地球科学进展 ›› 2020, Vol. 35 ›› Issue (4): 404 -413. doi: 10.11867/j.issn.1001-8166.2020.034

构造地貌学专栏 上一篇    下一篇

黄河兰州段河谷演化研究与认识
贺鑫( ),胡小飞( ),潘保田   
  1. 兰州大学资源环境学院,甘肃 兰州 730030
  • 收稿日期:2020-01-22 修回日期:2020-03-09 出版日期:2020-04-10
  • 通讯作者: 胡小飞 E-mail:feixhu@lzu.edu.cn
  • 基金资助:
    第二次青藏高原综合科学考察研究专题项目“冰—河—湖演化历史事件与耦合过程”(2019QZKK0208);“碰撞以来古地理格局与构造地貌过程”(2019QZKK0704)

Research and Understanding of the Evolution of the Yellow River Valley in Lanzhou

Xin He( ),Xiaofei Hu( ),Baotian Pan   

  1. College of Resources and Environment, Lanzhou University, Lanzhou 730030, China
  • Received:2020-01-22 Revised:2020-03-09 Online:2020-04-10 Published:2020-05-08
  • Contact: Xiaofei Hu E-mail:feixhu@lzu.edu.cn
  • About author:He Xin (1995-), female, Handan City, Hebei Province, Master student. Research areas include quaternary geology. E-mail: hex17@lzu.edu.cn
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition Program “Ice-river-lake evolution history event and coupling process”(2019QZKK0208);“Paleogeographic pattern and tectonic geomorphic process since collision”(2019QZKK0704)

兰州盆地作为黄河自青藏高原流入黄土高原的转折点,其河谷演化对黄河水系在不同地貌单元的演化研究有承上启下的意义。兰州黄河河谷演化研究至今已有近100年的历史,在研究过程中取得了重要的研究成果和认识: 兰州盆地黄河河谷之上发育1级剥蚀面,河谷中发育了宽广连续的9级阶地;利用多种测年技术较系统地测定了1级剥蚀面和9级黄河阶地的年代。 提出兰州黄河基座阶地的形成模式——在长期地面抬升的背景下,气候变化控制阶地形成的年代,抬升速率影响阶地的级数。 兰州至其上游各盆地内黄河最高级阶地年代逐渐年轻化,揭示现代黄河上游水系格局的形成是黄河自兰州盆地不断溯源侵蚀,逐渐贯通上游内流盆地的结果。同时,阶地序列年代学仍需继续深入,区域构造抬升变形特征缺乏直接证据,阶地发育模式需要模型模拟进行验证,水系变化的地貌响应不清楚,以及阶地河漫滩沉积记录的河流过程缺乏关注,这些问题将是今后研究的重点。

As the turning point of the Yellow River flowing from the Tibetan Plateau to the Loess Plateau, the valley evolution of Lanzhou Basin is of great significance to the study of the evolution of the Yellow River system in different geomorphic units. The evolution of the Yellow River Valley in Lanzhou has been studied for nearly 100 years. In the process of research, important research results and understandings have been obtained as follows: The denudation surface develops above the Yellow River Valley in Lanzhou Basin, and the broad and continuous 9-level terrace develops in the valley. The age of the denudation surface and 9-level Yellow River terrace was systematically determined by using a variety of dating techniques. The development pattern of the strath terraces of the Yellow River in Lanzhou was put forward. Under the background of long-term ground uplift, climate change controls the age of terrace formation, and the rate of uplift affects the number of terrace. The age of the highest terrace of the Yellow River in the basins from Lanzhou to the upper reaches of the Yellow River is gradually younger. It is revealed that the formation of the present pattern in the upper reach of the Yellow River is the result of the headward erosion from Lanzhou Basin and the drainage intergration of the internal flow basin. At the same time, the chronology of terrace sequence still needs to be deepened, the characteristics of regional tectonic uplift and deformation are lack of direct evidence, the development pattern of terrace needs to be verified by model simulation, the geomorphic response of drainage change is not clear, and the river process recorded by the deposition of terrace flood plain is lack of attention. All those issues will be the focus of future research.

中图分类号: 

图1 兰州盆地地理位置(a)及地质概况(b
Fig.1 Geographical location (a) and geological survey (b) of Lanzhou Basin
图2 兰州盆地各级地貌面分布(据参考文献[ 4 ]修改)
Fig.2 Distribution of geomorphic surface at all levels in Lanzhou Basinmodified after reference[ 4 ])
表1 兰州盆地地貌面年代
Table 1 The age of layered landform surfaces in Lanzhou Basin
地貌面 地点 方法 位置 年代 参考文献
剥蚀面 烟洞沟 古地磁 黄土底部 1.80 Ma [ 28 ]
剥蚀面 烟洞沟 裂变径迹 砾石层底 1.79 Ma [ 2 ]
五泉砾岩 五泉山 宇生核素埋藏 砾岩内部

2 . 72 - 0.46 + 0.54 ? M a

2 . 85 - 0.52 + 0.60 Ma

[ 12 ]
五泉砾岩 范家坪 古地磁 砾岩顶底 2.2~3.6 Ma [ 12 ]
T9 薛家湾 古地磁 黄土底部 1.66 Ma [ 28 ]
T9 薛家湾 宇生核素埋藏 砾石层 (2.81±0.44) Ma [ 42 ]
T8 九州台 古地磁 黄土底部 1~1.1 Ma [ 21 ]
T8 九州台 古地磁 黄土底部 1.3 Ma [ 22 ]
T8 九州台 古地磁 黄土底部 2.4 Ma [ 24 ]
T8 九州台 古地磁 漫滩底部 1.3 Ma [ 20 ]
T8 九州台 古地磁 黄土底部 1.2 Ma [ 20 ]
T8 九州台 古地磁+古土壤 黄土底部 1.3~1.4 Ma [ 25 ]
T8 九州台 古土壤断代 漫滩底部 1.48 Ma [ 25 ]
T8 九州台 裂变径迹 砾石层顶部 1.48 Ma [ 27 ]
T8 九州台 宇生核素埋藏 砾石层 (2.10±0.38) Ma [ 42 ]
T7 骆驼岘 古地磁+古土壤 黄土底部 1.24 Ma [ 4 ]
T7 墩洼山 宇生核素埋藏 砾石层 (2.02±0.29) Ma [ 42 ]
T6 大浪沟 古地磁+古土壤 黄土底部 1.05 Ma [ 4 ]
T6 大浪沟 宇生核素埋藏 砾石层 (1.39±0.28) Ma [ 42 ]
T5 小沙沟 古地磁+古土壤 黄土底部 0.96 Ma [ 4 ]
T5 小沙沟 宇生核素埋藏 砾石层 (0.83±0.27) Ma [ 42 ]
T4 枣树沟 古地磁 黄土底部 0.86 Ma [ 4 ]
T4 五一山 古地磁 黄土底部 0.86 Ma [ 4 ]
T4 枣树沟 宇生核素埋藏 砾石层 (0.83±0.25) Ma [ 42 ]
T3 白塔山 古土壤断代 黄土底部 0.13 Ma [ 4 ]
T3 范家坪(西盆地) 光释光 黄土底部 (54.5±6.6) ka [ 39 ]
T2 沙金坪 红外释光 黄土底部 (53.9±3.7) ka [ 37 ]
T2 沙井驿(西盆地) 光释光 河漫滩底部 (24.6±0.2) ka [ 38 ]
T2 罗锅沟 14C 河漫滩底部 (34.8±1.26) ka [ 6 ]
T1 兰州市区 14C 黄土底部 (6.68±0.18) ka [ 6 ]
图3 兰州盆地各级地貌面年代(据参考文献[ 42 ]修改)
Fig.3 Age of geomorphic surface at all levels in Lanzhou Basinmodified after reference[ 42 ])
1 Huang Jiqing. Some types of the neotectonism in China [C]// Department of Geography, Chinese Academy of Sciences. Notes of the First Conference on Neotectonism of CAS. Beijing: Science Press, 1957: 8-44.[
黄汲清. 中国新构造运动的几个类型 [C]//中国科学院地学部.中国科学院第一次新构造运动座谈会发言记录. 北京:科学出版社, 1957: 8-44.]
2 Li Jijun, Fang Xiaomin, Ma Haizhou, et al. Geomorphologic and environmental evolution in the upper reaches of the Yellow River during the Late Cenozoic [J]. Science in China(Series D), 1996, 39(4): 380-390.
李吉均, 方小敏, 马海洲, 等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学:D辑, 1996, 39(4): 380-390.
3 Craddock W H, Kirby E, Harkins N W, et al. Rapid fluvial incision along the Yellow River during headward basin integration [J]. Nature Geoscience, 2010, 3(3): 209-213.
4 Pan B T, Su H, Hu Z, et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: Evidence from a 1.24 Ma terrace record near Lanzhou, China [J]. Quaternary Science Reviews, 2009, 28(27/28): 3 281-3 290.
5 Andersson J G. Archaeological Record of Gansu [M]. Beijing: the Institute of Geology Under the Ministry of Agriculture and Commerce, 1925.
安特生. 甘肃考古记[M]. 北京: 农商部地质调查所, 1925.
6 Pan Baotian, Li Jijun, Zhu Junjie, et al. Terrace development of Yellow River and gemorphic evolution in Lanzhou area [C]// Quaternary Glacier and Environment Research Center of China, Quaternary Research Committee of China. Quaternary Glacier and Evironment Research in West China. Beijing: Science Press, 1991: 271-277.[
潘保田,李吉均,朱俊杰,等.兰州地区黄河阶地发育与地貌演化 [C]//中国第四纪冰川与环境研究中心、中国第四纪研究委员会.中国西部第四纪冰川与环境.北京:科学出版社, 1991: 271-277.]
7 Qu Yupei, Cai Tiliang. Tertiary system of Gansu [J]. Gansu Geology, 1984, (0): 1-40.
瞿毓沛, 蔡体梁. 甘肃的第三系 [J]. 甘肃地质, 1984, (0): 1-40.
8 Xie Guangpu. The tertiary and local mammalian faunas in Lanzhou Basin, Gansu [J]. Jornal of Stratigraphy, 2004, 28(1): 67-80.
颉光普. 甘肃兰州盆地的第三纪地层及哺乳动物群 [J]. 地层学杂志, 2004, 28(1): 67-80.
9 Sun D H, Zhang Y B, Han F, et al. Magnetostratigraphy and palaeoenvironmental records for a Late Cenozoic sedimentary sequence from Lanzhou, Northeastern margin of the Tibetan Plateau [J]. Global and Planetary Change, 2011, 76(3/4): 106-116.
10 Zhang Linyuan. A preliminary study on Quaternary geology of Lanzhou River valley basin [J]. Journal of Lanzhou University, 1962, (2): 89-101.
张林源. 兰州河谷盆地第四纪地质的初步研究 [J]. 兰州大学学报, 1962, (2): 89-101.
11 Li Sen, Wang Yue, Chen Huizhong, et al. Neotectonics of the Yellow River valley in Lanzhou [J]. Geological Review, 1993, 39(3): 259-267.
李森, 王跃, 陈惠忠, 等. 黄河兰州谷地新构造运动的初步研究 [J]. 地质论评, 1993, 39(3): 259-267.
12 Guo B H, Liu S P, Peng T J, et al. Late Pliocene establishment of exorheic drainage in the northeastern Tibetan Plateau as evidenced by the Wuquan Formation in the Lanzhou Basin [J]. Geomorphology, 2018, 303: 271-283.
13 Wu Anbin, Liu Jinkun, Song Chunhui. Approch on the characteristic of grain size and the origin of Wuquanshan Formation of lower Pleistocene series, Lanzhou Basin [J]. Journal of Lanzhou University, 1988, 24(3): 108-118.
武安斌, 刘金坤, 宋春晖. 兰州盆地下更新统五泉山组的粒组特征及其成因探讨 [J]. 兰州大学学报, 1988, 24 (3): 108-118.
14 Zhang J, Li J J, Guo B H, et al. Magnetostratigraphic age and monsoonal evolution recorded by the thickest Quaternary loess deposit of the Lanzhou region, western Chinese Loess Plateau [J]. Quaternary Science Reviews, 2016, 139: 17-29.
15 Chen Mengxiong. Physiography of the central of Gansu [J]. Geological Review, 1947, (6): 545-556.
陈梦熊. 甘肃中部之地文 [J]. 地质论评, 1947, (6): 545-556.
16 Pan Baotian, Li Jijin, Cao Jixiu. The landforms in the Middle reaches of the Yellow River and problemof physiographic stage [J]. Journal of Lanzhou University (Natural Science), 1994, 30(1): 115-123.
潘保田,李吉均,曹继秀. 黄河中游的地貌与地文期问题 [J]. 兰州大学学报:自然科学版, 1994, 30(1): 115-123.
17 Yang Zhongjian, Bian Meinian. Cenozoic geology of Gaolan-Yongdeng, central Gansu [J]. Bulletin of the Geological Society of China, 1937, 16: 221-260.
杨钟健, 卞美年. 甘肃中部皋兰—永登新生代地质[J]. 中国地质学会志, 1937, 16: 221-260.
18 Xu Shuying. Some problems on the terrace development of the Yellow River and its tributaries in the loess area of central and western Gansu Province [J]. Journal of Lanzhou University, 1965, (1): 116-143.
徐叔鹰. 陇中西部黄土区黄河及其支流阶地发育的若干问题 [J]. 兰州大学学报, 1965, (1): 116-143.
19 Han Yuan, Zhang Shousheng, Zhu Zhicheng. Preliminary observation of neotectonic movement in Lanzhou [J] Quaternary Sciences, 1958, 1(1): 193-200.
韩源, 张受生, 朱志澄. 兰州市新构造运动的初步观察 [J].第四纪研究, 1958, 1(1): 193-200.
20 Cao Jixiu, Xu Qizhi, Zhang Yutian, et al. Study on loess-paleosol series and environmental evolution in Jiuzhoutai, Lanzhou [J]. Journal of Lanzhou University, 1988, 24 (1): 118-122.
曹继秀, 徐齐治, 张宇田, 等. 兰州九州台黄土—古土壤系列与环境演化研究 [J]. 兰州大学学报, 1988, 24 (1): 118-122.
21 Wang Yongyan, Wu Zaibao, Yue Leping. The generation age and structural characteristics of Lanzhou loess [J]. Journal of Northwest University (Natural Science), 1978, (2): 1-27.
王永焱, 吴在宝, 岳乐平. 兰州黄土的生成时代及结构特征 [J]. 西北大学学报:自然科学版, 1978, (2): 1-27.
22 Burbank D W, Li J J. Age and paleoclimatic significance of the loess of Lanzhou, north China [J]. Nature, 1985, 316(6 027): 429-431.
23 Zhu Jiunjie, Zhong Wei, Li Jijun, et al. The oldest eolian loess deposition in Longxi Basin—Yandonggou profile in Lanzhou[J]. Scientia Geographica Sinica, 1996, 16(4): 365-369.
朱俊杰, 钟巍, 李吉均, 等. 陇西盆地最老的风成黄土沉积——兰州烟洞沟剖面[J]. 地理科学, 1996, 16(4): 365-369.
24 Derbyshire E, Wang Jingtai, Shaw J, et al. Interim result of studies of the sedimentology and remanent magnetization of the loess succession at Jiuzhoutai, Lanzhou, China[M]//Lin Tungsheng. Aspects of Loess Research. Beijing: China Ocean Press, 1987.
25 Chen F H, Li J J, Zhang W X. Loess stratigraphy of the Lanzhou profile and its comparison with deep-sea sediment and ice core record [J]. GeoJournal, 1991, 24(2): 201-209.
26 Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6 Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record [J]. Paleoceanography, 2002, 17(3):5-11-5-21.
27 Chen Huailu, Chen Fahu. The determination of the formation age of Jiuzhoutai loess by fission track dating method [J]. Journal of Lanzhou University, 1991, 2(2): 163-168.
陈怀录, 陈发虎. 用裂变径迹法测定兰州九州台黄土形成时代 [J]. 兰州大学学报, 1991, 2(2): 163-168.
28 Zhu Junjie, Cao Jixiu, Zhong Wei, et al. The discovery of highest terrace of Yellow River and the oldest loess of Lanzhou region and their paleomagnetic ages [C]//The Expert Commitee on Qingzang Program. Formation and Evolution of the Tibetan Plateau, Environment Changes and Ecological System(Annual Journal of Academic Papers). Beijing: Science Press, 1994: 77-90.[
朱俊杰, 曹继秀, 钟巍, 等. 兰州地区黄河最高阶地与最老黄土的古地磁年代研究 [C]//青藏项目专家委员会. 青藏高原形成演化、环境变迁与生态系统研究(学术论文年刊). 北京:科学出版社, 1994:77-90.]
29 Li Jijun, Kang Jiancheng. Quaternary glaciations, physiograpgic stages and loess record in China [J]. Quaternary Sciences, 1989, (3): 269-278.
李吉均, 康建成. 中国第四纪冰期、地文期和黄土记录 [J]. 第四纪研究, 1989, (3): 269-278.
30 Pan Baotian, Li Jijun, Zhu Junjie, et al. Qinghai-Xizang(Tibetan) Plateau: A driver and amplifier of global climatic changes-Ⅱ.Uplift processes of the Qinghai-Xizang(Tibetan) Plateau [J]. Journal of Lanzhou University, 1995, 31(4): 160-167.
潘保田, 李吉均, 朱俊杰, 等. 青藏高原:全球气候变化的驱动机与放大器——Ⅱ.青藏高原隆起的基本过程 [J]. 兰州大学学报, 1995, 31(4): 160-167.
31 Pan B T, Su H, Hu C S, et al. Discovery of a 1.0 Ma Yellow River terrace and redating of the fourth Yellow River terrace in Lanzhou area [J]. Progress in Natural Science-Materials International, 2007, 17(2): 197-205.
32 Su Huai. The Studies on Fluvial Terraces in Eastern Lanzhou Region During the Last 1 240 ka [D]. Lanzhou: Lanzhou University, 2006.
苏怀. 兰州东部地区1 240 ka以来的河流阶地研究 [D]. 兰州: 兰州大学, 2006.
33 Pan Baotian, Su Huai, Hu Chunsheng, et al. Discovery of a 1.0 Ma Yellow River terrace and redating of the fourth Yellow River terrace in Lanzhou area [J]. Progress in Natural Science, 2006, 16(11): 1 411-1 418.
潘保田, 苏怀, 胡春生, 等. 兰州地区1.0 Ma黄河阶地的发现和0.8 Ma阶地形成时代的重新厘定 [J]. 自然科学进展, 2006, 16(11): 1 411-1 418.
34 Liu Feng. Age of Xiaoshagou along the Yellow River Terrace in Lanzhou Basin [D]. Lanzhou: Lanzhou University, 2008.
刘锋. 兰州盆地黄河小沙沟阶地年代研究 [D]. 兰州: 兰州大学, 2008.
35 Hu Chunsheng. Study on the Terrace of the Yellow River at 0.8 Ma B.P. in the Lanzhou Area and Surface Uplift of the Loess Plateau [D]. Lanzhou: Lanzhou University, 2006.
胡春生. 兰州段0.8 Ma B.P.黄河阶地与黄土高原地面抬升研究 [D]. 兰州: 兰州大学, 2006.
36 Hu Chunsheng, Pan Baotian, Su Huai, et al. Discovery and Paleomagnetic dating of 800 ka B. P. terrace of the Yellow River in Lanzhou Basin [J]. Geographical Science, 2009, 29(2): 278-282.
胡春生, 潘保田, 苏怀, 等. 兰州盆地黄河800 ka B.P.阶地的发现及其古地磁年代 [J]. 地理科学, 2009, 29(2): 278-282.
37 Fang X M, Pan B T, Guan D H, et al. A 60,000-year loess-paleosol record of millennial-scale summer monsoon instability from Lanzhou, China [J]. Chinese Science Bulletin, 1999, 44(24): 2 264-2 267.
38 Wang Ping, Jiang Hanchao, Yuan Daoyang, et al. Stratigraphic structures and ages of the second and third fluvial terraces along the bank of Huanghe River in Lanzhou Basin, western China, and their environmental implications [J]. Quaternary Sciences, 2008, 28(4): 553-563.
王萍, 蒋汉朝, 袁道阳, 等. 兰州黄河Ⅱ和Ⅲ级阶地的地层结构、年龄及环境意义 [J]. 第四纪研究, 2008, 28(4): 553-563.
39 Wang Ping, Yuan Daoyang, Liu Xingwang, et al. Optically stimulates luminescence dating of the Huanghe River terrace in Lanzhou Basin [J]. Nuclear Techniques, 2007, 30(11): 924-930.
王萍, 袁道阳, 刘兴旺, 等. 兰州盆地黄河三级阶地的光释光年龄 [J]. 核技术, 2007, 30(11): 924-930.
40 Balco G, Rovey C W. An isochron method for cosmogenic-nuclide dating of buried soils and sediments [J]. American Journal of Science, 2008, 308(10): 1 083-1 114.
41 Granger D E. 14.7-Cosmogenic Nuclide burial dating in archaeology and paleoanthropology [M]//Treatise on Geochemistry (Second Edition). Oxford: Elsevier, 2014: 81-97.
42 Hu X F, Kirby E, Pan B T, et al. Cosmogenic burial ages reveal sediment reservoir dynamics along the Yellow River, China [J]. Geology, 2009, 39(9): 839-842.
43 Li Jijun. The Uplift of Qinghai-Tibet Pateau and the Evolution of Asian Environment [M]. Beijing:Science Press, 2006.
李吉均. 青藏高原隆升与亚洲环境演变 [M]. 北京:科学出版社, 2006.
44 Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic delta O-18 records [J]. Paleoceanography, 2005, 20(1). DOI:10.1029/2004PA001071.
doi: 10.1029/2004PA001071    
45 Maddy D, Bridgland D R. Accelerated uplift resulting from Anglian glacioisostatic rebound in the Middle Thames Valley, UK?: Evidence from the river terrace record [J]. Quaternary Science Reviews, 2000, 19(16): 1 581-1 588.
46 Liu Tunsheng. Loess and the Environment [M].Beijing:Science Press, 1985.
刘东生. 黄土与环境 [M]. 北京:科学出版社, 1985.
47 Li J J, Zhang B, Zhu J J, et al. Magneto-and pedo-stratigraphy of paleosol-loess sequences in the Lanzhou Basin: Evidence for evolution of Huanghe [J]. Chinese Science Bulletin, 1999, 44(Suppl.): 320-329.
48 Hu Z B, Pan B T, Guo L Y, et al. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge during the past 1.2 Ma as a result of tectonic extension [J]. Quaternary Science Reviews, 2016, 133: 1-14.
49 Gao Hongshan, Li Zongmeng, Liu Xiaofeng, et al. Fluvial terraces and their implications for Weihe River valley evolution in the Sanyangchuan Basin [J]. Science in China(Series D), 2017, 47(2): 191-204.
高红山, 李宗盟, 刘小丰, 等. 三阳川盆地渭河阶地发育与河谷地貌演化 [J]. 中国科学:D辑, 2017, 47(2): 191-204.
50 Hu Xiaofei, Pan Baotian, Gao Hongshan, et al. Development of Holocene fluvial terraces in the eastern Qilianshan Mountain and its relationship with climatic change [J]. Quaternary Sciences, 2013, 33(4): 723-736.
胡小飞, 潘保田, 高红山, 等. 祁连山东段全新世河流阶地发育及其与气候变化的关系研究 [J]. 第四纪研究, 2013, 33(4): 723-736.
51 Hu Z B, Pan B T, Bridgland D, et al. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment [J]. Quaternary Science Reviews, 2017, 166: 324-338.
52 Jia L Y, Hu D G, Wu H H, et al. Yellow River terrace sequences of the Gonghe-Guide section in the northeastern Qinghai-Tibet: Implications for plateau uplift [J]. Geomorphology, 2017, 295:323-336.
53 Nicoll T, Brierley G. Reworking of basin fill deposits along a tributary of the upper Yellow River: Implications for changes to landscape connectivity [J]. Earth Surface Process Landform, 2018, 43(3): 710-722.
54 Zhang H P, Zhang P Z, Champagnac J D, et al. Pleistocene drainage reorganization driven by the isostatic response to deep incision into the northeastern Tibetan Plateau [J]. Geology, 2014, 42(4): 303-306.
55 Li J J, Fang X M, Van Der V R, et al. Magnetostratigraphic dating of river terraces: Rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B5): 10 121-10 132.
56 Nie Junsheng, Song Chunhui, Fang Xiaomin, et al. Paleomagnetic constraint on appearance of the Yellow River in the Guide Basin in the NE Tibetan Plateau and its geomorphologic implications [J]. Marine Geology and Quaternary Geology, 2003, 23(2): 59-64.
聂军胜, 宋春晖, 方小敏, 等. 贵德盆地黄河出现的古地磁年代及其意义 [J]. 海洋地质与第四纪地质, 2003, 23(2): 59-64.
57 Fang X M, Yan M D, Van Der V R, et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China [J]. Geological Society of America Bulletin, 2005, 117(9/10): 1 208-1 225.
58 Fang X M, Garzione C, Van Der V R, et al. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China [J]. Earth and Planetary Science Letters, 2003, 210(3/4): 545-560.
59 Pan Baotian, Li Jijun, Cao Jixiu, et al. Study on the geomorphic evolution and development of the Yellow River in the Hualong Basin [J]. Mountain Research, 1996, 14(3): 153-158.
潘保田, 李吉均, 曹继秀, 等. 化隆盆地地貌演化与黄河发育研究 [J]. 山地研究, 1996, 14(3): 153-158.
60 Perrineau A, Woerd J, Van Der G Y,et al. Incision rate of the Yellow River in Northeastern Tibet constrained by 10Be and 26Al cosmogenic isotope dating of fluvial terraces: Implications for catchment evolution and plateau building [J]. Geological Society, 2011, 353(1): 189-219.
61 Harkins N, Kirby E, Heimsath A, et al. Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China [J]. Journal of Geophysical Research, 2007, 112(F3). DOI:10.1029/2006JF000570.
doi: 10.1029/2006JF000570    
62 Li J J, Fang X M, Song C H, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes [J]. Quatanary Research, 2014, 81(3): 400-423.
63 Wang Z, Nie J S, Wang J P, et al. Testing contrasting models of the formation of the upper Yellow River using heavy-mineral data from the Yinchuan Basin drill cores [J]. Geophysical Research Letters, 2019, 46(17/18): 10 338-10 345.
[1] 刘芬良, 高红山, 李宗盟, 潘保田, 苏怀. 金沙江龙街段晚更新世以来的阶地发育与河谷地貌演化[J]. 地球科学进展, 2020, 35(4): 431-440.
[2] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[3] 李锁锁,吕世华,高艳红,奥银焕,柳媛普. 黄河上游玛曲草原湍流统计特征分析[J]. 地球科学进展, 2012, 27(8): 901-907.
[4] 彭 雯, 高艳红, 王婉昭. 土壤温湿状况对黄河源区水循环过程的影响[J]. 地球科学进展, 2012, 27(11): 1252-1261.
[5] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[6] 胡光印,董治宝,魏振海,逯军峰,颜长珍. 近30a来若尔盖盆地沙漠化时空演变过程及成因分析[J]. 地球科学进展, 2009, 24(8): 908-916.
[7] 穆兴民,高 鹏,巴桑赤烈,张晓萍. 应用流量历时曲线分析黄土高原水利水保措施对河川径流的影响[J]. 地球科学进展, 2008, 23(4): 382-389.
[8] 曾燕,邱新法,潘敖大,刘昌明. 地形对黄河流域太阳辐射影响的分析研究[J]. 地球科学进展, 2008, 23(11): 1185-1193.
[9] 任美锷. 黄河的输沙量:过去、现在和将来——距今15万年以来的黄河泥沙收支表[J]. 地球科学进展, 2006, 21(6): 551-563.
[10] 刘昌明. “黄河流域水资源演化规律与可再生性维持机理”研究进展[J]. 地球科学进展, 2006, 21(10): 991-998.
[11] 王浩;严登华;秦大庸;王建华. 近50年来黄河流域400 mm等雨量线空间变化研究[J]. 地球科学进展, 2005, 20(6): 649-655.
[12] 黄海军;李凡. 黄河三角洲海岸带陆海相互作用概念模式[J]. 地球科学进展, 2004, 19(5): 808-816.
[13] 游性恬,朱禾. 两大江河流量的半世纪变化与“南水北调”[J]. 地球科学进展, 2002, 17(6): 811-817.
[14] 李 林,张国胜,汪青春,时兴合. 黄河上游流域蒸散量及其影响因子研究[J]. 地球科学进展, 2000, 15(3): 256-259.
[15] 中国科学院地学部. 关于缓解黄河断流的对策与建议[J]. 地球科学进展, 1999, 14(1): 1-3.
阅读次数
全文


摘要