouye, Zhang Feng, Wang Zhongbo. Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China[J]. Chemical Geology, 2012, 296: 26-38.
45 Delaigle A, Meister A. Density estimation with heteroscedastic error[J]. Bernoulli, 2008, 14(2):562-579.
46 Staudenmayer J, Buonaccorsi R J P. Density estimation in the presence of heteroscedastic measurement error[J]. Journal of the American Statistical Association, 2008, 103(482):726-736.
47 Carroll R J, Delaigle A, Hall P. Nonparametric prediction in measurement error models[J]. Journal of the American Statistical Association, 2009, 104(487):993-1 003.
48 Botev Z I, Grotowski J F, Kroese D P. Kernel density estimation via diffusion[J]. The Annals of Statistics, 2010, 38(5): 2 916-2 957.
49 Mcintyre J, Stefanski L A. Density estimation with replicate heteroscedastic measurements[J]. Annals of the Institute of Statistical Mathematics, 2011, 63(1): 81-99.
50 Shimazaki H, Shinomoto S. Kernel bandwidth optimization in spike rate estimation[J]. Journal of Computational Neuroscience, 2009, 29(1/2):171-182.
51 Stephens M A. Use of the Kolmogorov-Smirnov, Cramér-Von mises and related statistics without extensive tables[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1970,32(1):115-122.
52 Saylor J E, Sundell K E. Quantifying comparison of large detrital geochronology data sets[J]. Geosphere, 2016, 12(1): 203-220.
53 Saylor J E, Stockli D F, Horton B K, et al. Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia[J]. Geological Society of America Bulletin, 2012, 124(5/6):762-779.
54 Saylor J E, Knowles J N, Horton B K, et al. Mixing of source populations recorded in detrital zircon U-Pb age spectra of modern river sands[J]. The Journal of Geology, 2013, 121(1):17-33.
55 Wilk M B, Gnanadesikan R. Probability plotting methods for the analysis for the analysis of data[J]. Biometrika, 1968, 55(1):1-17.
56 Satkoski A M, Wilkinson B H, Hietpas J, et al. Likeness among detrital zircon populations—An approach to the comparison of age frequency data in time and space[J]. Geological Society of America Bulletin, 2013, 125(11/12):1 783-1 799.
57 Vermeesch P.Multi-sample comparison of detrital age distributions[J]. Chemical Geology, 2013, 341(2):140-146.
58 Wissink G K, Wilkinson B H, Hoke G D. Pairwise sample comparisons and multidimensional scaling of detrital zircon ages with examples from the North American platform, basin, and passive margin settings[J]. Lithosphere, 2018, 10(3): 478-491.
59 Torgerson W S. Multidimensional scaling: I. Theory and method[J]. Psychometrika, 1952, 17(4):401-419.
60 Carroll J D, Arabie P, Ho S M. Multidimensional scaling [M]//Applied Multivariate Statistical Analysis. Heidelberg:Springer Berlin, 2007.
61 Kruskal J B. Nonmetric multidimensional scaling: A numerical method[J]. Psychometrika, 1964, 29(2):115-129.
62 Vermeesch P. Dissimilarity measures in detrital geochronology[J]. Earth-Science Reviews, 2018, 178: 310-321.
63 He Mengying, Zheng Hongbo, Bookhagen B, et al. Controls on erosion intensity in the Yangtze River basin tracked by U-Pb detrital zircon dating[J]. Earth-Science Reviews, 2014, 136: 121-140.
64 Jia Juntao, Zheng Hongbo, Huang Xiangtong, et al. Detrital zircon U-Pb ages of late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin, 2010, 55(4/5): 350-358.
贾军涛, 郑洪波, 黄湘通,等. 长江三角洲晚新生代沉积物碎屑锆石U-Pb年龄及其对长江贯通的指示[J]. 科学通报, 2010, 55(4/5): 350-358.
65 Tian Ziqiang, Wang Yongsheng, Hu Zhaoqi, et al. LA-ICP MS zircon U-Pb dating of metasedimentary rocks in Dabie orogenic belt and its tectonic implications[J]. Advances in Earth Science,2018,33(9):945-957.
田自强, 王勇生, 胡召齐,等. 大别造山带内部变沉积岩锆石 LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957.
66 Zhang Wenhui, Wang Cuizhi, Li Xiaomin, et al. Zircon SIMS U-Pb age,Hf and O isotopes of mafic dikes,southwest Fujian Province[J]. Advances in Earth Science,2016,31(3):320-334.
张文慧, 王翠芝, 李晓敏,等.闽西南基性岩脉中捕获锆石SIMS U-Pb年龄及Hf,O同位素特征[J]. 地球科学进展, 2016, 31(3): 320-334.
67 Wissink G K, Hoke G D. Eastern margin of Tibet supplies most sediment to the Yangtze River[J]. Lithosphere, 2016, 8(6): 601-614.
68 Roe G. On the interpretation of Chinese loess as a paleoclimate indicator[J]. Quaternary Research, 2009, 71(2): 150-161.
69 Wang Xunming, Dong Zhibao, Zhang Jiawu, et al. Modern dust storms in China: An overview[J]. Journal of Arid Environments, 2004, 58(4): 559-574.
70 Kapp P, Pelletier J D, Rohrmann A, et al. Wind erosion in the Qaidam basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau[J]. GSA Today, 2011, 21(4/5): 4-10.
71 Rohrmann A, Heermance R, Kapp P, et al. Wind as the primary driver of erosion in the Qaidam Basin, China[J]. Earth and Planetary Science Letters, 2013, 374: 1-10.
72 Pullen A, Kapp P, McCallister A T, et al. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications[J]. Geology, 2011, 39(11): 1 031-1 034.
73 Vandenberghe J, Renssen H, van Huissteden K, et al. Penetration of Atlantic westerly winds into Central and East Asia[J]. Quaternary Science Reviews, 2006, 25(17/18): 2 380-2 389.
74 Licht A, Pullen A, Kapp P, et al. Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau[J]. Bulletin, 2016, 128(5/6): 944-956.
75 Ludwig K R. ISOPLOT for MS-DOS, A Plotting and Regression Program for Radiogenic-isotope Data, for IBM-PC Compatible Computers, Version 1.00[R]. Denver:US Geological Survey, 1988.
76 Ludwing K R. Using Isoplot/Ex Version 2, A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronological Special Publications, 1999: 1-47.
77 Ludwig K R. A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003, 4: 1-70.
78 Vermeesch P. Isoplot R: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1 479-1 493.
79 Saylor J E, Jordan J C, Sundell K E, et al. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau[J]. Basin Research, 2017,30 (3):544-563.
80 Sharman G R, Sharman J P, Sylvester Z. DetritalPy: A Python-based toolset for visualizing and analysing detrital geo-thermochronologic data[J]. The Depositional Record, 2018, 4(2), 202-215.
81 Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312: 190-194.
[1] 王晓先, 张进江, 王佳敏. 喜马拉雅早古生代岩浆事件:以吉隆和聂拉木眼球状片麻岩为例[J]. 地球科学进展, 2016, 31(4): 391-402.
阅读次数
全文


摘要