Please wait a minute...
img img
高级检索
地球科学进展  2006, Vol. 21 Issue (9): 965-972    DOI: 10.11867/j.issn.1001-8166.2006.09.0965
全球变化研究     
中国土壤有机质含量变异性与空间尺度的关系
吴乐知1,2,蔡祖聪1
1.土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所,江苏 南京 210008;2.中国科学院研究生院,北京 100049
The Relationship between the Spatial Scale and the Variation of Soil Organic Matter in China
Wu Lezhi1,2,Cai Zucong1
1.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2.Graduate University of Chinese Academy of Sciences, Beijing 100049,China
 全文: PDF(115 KB)  
摘要:

以中国土种志资料为基础,分析了土壤有机质含量变异与空间尺度的关系及土类内和土类间的变异程度,探讨了不同空间尺度单元下,土壤有机质平均含量与土壤性质的相关性。结果表明,以土壤剖面为单元,随着土壤剖面数的增加,土壤有机质含量的变异系数增大;行政区域尺度单元内部土壤有机质变异程度大于单元间土壤有机质含量的变异程度。以土壤分类单元为空间单元,土类内的有机质含量变异程度小于土类间的变异程度。随着统计单元空间尺度的增大,土壤有机质含量与土壤性质之间的相关性减弱。因此,采用网格法或行政区划分空间区域,获得空间区域单元内土壤有机质含量或贮量的精确估算需要较多的剖面,但外推至数据不足的空间区域时,估算的不确定较小;采用土壤分类单元为空间区域单元,结果则相反。

关键词: 尺度变异系数土壤有机质    
Abstract:

Based on the data from the National Second Soil Survey, this paper analyzed the relationship between the variation of soil organic matter and the spatial scales, the variation within and among soil groups, and discussed the correlation between the soil properties and the average content of soil organic matter at various spatial-scales. The results indicated that the variation coefficient of soil organic matter content increased with increasing the number of soil profiles while individual soil profile was taken as a basic statistical unit, and decreased with spatial scale up while average of soil organic matter content in the defined scale was taken as a statistical unit. While soil taxonomy group was taken as the basic spatial unit, the variation coefficient of soil organic matter content within soil group was less than that among soil groups. The correlation between soil properties and soil organic matter content became less significant with spatial scale up. Therefore, when the grid technique or the district was applied to regionalize spatial scale, individual soil profile are needed more to reduce uncertainties of the estimate of soil organic matter in the grid or the district with spatial scale up, but the uncertainties are smaller when using soil organic matter content in well-estimate gird or district to estimate the grid or district without available data by extrapolation. When the soil taxonomy group was taken as the basic spatial scale, the result was reverse.

Key words: Soil organic matter    Variation coefficient.    Scale
收稿日期: 2006-01-13 出版日期: 2006-09-15
:  S153.6  
基金资助:

国家重点基础研究发展计划项目“碳氮循环过程、协同转化机制与影响因素”(编号:2005CB121101)资助.

通讯作者: 吴乐知     E-mail: lzhwu@issas.ac.cn
作者简介: 吴乐知 (1979-),男,安徽太湖县人,博士生,主要从事土壤环境和全球变化研究.E-mail:lzhwu@issas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴乐知
蔡祖聪

引用本文:

吴乐知,蔡祖聪. 中国土壤有机质含量变异性与空间尺度的关系[J]. 地球科学进展, 2006, 21(9): 965-972.

Wu Lezhi,Cai Zucong. The Relationship between the Spatial Scale and the Variation of Soil Organic Matter in China. Advances in Earth Science, 2006, 21(9): 965-972.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2006.09.0965        http://www.adearth.ac.cn/CN/Y2006/V21/I9/965

[1] Eswaran H, Van den Berg E, Reich P. Organic carbon in soils of the world[J]. Soil Science Society of America Journal,1993, 57:192-194.

[2] Jenkinson D S, Adams D E, Wild A. Global warming and soil organic matter[J]. Nature,1991,351:304-306.

[3] Jin Feng, Yang Hao, Zhao Qiguo. Advances in researches on soil organic carbon storages and affecting factors[J]. Soils, 2000, 1: 11-17. [金峰,杨浩,赵其国. 土壤有机碳储量及影响因素研究进展[J]. 土壤,2000,1:11-17.]

[4] Pan Genxing, Li Lianqing, Zhang Xuhui, et al. Soil organic carbon storage of China and the sequestration dynamics in agricultural lands[J]. Advances in Earth Science, 2003,18(4):609-618.[潘根兴,李恋卿,张旭辉,. 中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003, 18 (4):609-618.]

[5] Wang Shaoqiang, Zhou Chenghu. Estimating soil carbon reservoir of terrestrial ecosystem in China[J]. Geographical Research, 1999, 18 (4):349-355. [王绍强,周成虎. 中国陆地土壤有机碳库的估算[J].地理研究,1999,18 (4):349-355.]

[6] Wang Shaoqiang, Zhou Chenghu, Li Kerang, et al. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China[J]. Acta Geographica Sinica, 2000, 55 (5):533-544.[王绍强,周成虎,李克让,. 中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55 (5):533-544.]

[7] Pan Genxing. Study on carbon reservoir in soils of China[J]. Bulletin of Science and Technology, 1999, 15(5):330-332.[潘根兴. 中国土壤有机碳、无机碳库量研究[J].科技通报,1999,15 (5):330-332.]

[8] Fang Jingyun, Liu Guohua, Xu Songling. Carbon cycle of terrestrial ecosystem in China and its global meaning[C]Wang Gengchen, Wen Yupu, eds. Monitoring and Relevant Process of Greenhouse Gas Concentration and Emission. Beijing: China Environmental Science Press,1996: 129-139. [方精云, 刘国华, 徐嵩龄. 中国陆地生态系统碳循环及其全球意义[C]王庚辰, 温玉璞编. 温室气体浓度和排放监测及相关过程. 北京: 中国环境科学出版社,1996:129-139.]

[9] Ni Jian. Carbon storage interrestrial ecosystem of China: Estimates at different spatial resolutions and response to climatic change[J]. Climatic Change,2001,49 (3) : 339-358.

[10] Jenkinson D S, Hart P B S, Rayner J H, et al. Modeling the turnover of organic matter in long-term experiments at rothamsted[J]. Intecol Bulletin, 1987, 15: 1-8.

[11] Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the rothamsted classical experiments[J]. Soil Science,1997,123(5):298-305.

[12] Molina J A E,Clapp C E,Shaffer M J,et al. NCSOIL, a model of Nitrogen and carbon transformation in soil:Description,calibration and behavior[J]. Soil Science Society of America Journal, 1983, 47: 85-91.

[13] Parton W J,Rasmussen P E. Long-term effects of crop management in wheat-fallow 2, Century model simulations[J]. Soil Science Society of America Journal,1994, 58: 530-536.

[14] Nina Siu-Ngan Lam, Dale A Quattrochi. On the issues of scale, resolution, and fractal analysis in the mapping sciences[J]. The Professional Geographer, 1992, 44: 88-98.

[15] Pickett S T A, Cadenasso M L. Landscape ecology: Spatial heterogeneity in ecological systems[J]. Science, 1995, 269: 331-334.

[16] Dutilleul P, Legendre P. Spatial heterogeneity against heteroscedasticity: An ecological paradigm versus A statistical concept[J]. Oikos,1993, 66: 152-171.

[17] Wang Fei, Li Rui, Yang Qinke, et al. Effect of scale and its mechanism in soil and water loss research[J]. Journal of Soil and Water Conservation, 2003, 17: 167-169. [王飞,李锐,杨勤科,. 水土流失研究中尺度效应及其机理分析[J]. 水土保持学报,2003, 17:167-169.]

[18] Lu Xuejun, Zhou Chenghu, Zhang Hongyan, et al. Analytical scheme on scale-structure of geographical space[J]. Progress in Geography, 2004, 23 (2): 107-114. [鲁学军,周成虎,张洪岩,. 地理空间的尺度——结构分析模式探讨[J]. 地理科学进展,2004,23(2):107-114.]

[19] Schwager S J, Mikhailova E A. Estimating variability in soil organic carbon storage-using the method of statistical differentials[J]. Soil Science, 2002, 167(3): 194-200.

[20] Bowman R A, Reeder J D, Wienhold B J. Quantifying laboratory and field variability to assess potential for carbon sequestration[J]. Communications in Soil Science and Plant Analysis,2002, 33(9/10): 1 629-1 642.

[1] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[2] 方迎波, 占文凤, 黄帆, 高伦, 全金玲, 邹照旭. 长三角城市群表面城市热岛日内逐时变化规律[J]. 地球科学进展, 2017, 32(2): 187-198.
[3] 黎伟标, 刘昊亚, 方容. 大气对海洋中尺度涡响应的研究进展[J]. 地球科学进展, 2017, 32(10): 1039-1049.
[4] 王根, 盛绍学, 黄勇, 吴蓉, 刘惠兰. 基于不适定反问题求解的降水图像降尺度研究[J]. 地球科学进展, 2017, 32(10): 1102-1111.
[5] 郝青振, 张人禾, 汪品先, 王斌. 全球季风的多尺度演化[J]. 地球科学进展, 2016, 31(7): 689-699.
[6] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
[7] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[8] 孙炜毅, 刘健, 王志远. 过去2000年东亚夏季风降水百年际变化特征及成因的模拟研究[J]. 地球科学进展, 2015, 30(7): 780-790.
[9] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
[10] 刘鹏, 江志红, 于华英, 秦怡. 全球海表温度在不同时间尺度的主模态对比分析[J]. 地球科学进展, 2014, 29(7): 844-853.
[11] 张良侠, 胡中民, 樊江文, 邵全琴, 唐风沛. 区域尺度生态系统水分利用效率的时空变异特征研究进展[J]. 地球科学进展, 2014, 29(6): 691-699.
[12] 段静, 陈朝晖, 吴立新. 黑潮源区海流季节内变化观测分析[J]. 地球科学进展, 2014, 29(4): 523-530.
[13] 尹金方, 王东海, 翟国庆. 区域中尺度模式云微物理参数化方案特征及其在中国的适用性[J]. 地球科学进展, 2014, 29(2): 238-249.
[14] 王振宇, 杨勤勇, 李振春, 胡光辉, 尹力, 王杰. 近地表速度建模研究现状及发展趋势[J]. 地球科学进展, 2014, 29(10): 1138-1148.
[15] 彭建, 刘焱序, 潘雅婧, 赵志强, 宋治清, 王仰麟. 基于景观格局—过程的城市自然灾害生态风险研究:回顾与展望[J]. 地球科学进展, 2014, 29(10): 1186-1196.