地球科学进展 ›› 2006, Vol. 21 ›› Issue (9): 965 -972. doi: 10.11867/j.issn.1001-8166.2006.09.0965

全球变化研究 上一篇    下一篇

中国土壤有机质含量变异性与空间尺度的关系
吴乐知 1,2,蔡祖聪 1   
  1. 1.土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所,江苏 南京 210008;2.中国科学院研究生院,北京 100049
  • 收稿日期:2006-01-13 修回日期:2006-08-01 出版日期:2006-09-15
  • 通讯作者: 吴乐知 E-mail:lzhwu@issas.ac.cn
  • 基金资助:

    国家重点基础研究发展计划项目“碳氮循环过程、协同转化机制与影响因素”(编号:2005CB121101)资助.

The Relationship between the Spatial Scale and the Variation of Soil Organic Matter in China

Wu Lezhi 1,2,Cai Zucong 1   

  1. 1.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2.Graduate University of Chinese Academy of Sciences, Beijing 100049,China
  • Received:2006-01-13 Revised:2006-08-01 Online:2006-09-15 Published:2006-09-15

以中国土种志资料为基础,分析了土壤有机质含量变异与空间尺度的关系及土类内和土类间的变异程度,探讨了不同空间尺度单元下,土壤有机质平均含量与土壤性质的相关性。结果表明,以土壤剖面为单元,随着土壤剖面数的增加,土壤有机质含量的变异系数增大;行政区域尺度单元内部土壤有机质变异程度大于单元间土壤有机质含量的变异程度。以土壤分类单元为空间单元,土类内的有机质含量变异程度小于土类间的变异程度。随着统计单元空间尺度的增大,土壤有机质含量与土壤性质之间的相关性减弱。因此,采用网格法或行政区划分空间区域,获得空间区域单元内土壤有机质含量或贮量的精确估算需要较多的剖面,但外推至数据不足的空间区域时,估算的不确定较小;采用土壤分类单元为空间区域单元,结果则相反。

Based on the data from the National Second Soil Survey, this paper analyzed the relationship between the variation of soil organic matter and the spatial scales, the variation within and among soil groups, and discussed the correlation between the soil properties and the average content of soil organic matter at various spatial-scales. The results indicated that the variation coefficient of soil organic matter content increased with increasing the number of soil profiles while individual soil profile was taken as a basic statistical unit, and decreased with spatial scale up while average of soil organic matter content in the defined scale was taken as a statistical unit. While soil taxonomy group was taken as the basic spatial unit, the variation coefficient of soil organic matter content within soil group was less than that among soil groups. The correlation between soil properties and soil organic matter content became less significant with spatial scale up. Therefore, when the grid technique or the district was applied to regionalize spatial scale, individual soil profile are needed more to reduce uncertainties of the estimate of soil organic matter in the grid or the district with spatial scale up, but the uncertainties are smaller when using soil organic matter content in well-estimate gird or district to estimate the grid or district without available data by extrapolation. When the soil taxonomy group was taken as the basic spatial scale, the result was reverse.

中图分类号: 

[1] Eswaran H, Van den Berg E, Reich P. Organic carbon in soils of the world[J]. Soil Science Society of America Journal,1993, 57:192-194.

[2] Jenkinson D S, Adams D E, Wild A. Global warming and soil organic matter[J]. Nature,1991,351:304-306.

[3] Jin Feng, Yang Hao, Zhao Qiguo. Advances in researches on soil organic carbon storages and affecting factors[J]. Soils, 2000, 1: 11-17. [金峰,杨浩,赵其国. 土壤有机碳储量及影响因素研究进展[J]. 土壤,2000,1:11-17.]

[4] Pan Genxing, Li Lianqing, Zhang Xuhui, et al. Soil organic carbon storage of China and the sequestration dynamics in agricultural lands[J]. Advances in Earth Science, 2003,18(4):609-618.[潘根兴,李恋卿,张旭辉,. 中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003, 18 (4):609-618.]

[5] Wang Shaoqiang, Zhou Chenghu. Estimating soil carbon reservoir of terrestrial ecosystem in China[J]. Geographical Research, 1999, 18 (4):349-355. [王绍强,周成虎. 中国陆地土壤有机碳库的估算[J].地理研究,1999,18 (4):349-355.]

[6] Wang Shaoqiang, Zhou Chenghu, Li Kerang, et al. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China[J]. Acta Geographica Sinica, 2000, 55 (5):533-544.[王绍强,周成虎,李克让,. 中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55 (5):533-544.]

[7] Pan Genxing. Study on carbon reservoir in soils of China[J]. Bulletin of Science and Technology, 1999, 15(5):330-332.[潘根兴. 中国土壤有机碳、无机碳库量研究[J].科技通报,1999,15 (5):330-332.]

[8] Fang Jingyun, Liu Guohua, Xu Songling. Carbon cycle of terrestrial ecosystem in China and its global meaning[C]Wang Gengchen, Wen Yupu, eds. Monitoring and Relevant Process of Greenhouse Gas Concentration and Emission. Beijing: China Environmental Science Press,1996: 129-139. [方精云, 刘国华, 徐嵩龄. 中国陆地生态系统碳循环及其全球意义[C]王庚辰, 温玉璞编. 温室气体浓度和排放监测及相关过程. 北京: 中国环境科学出版社,1996:129-139.]

[9] Ni Jian. Carbon storage interrestrial ecosystem of China: Estimates at different spatial resolutions and response to climatic change[J]. Climatic Change,2001,49 (3) : 339-358.

[10] Jenkinson D S, Hart P B S, Rayner J H, et al. Modeling the turnover of organic matter in long-term experiments at rothamsted[J]. Intecol Bulletin, 1987, 15: 1-8.

[11] Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the rothamsted classical experiments[J]. Soil Science,1997,123(5):298-305.

[12] Molina J A E,Clapp C E,Shaffer M J,et al. NCSOIL, a model of Nitrogen and carbon transformation in soil:Description,calibration and behavior[J]. Soil Science Society of America Journal, 1983, 47: 85-91.

[13] Parton W J,Rasmussen P E. Long-term effects of crop management in wheat-fallow 2, Century model simulations[J]. Soil Science Society of America Journal,1994, 58: 530-536.

[14] Nina Siu-Ngan Lam, Dale A Quattrochi. On the issues of scale, resolution, and fractal analysis in the mapping sciences[J]. The Professional Geographer, 1992, 44: 88-98.

[15] Pickett S T A, Cadenasso M L. Landscape ecology: Spatial heterogeneity in ecological systems[J]. Science, 1995, 269: 331-334.

[16] Dutilleul P, Legendre P. Spatial heterogeneity against heteroscedasticity: An ecological paradigm versus A statistical concept[J]. Oikos,1993, 66: 152-171.

[17] Wang Fei, Li Rui, Yang Qinke, et al. Effect of scale and its mechanism in soil and water loss research[J]. Journal of Soil and Water Conservation, 2003, 17: 167-169. [王飞,李锐,杨勤科,. 水土流失研究中尺度效应及其机理分析[J]. 水土保持学报,2003, 17:167-169.]

[18] Lu Xuejun, Zhou Chenghu, Zhang Hongyan, et al. Analytical scheme on scale-structure of geographical space[J]. Progress in Geography, 2004, 23 (2): 107-114. [鲁学军,周成虎,张洪岩,. 地理空间的尺度——结构分析模式探讨[J]. 地理科学进展,2004,23(2):107-114.]

[19] Schwager S J, Mikhailova E A. Estimating variability in soil organic carbon storage-using the method of statistical differentials[J]. Soil Science, 2002, 167(3): 194-200.

[20] Bowman R A, Reeder J D, Wienhold B J. Quantifying laboratory and field variability to assess potential for carbon sequestration[J]. Communications in Soil Science and Plant Analysis,2002, 33(9/10): 1 629-1 642.

[1] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[2] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[3] 王飞, 陶宇, 欧维新. 景观格局变化的水质净化服务响应关系研究进展[J]. 地球科学进展, 2021, 36(1): 17-28.
[4] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[5] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[6] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[7] 郝志新,吴茂炜,张学珍,刘洋,郑景云. 过去千年中国年代和百年尺度冷暖阶段的干湿格局变化研究[J]. 地球科学进展, 2020, 35(1): 18-25.
[8] 康文敏,蔡芫镔,郑慧祯. 福州城市地表温度时空变化与贡献度研究[J]. 地球科学进展, 2020, 35(1): 88-100.
[9] 孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.
[10] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[11] 谢鑫昌,杨云川,田忆,廖丽萍,韦钧培,周津羽,陈立华. 广西降水非均匀性多尺度特征与综合评价[J]. 地球科学进展, 2019, 34(11): 1152-1164.
[12] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
[13] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[14] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[15] 易雪, 李得勤, 赵春雨, 沈历都, 敖雪, 刘鸣彦. 分析Nudging对辽宁地区降尺度的影响[J]. 地球科学进展, 2018, 33(5): 517-531.
阅读次数
全文


摘要