Please wait a minute...
img img
高级检索
地球科学进展  2020, Vol. 35 Issue (4): 431-440    DOI: 10.11867/j.issn.1001-8166.2020.039
构造地貌学专栏     
金沙江龙街段晚更新世以来的阶地发育与河谷地貌演化
刘芬良1(),高红山2(),李宗盟3,潘保田2,苏怀4
1.湖南城市学院地理信息科学系,湖南 益阳 413000
2.兰州大学资源环境学院西部环境教育部 重点实验室,甘肃 兰州 730000
3.信阳师范学院地理科学学院,河南 信阳 464000
4.云南师范大学旅游与地理科学学院,云南 昆明 650500
Terraces Development and Their Implications for Valley Evolution of the Jinsha River Since Late Pleistocene near Longjie, Yunnan
Fenliang Liu1(),Hongshan Gao2(),Zongmeng Li3,Baotian Pan2,Huai Su4
1.Department of Geographic Information System Science, Hu'nan City University, Yiyang Hu'nan 413000, China
2.Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
3.School of Geographic Sciences, Xinyang Normal University, Xinyang He'nan 464000, China
4.College of Tourism and Geography Sciences, Yunnan Normal University, Kunming 650500, China
 全文: PDF(5791 KB)   RICH HTML
摘要:

河流阶地是研究现代河谷形成发育的重要地貌标志。通过野外考察,发现在元谋龙街附近金沙江发育了5级河流阶地,其中T1~T4以龙街组湖相沉积为基座,T5以基岩为基座。电子自旋共振测年结合前人研究结果表明T1、T2、T3、T4和T5分别形成于(18±1.7) ka、(23±1.4) ka、(26±2.4) ka 、(29±1.4) ka和(78±12) ka,标志着晚更新世以来金沙江在该区进行了5次下切过程和1次强烈的加积过程。晚更新世以来由于滑坡堵江事件的扰动,河谷的发育形式以“下切—滑坡—堰塞—堆积—下切”过程为主。

关键词: 河流阶地河谷发育金沙江龙街    
Abstract:

The drainage evolution and valley development of the Jinsha River is an important issue constantly concerned by researchers in geology and geomorphology. Despite hundreds of years of research, there is a big dispute on the formation time and the evolution process of the fluvial valley. Fluvial terraces are very important geomorphic markers for studying the formation and evolution of the fluvial valley. Through field investigation combined with Electron Spin Resonance (ESR) dating, we confirmed that 5 fluvial terraces were formed, and then preserved, along the course of the Jinsha River near the Longjie, which are all strath terraces. Among them, T5 developed on the base rock, with an age of (78±12) ka; all T4~T1 developed on the lacustrine sediments, named Longjie Group by Chinese, with an age of (29±1.4) ka, (26±2.4) ka, (23±1.4) ka, (18±1.7) ka, respectively. Compared with the global and regional climate change history, the terraces are all the result of the river responding to the climate change. T5 formed at MIS 5/4, and T4~T1 formed at the period of regional climate fluctuation. The relationship of terraces and the Longjie Formation, combined with sedimentary characteristics analysis demonstrate that the Longjie Formation is landslide dammed lake sediment. The landslide and blocking events.seriously influenced the valley evolution, inhibiting the river incising, and making the valley evolution defer to the mode of “cut-landside-damming-fill-cut” in the period of Late Pleistocene. Synthesized studies of the terraces and the correlative sediments indicate that the formation of the Jinsha River valley may have begun in the late Early Pleistocene.

Key words: Fluvial terrace    Valley landform evolution    Jinsha River    Longjie.
收稿日期: 2020-01-30 出版日期: 2020-05-08
ZTFLH:  P931.1  
基金资助: 国家自然科学基金项目“祁连山中段山体隆升扩展及其对水系演化的影响”(41730637);第二次青藏高原综合科学考察研究“冰—河—湖演化历史事件与耦合过程”(编号:2019QZ‐KK0205)资助
通信作者: 高红山     E-mail: gaohsh@lzu.edu.cn
作者简介: 刘芬良(1987-),男,湖南益阳人,讲师,主要从事河流地貌研究. E-mail:fenliangliu@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘芬良
高红山
李宗盟
潘保田
苏怀

引用本文:

刘芬良, 高红山, 李宗盟, 潘保田, 苏怀. 金沙江龙街段晚更新世以来的阶地发育与河谷地貌演化[J]. 地球科学进展, 2020, 35(4): 431-440.

Fenliang Liu, Hongshan Gao, Zongmeng Li, Baotian Pan, Huai Su. Terraces Development and Their Implications for Valley Evolution of the Jinsha River Since Late Pleistocene near Longjie, Yunnan. Advances in Earth Science, 2020, 35(4): 431-440.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2020.039        http://www.adearth.ac.cn/CN/Y2020/V35/I4/431

图1  金沙江龙街段的地形及龙街组湖相地层的分布
测年部位测年物质采样深度/mU/(μg/g)TU/(μg/g)K2O/%含水量/%古剂量/Gy年剂量/(Gy/ka)年龄/ka
T1砾石层砂2.01.478.471.481.7644.9±4.42.5318±1.7
T2砾石层砂1.52.017.161.581.0561.9±3.72.6823±1.4
T3砾石层砂0.51.678.911.560.2871.7±6.62.7326±2.4
T5砾石层砂1.01.7810.601.602.29223.0±34.02.8578±12.0
表1  金沙江龙街段河流阶地ESR年代及相关参数
图2  龙街附近金沙江阶地的空间展布
图3  龙街附近金沙江的河谷横断面以及阶地的野外照片断面位置和野外照片的拍摄位置如图2所示
图4  龙街附近金沙江河谷的堆积和下切阶段与区域[58,59]和全球气候指标[57]的对比
图5  晚更新世以来龙街附近金沙江河谷的发育形式
1 Ward F K. The hydrography of the Yunnan-Tibet frontier [J]. The Geographical Journal, 1918, 52(5): 288-299.
2 Davis W M. Drainage evolution on the Yunnan-Tibet Frontier [J]. Geographical Review, 1919, 7(6): 413-415.
3 Lee C Y. The development of the upper Yangtze valley [J]. Bulletin of the Geological Society of China, 1934, 13(1): 107-118.
4 Barbour G B. Physiographic history of the Yangtze [J]. The Geographical Journal, 1936, 87(1): 17-32.
5 Li Chengsan. Development history of the Yangtze River [J]. Yangtze River, 1956, 12: 3-6.
5 李承三. 长江发育史[J]. 人民长江, 1956, 12: 3-6.
6 Ren Meie, Bao Haosheng, Han Tongchun, et al. Geomorphic study of the Jinsha River in the northwest Yunnan Province and river capture [J]. Acta Geographica Sinica, 1959, 26(2): 135-155.
6 任美锷, 包浩生, 韩同春, 等. 云南西北部金沙江河谷地貌与河流袭夺问题[J]. 地理学报, 1959, 26(2): 135-155.
7 Shen Yuchang, Yang Yichou. New research on the problem of river-capture of Ching-Sha-Chiang (the upper Yangtze), Western Yunnan, China [J]. Acta Geographica Sinica, 1963, 30(2): 87-108.
7 沈玉昌, 杨逸畴. 滇西金沙江袭夺问题的新探讨[J]. 地理学报, 1963, 30(2):87-108.
8 He Haosheng, He kezhao, Zhu Xiangmin, et al. A discussion on the problem of river-capture of the Jinshajiang River in Northwest Yunnan [J]. Geoscience, 1989, 3(3): 319-330.
8 何浩生, 何科昭, 朱祥民, 等. 滇西北金沙江河流袭夺的研究——兼与任美锷先生商榷[J]. 现代地质, 1989, 3(3):319-330.
9 Cheng Jie. Discussion on the evolutionary history of Jinsha River from Benzilan to Jinjiangjie in northwestern Yunnan [J]. Journal of East China Geological Institute, 1994, 17(3): 234-241.
9 程捷. 金沙江奔子栏—金江街段发育史探讨[J]. 华东地质学院学报, 1994, 17(3):234-241.
10 Brookfield M E. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southwards [J]. Geomorphology, 1998, 22(3/4):285-312.
11 Yang Dayuan, Li Xusheng. Study on the easterward flow of the Jinsha River[J]. Journal of Nanjing University (Natural Sciences), 2001, 37(3): 317-322.
11 杨达源, 李徐生. 金沙江东流的研究[J]. 南京大学学报:自然科学版, 2001, 27(3):317-322.
12 Yang Dayuan. Study on the Changjiang River[M]. Nanjing: Hohai University Press, 2004.
12 杨达源. 长江研究[M]. 南京: 河海大学出版社, 2004.
13 Clift P D, Blusztajn J, Nguyen A D. Large‐scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam [J]. Geophysical Research Letters, 2006, 33(19). DOI:10.1029/2006GL027772.
doi: 10.1029/2006GL027772
14 Zheng H, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River [J]. Proceedings of the National Academy of Sciences, 2013, 110(19):7 556-7 561.
15 Zhang Z, Daly J S, Li C, et al. Sedimentary provenance constraints on drainage evolution models for SE Tibet: Evidence from detrital K-feldspar [J]. Geophysical Research Letters, 2017, 44(9). DOI:10.1002/2017GL073185.
doi: 10.1002/2017GL073185
16 Kong P, Granger D E, Wu F Y, et al. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River[J]. Earth and Planetary Science Letters, 2009, 278(1/2): 131-141.
17 Wei H H, Wang E, Wu G L, et al. No sedimentary records indicating southerly flow of the paleo-Upper Yangtze River from the First Bend in southeastern Tibet [J]. Gondwana Research, 2016, 32: 93-104.
18 Clark M K, Schoenbohm L M, Royden L H, et al. Surface uplift, tectonics, and erosion of eastern Tibet from large‐scale drainage patterns[J]. Tectonics, 2004, 23(1): TC1006. DOI:10.1029/2002TC001402.
doi: 10.1029/2002TC001402
19 Shen Yuchang. Valley Landform in the Upper Reaches of the Yangtze River [M]. Beijing: Science Press, 1965.
19 沈玉昌. 长江上游河谷地貌[M]. 北京: 科学出版社, 1965.
20 Zhang Yechun, Li Jijun, Zhu Junjie. Studies on development of Jinshajiang River during late Cenozoic [J]. Yunnan Geographic Environment Research, 1998, 10(2): 43-48.
20 张叶春, 李吉均,朱俊杰. 晚新生代金沙江形成时代与过程研究[J]. 云南地理环境研究, 1998, 10(2):43-48.
21 Yang Dayuan, Han Zhiyong, Ge Zhaoshuai, et al. Geomorphic process of the formation and incision of the section from Shigu to Yibin of the Jinshajiang River [J]. Quaternary Sciences, 2008, 28(4):564-568.
21 杨达源, 韩志勇, 葛兆帅,等. 金沙江石鼓—宜宾河段的贯通与深切地貌过程的研究[J]. 第四纪研究, 2008, 28(4):564-568.
22 Su Huai, Ming Qingzong, Pan Baotian, et al. The analysis and discussions on the chronological frame of Jinshajiang River Vally-drainage [J]. Journal of Mountain Science, 2013, 31(6): 685-692.
22 苏怀, 明庆忠, 潘保田, 等. 金沙江河谷—水系发育的年代学框架分析与探讨[J]. 山地学报, 2013, 31(6):685-692.
23 Dong Ming, Su Huai, Shi Zhengtao, et al. The age of river terraces in the Jinjiangjie reach of the Jinsha River and its implications for valley and drainage evolution [J]. Acta Geographica Sinica, 2018, 73(9):120-128.
23 董铭, 苏怀, 史正涛, 等. 金沙江金江街段河流阶地年代及对河谷水系演化历史的启示[J]. 地理学报, 2018, 73(9):120-128.
24 Su H, Dong M, Hu Z B. Late Miocene birth of the Middle Jinsha River revealed by the fluvial incision rate [J]. Global and Planetary Change, 2019, 183: 103002.
25 Zhao Xitao, Hu Daogong, Zhang Yongshuang, et al. Genesis and age of the gravels underlying the Xigeda Formation of Panzhihua, Sichuan, China, and valley development of the ancient Jinsha River [J]. Acta Geoscientica Sinica, 2008, 29(1): 1-12.
25 赵希涛, 胡道功, 张永双, 等. 四川攀枝花昔格达组下伏砾石层成因和时代探讨与古金沙江河谷发育[J]. 地球学报, 2008, 29(1):1-12.
26 Mcphillips D, Hoke G D, Liu-Zeng J, et al. Dating the incision of the Yangtze River gorge at the First Bend using three-nuclide burial ages [J]. Geophysical Research Letters, 2016, 43(1):101-110.
27 Clark M K, House M A, Royden L H, et al. Late Cenozoic uplift of southeastern Tibet [J]. Geology, 2005, 33(6): 525-528.
28 Bull W B. Stream-terrace genesis: Implications for soil development [J]. Geomorphology, 1990, 3(3/4): 351-367.
29 Bridgland D R, Westaway R. Quaternary fluvial archives and landscape evolution: A global synthesis [J]. Proceedings of the Geologists Association, 2014, 125(5/6):600-629.
30 Ji Fengju, Zheng Rongzhang, Li Jianping, et al. Chronological research of geomorphic surface of lower terraces along several major rivers in the east and west of Yunnan Province [J]. Seismology and Geology, 2000, 22(3): 265-276.
30 计凤桔, 郑荣章, 李建平, 等. 滇东, 滇西地区主要河流低阶地地貌面的年代学研究[J]. 地震地质, 2000, 22(3): 265-276.
31 Li Xingtang, Xu Xuehan, Huang Dingcheng, et al. C14 dating of the fluvial alluvions in Dukou-Xichang region and its implication for the geochronology of recent faulting [J]. Scientia Geologica Sinica, 1984, (3): 262-275.
31 李兴唐, 许学汉, 黄鼎成, 等. 渡口—西昌区域河流冲积层C14年龄与断裂活动最新地质年代研究[J]. 地质科学, 1984, (3): 262-275.
32 Jiang Fuchu, Wu Xihao, Wang Shubing, et al. On the age of loessal sediment around Qiaojia in the Jinshajiang River valley [J]. Journal of Geomechanics, 1999, 5(4):35-40.
32 蒋复初, 吴锡浩. 王书兵, 等 金沙江巧家段河谷黄土状堆积的时代问题[J]. 地质力学学报, 1999, 5(4):35-40.
33 Tao Yaling, Chang Hong, Qiang Xiaoke. Terraces and their chronology features of the First Bend along the Changjiang River [J]. Quaternary Sciences, 2018, 38(1): 151-164.
33 陶亚玲, 常宏, 强小科. 长江第一弯河段阶地特征及年代学研究[J]. 第四纪研究, 2018, 38(1): 151-164.
34 Lu Haifeng. Neotectonic significance of the Yuanmou-Xigeda fault in the Late Cenozoic [J]. Chinese Science Bulletin, 2014, 59(28/29): 2 877-2 887.
34 卢海峰. 元谋—昔格达断裂晚新生代新构造意义[J]. 科学通报, 2014, 59(28/29): 2 877-2 887.
35 Zhang Yechun, Li Jijun, Zhu Junjie, et al. Studies on development of Yuanmou basin and valleys during late Cenozoic [J]. Journal of Lanzhou University (Natural Sciences), 1999, 35(1): 199-205.
35 张叶春, 李吉均,朱俊杰,等. 晚新生代元谋盆地演化与河谷发育研究[J]. 兰州大学学报: 自然科学版, 1999, 35(1): 199-205.
36 Liu F, Gao H, Pan B, et al. Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region, Southwest China [J]. Frontiers of Earth Science, 2019, 13(1): 55-74.
37 Li Chaozhu, Wang Shubing, Fu Jianli, et al. Sedimentary environment evolutionary characteristics of Longjie silt layer in the middle reaches of the Jinsha River, Yunnan [J]. Geological Bulletin of China, 2015, 34(1): 113-120.
37 李朝柱, 王书兵, 傅建利, 等. 金沙江中游云南龙街粉砂层沉积环境演化特征[J]. 地质通报, 2015, 34(1): 113-120.
38 Yao Y F, Bruch A A, Cheng Y M, et al. Monsoon versus uplift in southwestern China-Late Pliocene climate in Yuanmou Basin, Yunnan [J]. PLoS ONE, 2012, 7(5): e37760.
39 Zhao J, Zhou S, He Y, et al. ESR dating of glacial tills and glaciations in the Urumqi River headwaters, Tianshan Mountains, China [J]. Quaternary International, 2006, 144(1): 61-67.
40 Yokoyama Y, Falgueres C, Quaegebeur J P. ESR dating of quartz from Quaternary sediments: First attempt [J]. Nuclear Tracks and Radiation Measurements (1982), 1985, 10(4/6: 921-928.
41 Li Chaozhu, Jiang Fuchu, Fu Jianli, et al. The formation time of the Longjie silt layer in the Yuanmou area, Yunnan Province [J]. Quaternary Sciences, 2011, 31(5):933-934.
41 李朝柱, 蒋复初, 傅建利, 等. 云南元谋龙街粉砂层的形成时代研究[J]. 第四纪研究, 2011, 31(5):933-934.
42 Pan B, Guan Q, Gao H, et al. The origin and sources of loess-like sediment in the Jinsha River Valley, SW China [J]. Boreas, 2014, 43(1): 121-131.
43 Potter P E. Significance and origin of big rivers [J]. The Journal of Geology, 1978, 86(1): 13-33.
44 Shen Yuchang, Gong Guoyuan. Introduction to River Geomorphology [M]. Beijing: Science Press, 1986.
44 沈玉昌, 龚国元. 河流地貌学概论[M]. 北京: 科学出版社, 1986.
45 He Yanhua. A Study on the Age and Period of the Formation of Soil forest Strata and Landform in Yuanmou [D]. Kunming:Yunnan Normal University, 2014.
45 何艳花. 元谋土林地层与土林地貌的形成年代及期次研究[D]. 昆明:云南师范大学, 2014.
46 He Z, Zhang X, Bao S, et al. Multiple climatic cycles imprinted on regional uplift-controlled fluvial terraces in the lower Yalong River and Anning River, SE Tibetan Plateau [J]. Geomorphology, 2015, 250: 95-112.
47 Liu Fenliang, Gao Hongshan, Hu Xiaofei, et al. Characteristics of stream longitudinal profiles of the Jinsha River from Panzhihua to Aoga and their implications for valley evolution [J]. Journal of Lanzhou University(Natural Sciences), 2019, 55(2): 149-157.
47 刘芬良, 高红山, 胡小飞, 等. 金沙江攀枝花至凹嘎段水系河道纵剖面形态特征及其对河谷发育的指示[J]. 兰州大学学报:自然科学版, 2019, 55(2): 149-157.
48 Maddy D. Uplift-driven valley incision and river terrace formation in southern England [J]. Journal of Quaternary Science, 1997, 12(6): 539-545.
49 Schumm S A. River response to baselevel change: Implications for sequence stratigraphy [J]. The Journal of Geology, 1993, 101(2): 279-294.
50 Vandenberghe J. Timescales, climate and river development [J]. Quaternary Science Reviews, 1995, 14(6): 631-638.
51 Schumm S A. Geomorphic thresholds and complex response of drainage systems [J]. Fluvial Geomorphology, 1973, 6: 69-85.
52 Gao H S, Li Z M, Liu X F, et al. Fluvial terraces and their implications for Weihe River valley evolution in the Sanyangchuan Basin[J]. Science in China(Series D), 2017, 60(3): 413-427.
53 Bridgland D R, Westaway R. Quaternary fluvial archives and landscape evolution: A global synthesis [J]. Proceedings of the Geologists' Association, 2014, 125(5/6): 600-629.
54 Cordier S, HarMand D, FreCHen M, et al. Fluvial system response to Middle and Upper Pleistocene climate change in the Meurthe and Moselle valleys (Eastern Paris Basin and Rhenish Massif) [J]. Quaternary Science Reviews, 2006, 25(13/14): 1 460-1 474.
55 Blum M D, Toomey III R S, Valastro Jr S. Fluvial response to Late Quaternary climatic and environmental change, Edwards Plateau, Texas [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(1/2): 1-21.
56 Knox J C. Late Quaternary Upper Mississippi River alluvial episodes and their significance to the Lower Mississippi River system[J]. Engineering Geology, 1996, 45(1/4): 263-285.
57 Lisiecki L E, Raymo M E. Diachronous benthic δ18O responses during late Pleistocene terminations [J]. Paleoceanography, 2009, 24(3). DOI:10.1029/2009PA001732.
doi: 10.1029/2009PA001732
58 Wang Yongjin, Cheng Hai, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7 182):1 090-1 093.
59 Hodell D A, Brenner M, Kanfoush S L, et al. Paleoclimate of Southwestern China for the Past 50,000 yr Inferred from Lake Sediment Records [J]. Quaternary Research, 1999, 52(3):369-380.
60 Wu Q, Zhao Z, Liu L, et al. Outburst flood at 1920 BCE supports historicity of China’s Great Flood and the Xia dynasty [J]. Science, 2016, 353(6 299): 579-582.
61 Korup O, Montgomery D R. Tibetan Plateau river incision inhibited by glacial stabilization of the Tsangpo gorge [J]. Nature, 2008, 455(7 214): 786.
62 Hewitt K. Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan [J]. Geomorphology, 1998, 26(1): 47-80.
63 Zhou Liqin, Liu Weiming, Lai Zhongping, et al. Geomorphologic response of river damming[J]. Quaternary Sciences, 2019, 39(2): 366-380.
63 周丽琴, 刘维明, 赖忠平, 等. 河流堰塞的地貌响应[J]. 第四纪研究, 2019, 39(2): 366-380.
64 Schumm S A, Lichty R W. Time, space, and causality in geomorphology [J]. American Journal of Science, 1965, 263(2): 110-119.
65 Min Longrui, Yin Zhanguo, Zhang Jinqi. The formation time and paleoenvironment of the Longjie silt bed[J]. Quaternary Sciences, 1990, (4): 354-362.
65 闵隆瑞,尹占国,张金起. 龙街粉砂层形成时代及其古环境[J]. 第四纪研究, 1990, (4): 354-362.
66 Liu W, Hu K, Carling P A, et al. The establishment and influence of Baimakou paleo-dam in an upstream reach of the Yangtze River, southeastern margin of the Tibetan Plateau[J]. Geomorphology, 2018, 321: 167-173.
67 Chen Zhendong, Luo Jianyu, Lin Mingzhi, et al. Sedimentation rates of lakes and reservoirs in Taiwan [J]. Oceanologia et Limnologia Sinica, 1997, 28(6):624-631.
67 陈镇东, 罗建育, 林明志, 等. 台湾地区湖泊水库沉积速率初步探讨[J]. 海洋与湖沼, 1997, 28(6):624-631.
68 Wang P, Zhang B, Qiu W, et al. Soft-sediment deformation structures from the Diexi paleo-dammed lakes in the upper reaches of the Minjiang River, east Tibet [J]. Journal of Asian Earth Sciences, 2011, 40(4): 865-872.
69 Pan B, Su Huai, Hu Zhenbo, et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: Evidence from a 1.24 Ma terrace record near Lanzhou, China [J]. Quaternary Science Reviews, 2009, 28(27):3 281-3 290.
[1] 陶亚玲, 常宏. 长江第一湾附近构造作用下的河流地貌演化[J]. 地球科学进展, 2017, 32(5): 488-501.