Please wait a minute...
img img
高级检索
地球科学进展  2016, Vol. 31 Issue (10): 1021-1031    DOI: 10.11867/j.issn.1001-8166.2016.10.1021
综述与评述     
土壤风化速率测定方法及其影响因素研究进展
黄来明1, 2, 4, 邵明安1, 2, 4, 贾小旭1, 4, 张甘霖3, 4
1.生态系统网络观测与模拟院重点实验室,中国科学院地理科学与资源研究所,北京 100101;
2.黄土高原土壤侵蚀与旱地农业国家重点实验室,中国科学院水利部水土保持研究所,陕西 杨陵 712100;
3.土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所,江苏 南京 210008;
4.中国学学院大学资源与环境学院,北京 100049
A Review of the Methods and Controls of Soil Weathering Rates
Huang Laiming1, 2, 4, Shao Ming’an1, 2, 4, Jia Xiaoxu1, 4, Zhang Ganlin3, 4
1.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101,China;
2.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation,Chinese Academy of Sciences & Ministry of Water Resources,Yangling 712100,China;
3.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
4.College of Resources and Environment,University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1156 KB)   HTML
摘要: 明确土壤风化过程、速率及其影响因素是理解土壤与环境之间相互作用与反馈的基础,可为预测土壤在生态系统中的行为及其在自然和人为作用下的演变趋势、实现土壤资源有效管理提供科学依据。通过回顾土壤风化速率不同测定方法(实验室模拟研究、模型理论计算、同位素比值、元素损耗和元素输入输出平衡法)及其影响因素(气候、生物、母质、地形、时间和人为活动)研究所取得的进展,针对当前土壤资源退化严重的现状,提出了土壤风化研究面临的机遇和挑战。未来土壤风化研究应重点关注变化中的自然条件和强烈的人为干扰下土壤风化的关键过程、速率及其环境阈值,包括建立风化速率不同测定方法所得结果之间的定量转换关系、揭示风化速率多个影响因素之间的协同效应、模拟和预测气候变化和人类活动双重影响下土壤风化速率的演变趋势,以期为土壤资源的可持续管理和应对全球变化提供理论依据。
关键词: 地球化学质量平衡环境阈值地球关键带同位素风化速率    
Abstract: The study of soil weathering processes College of Resources and Environment, rates and the associated influencing factors is crucial for understanding of the feedbacks between soil and environment, which will provide a basis for predicting soil behavior and evolution trend in the ecosystem under natural and anthropogenic forcings. This is also important for the effective management of soil resources. This article reviewed the methods for measuring soil weathering rates (including simulating leaching experiment, model calculation, isotope technique, element depletion and geochemical mass balance) and the influencing factors (including climate, organism, parent material, relief, time and human activities). In view of the serious degradation of soil resources, we proposed the challenge and opportunity of the research of soil weathering. The future study should focus on the critical processes, rates and the associated environmental thresholds of soil weathering under varying natural conditions and intensive human perturbations, including the establishment of the quantitative relationship between the weathering rates calculated by different methods, the analysis and interpretation of synergistic effects among multiple influencing factors, and the modeling and prediction of changing tendency of weathering rates under the impacts of both climatic changes and human activities, in order to guide the sustainable management of soil resource and mitigation of global change.
Key words: Environmental threshold    Geochemical mass balance    Earth’    Isotope    Weathering rate    s critical zone.
收稿日期: 2016-07-02 出版日期: 2016-10-20
:  P59  
基金资助: 国家自然科学基金国际合作与交流项目“黄土高原关键带水循环过程与空间异质性” (编号:41571130081); 中国科学院水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室开放基金项目“退耕驱动地表特性变化对黄土高原半干旱区土壤水循环的影响”(编号:A314021402-1602)资助
作者简介: 黄来明(1984-),男,浙江安吉人,助理研究员,主要从事土壤发生与地球化学研究.E-mail:huanglm@igsnrr.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄来明, 邵明安, 贾小旭, 张甘霖. 土壤风化速率测定方法及其影响因素研究进展[J]. 地球科学进展, 2016, 31(10): 1021-1031.

Huang Laiming, Shao Ming&#x, an, Jia Xiaoxu, Zhang Ganlin. A Review of the Methods and Controls of Soil Weathering Rates. Advances in Earth Science, 2016, 31(10): 1021-1031.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2016.10.1021        http://www.adearth.ac.cn/CN/Y2016/V31/I10/1021

[1] Hartmann J, West A J, Renforth P, et al . Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification[J]. Reviews of Geophysics ,2013, 51(2): 113-149.
[2] Schnoor J L, Stumm W. The role of chemical weathering in the neutralization of acidic deposition[J]. Swiss Journal of Hydrology ,1986, 48(2): 171-195.
[3] Johansson M, Tarvainen T. Estimation of weathering rates for critical load calculations in Finland[J]. Environmental Geology ,1997, 29(3/4): 158-164.
[4] Li L, Du S, Wu L, et al . An overview of soil loss tolerance[J]. Catena ,2009, 78(2): 93-99.
[5] Goudie A S, Viles H A. Weathering and the global carbon cycle: Geomorphological perspectives[J]. Earth-Science Reviews ,2012, 113(1): 59-71.
[6] Xu Haijin, Ma Changqian. Review on weathering rates in the crust weathering system[J]. Advances in Earth Science , 2002, 17(5): 670-678.
. 地球科学进展, 2002, 17(5): 670-678.]
[7] Lasaga A C. Kinetic Theory in the Earth Sciences[M]. New York: Princeton University Press,1998: 781-785.
[8] Fan Houbao, Lin Dexi. Leaching and weathering effects of simulated acid rain on four types of mountain soils in Fujian, China[J]. Journal of Mountain Science ,2002, 20(5): 570-577.
. 山地学报, 2002, 20(5): 570-577.]
[9] Feng Zhigang, Ma Qiang, Li Shipeng, et al . Leaching experiment for the weathering of carbonate rocks by simulating different climates[J]. Carsologica Sinica ,2013, 31(4): 361-376.
. 中国岩溶, 2013, 31(4): 361-376.]
[10] Guicharnaud R, Paton G I. An evaluation of acid deposition on cation leaching and weathering rates of an Andosol and a Cambisol[J]. Journal of Geochemical Exploration ,2006, 88(1): 279-283.
[11] Zhang J E, Ouyang Y, Ling D J. Impacts of simulated acid rain on cation leaching from the Latosol in south China[J]. Chemosphere ,2007, 67(11): 2 131-2 137.
[12] Swoboda-Colberg N G, Drever J I. Mineral dissolution rates in plot-scale field and laboratory experiments[J]. Chemical Geology ,1993, 105(1/3): 51-69.
[13] Velbel M A. Constancy of silicate-mineral weathering-rate ratios between natural and experimental weathering: Implications for hydrologic control of differences in absolute rates[J]. Chemical Geology , 1993, 105(1): 89-99.
[14] Duan Lei, Hao Jiming, Ye Xuemei, et al . Study on weathering rate of soil in China[J]. Acta Scientiae Circumstantiae , 2000, (Suppl.1): 1-7.
. 环境科学学报, 2000,(增刊1): 1-7.]
[15] White A F, Brantley S L. The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field?[J]. Chemical Geology ,2003, 202(3): 479-506.
[16] Yang Jinling, Zhang Ganlin. Soil weathering rate and its applications: A review[J]. Soil , 2010 (6): 882-888.
. 土壤, 2010,(6): 882-888.]
[17] Bain D C, Langan S J. Weathering rates in catchments calculated by different methods and their relationship to acidic inputs[J]. Water , Air , and Soil Pollution ,1995, 85(3): 1 051-1 056.
[18] Langan S J, Hodson M E, Bain D C, et al . A preliminary review of weathering rates in relation to their method of calculation for acid sensitive soil parent materials[J]. Water , Air , and Soil Pollution ,1995, 85(3): 1 075-1 081.
[19] Sverdrup H, Warfvinge P. Calculating field weathering rates using a mechanistic geochemical model PROFILE[J]. Applied Geochemistry ,1993, 8(3): 273-283.
[20] Stendahl J, Akselsson C, Melkerud P A, et al . Pedon-scale silicate weathering: Comparison of the PROFILE model and the depletion method at 16 forest sites in Sweden[J]. Geoderma ,2013, 211/212(1): 65-74.
[21] Cosby B J, Hornberger G M, Galloway J N, et al . Modeling the effects of acid deposition: Assessment of a lumped parameter model of soil water and streamwater chemistry[J]. Water Resources Research ,1985, 21(1): 51-63.
[22] Capo R C, Stewart B W, Chadwick O A. Strontium isotopes as tracers of ecosystem processes: Theory and methods[J]. Geoderma , 1998, 82(1): 197-225.
[23] Stevenson E I, Aciego S M, Chutcharavan P, et al . Insights into combined radiogenic and stable strontium isotopes as tracers for weathering processes in subglacial environments[J]. Chemical Geology , 2016, 429: 33-43,doi:10.1016/j.chemgeo.2016.03.008.
[24] Åberg G, Jacks G, Hamilton P J. Weathering rates and 87 Sr/ 86 Sr ratios: An isotopic approach[J]. Journal of Hydrology ,1989, 109(1): 65-78.
[25] Miller E K, Blum J D, Friedland A J.Determination of soil exchangeable-cation loss and weathering rates using Sr isotopes[J]. Nature ,1993, 362: 438-441,doi:10.1038/362438ao.
[26] Ma Yingjun, Liu Congqiang. Variations of Sr isotopes during chemical weathering of granitic rocks—Influence of relative mineral weathering rate[J]. Science in China ( Series D ), 2001, 31(8): 634-640.
. 中国科学: D 辑, 2001, 31(8): 634-640.]
[27] Moreira-Nordemann L M. Use of 234 U/ 238 U disequilibrium in measuring chemical weathering rate of rocks[J]. Geochimica et Cosmochimica Acta ,1980, 44(1): 103-108.
[28] Conceição F T, Bonotto D M. Use of U-isotope disequilibrium to evaluate the weathering rate and fertilizer-derived uranium in São Paulo state, Brazil[J]. Environmental Geology ,2003, 44(4): 408-418.
[29] Ma L, Chabaux F, Pelt E, et al . Regolith production rates calculated with uranium-series isotopes at Susquehanna/Shale Hills Critical Zone Observatory[J]. Earth and Planetary Science Letters ,2010, 297(1): 211-225.
[30] Taylor A, Blum J D. Relation between soil age and silicate weathering rates determined from the chemical evolution of a glacial chronosequence[J]. Geology ,1995, 23(11): 979-982.
[31] Land M, Ingri J, Öhlander B. Past and present weathering rates in northern Sweden[J]. Applied Geochemistry , 1999, 14(6): 761-774.
[32] Bain D C, Mellor A, Robertson-Rintoul M S E, et al . Variations in weathering processes and rates with time in a chronosequences of soils from Glen Feshie, Scotland[J]. Geoderma , 1993, 57: 275-293.
[33] Thompson A, Chadwick O A, Boman S, et al . Colloid mobilization during soil iron redox oscillations[J]. Environmental Science & Technology , 2006, 40(18): 5 743-5 749.
[34] Jenny H. Factors of Soil Formation[M]. New York: McGraw-Hill Book Company, Inc., 1941:52-80.
[35] Velbel M A, Price J R. Solute geochemical mass-balances and mineral weathering rates in small watersheds: Methodology, recent advances, and future directions[J]. Applied Geochemistry , 2007, 22(8): 1 682-1 700.
[36] Taylor A B, Velbel M A. Geochemical mass balances and weathering rates in forested watersheds of the southern Blue Ridge II. Effects of botanical uptake terms[J]. Geoderma , 1991, 51(1): 29-50.
[37] Wakatsuki T, Rasyidin A. Rates of weathering and soil formation[J]. Geoderma , 1992, 52(3/4): 251-263.
[38] Huang L, Zhang G, Yang J. Weathering and soil formation rates based on geochemical mass balances in a small forested watershed under acid precipitation in subtropical China[J]. Catena , 2013, 105: 11-20,doi:10.1016/j.catena.2013.01.002.
[39] Augustin F, Houle D, Gagnon C, et al . Evaluation of three methods for estimating the weatheringrates of base cations in forested catchments[J]. Catena , 2016, 144:1-10,doi:10.1016/j.catena.2016.04.022.
[40] White A F. Quantitative approaches to characterizing natural chemical weathering rates[M]∥Brantley S L, Kubicki J D, White A F, eds. Kinetics of Water-Rock Interaction. New York: Springer, 2008:512-531.
[41] Van’t Hoff J H. Etudes de Dynamique Chimique[M]. Amsterdam: Muller, 1884.
[42] Ramann E. Bodenkunde[M]. Berlin Heidelberg: Springer, 1911.
[43] White A F, Blum A E. Effects of climate on chemical weathering in watersheds[J]. Geochimica et Cosmochimica Acta ,1995, 59(9): 1 729-1 747.
[44] Stewart B W, Capo R C, Chadwick O A. Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils[J]. Geochimica et Cosmochimica Acta ,2001, 65(7): 1 087-1 099.
[45] Schwartzman D W, Volk T. Biotic enhancement of weathering and the habitability of Earth[J]. Nature ,1989, 340:457-460,doi:10.1038/340457ao.
[46] Müntz A. Sur la decomposition des roches et la formation de la terre arable[J]. Comptes Rendus del ’ Academie des Sciences ,1890, 110: 1 370-1 372.
[47] Lian Bin, Chen Ye, Zhu Lijun, et al . Progress in the study of the weathering of carbonate rock by microbes[J]. Earth Science Frontiers ,2008, 15(6): 90-99.
. 地學前緣, 2008, 15(6): 90-99.]
[48] Wu Tao, Chen Jun, Lian Bin. Advance in studies on the function of microbes to the weathering of silicate minerals[J]. Bulletin of Mineralogy , Petrology and Geochemistry ,2007, 26(3): 263-268.
. 矿物岩石地球化学通报, 2007, 26(3): 263-268.]
[49] Chen J, Blume H P, Beyer L. Weathering of rocks induced by lichen colonization—A review[J]. Catena , 2000, 39(2): 121-146.
[50] Drever J I. The effect of land plants on weathering rates of silicate minerals[J]. Geochimica et Cosmochimica Acta ,1994, 58(10): 2 325-2 332.
[51] Kelly E F, Chadwick O A, Hilinski T E. The effect of plants on mineral weathering[M]∥Plant-induced Soil Changes: Processes and Feedbacks. Netherlands:Springer Netherlands, 1998: 21-53.
[52] Drever J I, Zobrist J. Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps[J]. Geochimica et Cosmochimica Acta ,1992, 56(8): 3 209-3 216.
[53] Bormann B T, Wang D, Snyder M C, et al . Rapid, plant-induced weathering in an aggrading experimental ecosystem[J]. Biogeochemistry ,1998, 43(2): 129-155.
[54] Moulton K L, West J, Berner R A. Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering[J]. American Journal of Science , 2000, 300(7): 539-570.
[55] Li Y, Zhang Q, Wan G, et al . Physical mechanisms of plant roots affecting weathering and leaching of loess soil[J]. Science in China ( Series D ),2006, 49(9): 1 002-1 008.
[56] Suzuki Y, Matsubara T, Hoshino M. Breakdown of mineral grains by earthworms and beetle larvae[J]. Geoderma , 2003, 112(1): 131-142.
[57] Carpenter D, Hodson M E, Eggleton P, et al . Earthworm induced mineral weathering: Preliminary results[J]. European Journal of Soil Biology ,2007, 43: S176-S183,doi:10.1016/j.ejsobi.2007.08.053.
[58] Carpenter D, Hodson M E, Eggleton P, et al . The role of earthworm communities in soil mineral weathering: A field experiment[J]. Mineralogical Magazine ,2008, 72(1): 33-36.
[59] Jouquet P, Mamou L, Lepage M, et al . Effect of termites on clay minerals in tropical soils: Fungus-growing termites as weathering agents[J]. European Journal of Soil Science ,2002, 53(4): 521-528.
[60] Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science ,1987, 287(5): 401-428.
[61] Jackson M L, Tyler S A, Willis A L, et al . Weathering sequence of clay-size minerals in soils and sediments. I. Fundamental generalizations[J]. The Journal of Physical Chemistry ,1948, 52(7): 1 237-1 260.
[62] Veldkamp A, Feijtel T C. Parent material controlled subsoil weathering in a chronosequence, the Allier terraces, Limagne rift valley, France[J]. Catena , 1992, 19(5): 475-489.
[63] Muhs D R, Bettis E A, Been J, et al . Impact of climate and parent material on chemical weathering in loess-derived soils of the Mississippi River Valley[J]. Soil Science Society of America Journal , 2001, 65(6): 1 761-1 777.
[64] Johnson C E, Driscoll C T, Siccama T G, et al . Element fluxes and landscape position in a northern hardwood forest watershed ecosystem[J]. Ecosystems , 2000, 3(2): 159-184.
[65] Norton K P, Von Blanckenburg F. Silicate weathering of soil-mantled slopes in an active Alpine landscape[J]. Geochimica et Cosmochimica Acta , 2010, 74(18): 5 243-5 258.
[66] Nezat C A, Blum J D, Klaue A, et al . Influence of landscape position and vegetation on long-term weathering rates at the Hubbard Brook Experimental Forest, New Hampshire, USA[J]. Geochimica et Cosmochimica Acta ,2004, 68(14): 3 065-3 078.
[67] Jin L, Ravella R, Ketchum B, et al . Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills critical zone observatory[J]. Geochimica et Cosmochimica Acta , 2010, 74(13): 3 669-3 691.
[68] Burke B C, Heimsath A M, White A F. Coupling chemical weathering with soil production across soil-mantled landscapes[J]. Earth Surface Processes and Landforms ,2007, 32(6): 853-873.
[69] Colman S M. Rock-weathering rates as functions of time[J]. Quaternary Research ,1981, 15(3): 250-264.
[70] Bain D C, Mellor A, Robertson-Rintoul M S E, et al . Variations in weathering processes and rates with time in a chronosequence of soils from Glen Feshie, Scotland[J]. Geoderma ,1993, 57(3): 275-293.
[71] Taylor A, Blum J D. Relation between soil age and silicate weathering rates determined from the chemical evolution of a glacial chronosequence[J]. Geology ,1995, 23(11): 979-982.
[72] White A F, Brantley S L. The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field?[J]. Chemical Geology ,2003, 202(3): 479-506.
[73] Dudal R. The sixth factor of soil formation[J]. Eurasian Soil Science , 2005, 38(Suppl.1): S60-S65.
[74] Yaalon D H, Yaron B. Framework for man-made soil changes-an outline of metapedogenesis[J]. Soil Science ,1966, 102(4): 272-277.
[75] Huang L M, Yang J L, Thompson A, et al . Proton production from nitrogen transformation drives stream export of base cations in acid-sensitive forested watersheds[J]. Ecological Indicators ,2015, 48: 348-357,doi:10.1016/j.ecolind.2014.08.028.
[76] Paces T. Rate constants of dissolution derived from the measurements of mass balance in hydrological catchments[J]. Geochimica et Cosmochimica Acta ,1983, 47(11): 1 855-1 863.
[77] Bayon G, Dennielou B, Etoubleau J, et al . Intensifying weathering and land use in Iron Age Central Africa[J]. Science ,2012, 335(6 073): 1 219-1 222.
[78] Brady P V, Dorn R I, Brazel A J, et al . Direct measurement of the combined effects of lichen, rainfall, and temperature onsilicate weathering[J]. Geochimica et Cosmochimica Acta , 1999, 63(19): 3 293-3 300.
[79] Gordon S J. Effect of environmental factors on the chemical weathering of plagioclase in Hawaiian basalt[J]. Physical Geography ,2005, 26(1): 69-84.
[1] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[2] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[3] 董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
[4] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[5] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[6] 林杰, 庄广胜, 王成善, 戴紧根. 叶蜡单体氢同位素古高程计研究进展[J]. 地球科学进展, 2016, 31(9): 894-906.
[7] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[8] 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
[9] 张文慧, 王翠芝, 李晓敏, 刘文元. 闽西南基性岩脉中捕获锆石SIMS U-Pb年龄及Hf、O同位素特征[J]. 地球科学进展, 2016, 31(3): 320-334.
[10] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[11] 药瑛, 孙樯. 应用于流体包裹体CO2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[12] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[13] 李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6): 636-646.
[14] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.
[15] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高δ13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.