地球科学进展 ›› 2022, Vol. 37 ›› Issue (9): 915 -924. doi: 10.11867/j.issn.1001-8166.2022.054

研究论文 上一篇    下一篇

长江口不同年代围垦区土壤有机质结构组成特征
陈庆强( ), 王雪悦, 姚振兴, 杨钦川   
  1. 华东师范大学河口海岸学国家重点实验室,上海 200241
  • 收稿日期:2022-06-06 修回日期:2022-08-01 出版日期:2022-09-10
  • 基金资助:
    国家自然科学基金项目“长江口埋藏盐沼土壤碳汇稳定性及其主控因子研究”(42077279);“近百年长江口盐沼发育对流域来水来沙的响应”(41471161)

Characteristics of Soil Organic Matter Structure in Typical Reclamation Areas of the Yangtze River Estuary

Qingqiang CHEN( ), Xueyue WANG, Zhenxing YAO, Qinchuan YANG   

  1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
  • Received:2022-06-06 Revised:2022-08-01 Online:2022-09-10 Published:2022-09-28
  • About author:CHEN Qingqiang (1969-), male, Xintai County, Shandong Province, Professor. Research area includes marine sedimentology. E-mail: qqchen@sklec.ecnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Soil carbon sink stability and its main controlling factors for the buried salt marshes in the Yangtze River estuary”(42077279);“Responses of development of the salt marshes in the Yangtze River estuary to the fluxes of water and sediments from the drainage basin in the past 100 years”(41471161)

明确盐沼土壤有机碳汇的稳定性对于科学评估海岸带“蓝碳”的碳汇潜力具有重要意义,而土壤有机质的结构组成与土壤有机碳汇的稳定性密切相关。选择长江口崇明岛东部4个成陆年代迥异的围垦区,利用固态13C核磁共振技术研究钻探取得的埋藏盐沼以及钻孔周边的林地表层土壤样品的有机质结构特征,揭示土壤有机质更新过程中有机质结构组成的变化。结果表明: 不同年代围垦区土壤有机碳官能团由表层到深层的变化特征类似,自表层的林地土壤样品至埋藏的盐沼样品,烷基碳与芳香碳的含量增加,而烷氧碳与羰基碳的含量降低。埋藏盐沼样品的烷基碳/烷氧碳含量值、芳香度与疏水碳/亲水碳含量值均大于钻孔周边林地表层土壤样品。随着埋藏深度增加,土壤有机质化学结构稳定性增强。 自西向东林地表层土壤样品烷基碳/烷氧碳含量值、芳香度、疏水碳/亲水碳含量值均小于1,呈逐渐增长趋势;脂肪族/芳香族含量的值则逐渐降低。自西向东林地表层土壤样品有机质整体分解程度较低,但呈逐渐提高趋势,有机质稳定性逐渐增强。这与树木种植时间由西向东逐渐变早,表层土壤发育时间变长有关。 自东向西,埋藏盐沼样品有机碳官能团含量与比值的变化表明,随着成陆时间延长土壤有机质稳定性不断增强。综上所述,随着成土时间延长,盐沼土壤有机质分解程度不断提高,有机质中结构稳定的组分所占的比例不断增加,易分解组分的比例不断降低,土壤有机质的稳定性不断提高。运用固态13C核磁共振技术研究长江口不同年代围垦区土壤有机质化学结构组成的变化,为揭示土壤碳汇稳定性的时间趋势及其化学机制提供了重要依据。

Clarifying the stability of salt marsh soil organic carbon sinks is of great significance when scientifically evaluating the carbon sink potential of “blue carbon” in coastal zones. The chemical structure and composition of Soil Organic Matter (SOM) are closely related to the stability of soil organic carbon sinks. This study focused on four reclamation areas with different construction times in the eastern part of Chongming Island, China. Solid-state 13C Nuclear Magnetic Resonance (13C NMR) was used to investigate the characteristics of SOM chemical structures in buried salt marsh samples obtained by drilling and topsoil samples acquired from woods around the drilling cores (CM2, CM4, CM5, and CM6). The purpose of this study was to elucidate the variations in the chemical structure of SOM during its turnover. The results showed that the variations in soil organic carbon functional groups from the surface to the deep layers exhibited similar trends for the four reclamation areas, despite different construction times. The alkyl carbon and aromatic carbon proportions showed an increasing trend whereas those of alkoxy carbon and carbonyl carbon showed a decreasing trend from the topsoil samples to the buried soil samples. The alkyl carbon/alkoxy carbon, aromaticity, and hydrophobic carbon/hydrophilic carbon of the buried salt marsh soil samples were greater than those of the topsoil samples in the woods around the drilling cores. The stability of the SOM chemical structure increased with burial depth. From west to east, alkyl carbon/alkoxy carbon, aromaticity, and hydrophobic carbon/hydrophilic carbon were all less than 1 and showed a gradually increasing trend, but aliphatic carbon/aromatic carbon gradually decreased in the topsoil samples in the woods around the drilling cores. The overall decomposition degree of organic matter in topsoil samples from the woods was low and showed a gradually increasing trend from west to east, which meant that SOM stability gradually improved. This was because the planting time for trees gradually became earlier and the development time for topsoil became longer in the woods from west to east. From east to west, the proportions and ratios of organic carbon functional groups in buried salt marsh samples showed that SOM stability increased with reclamation time. In summary, along with soil development, the decomposition degree of salt marsh SOM continued to improve, with an increasing proportion of refractory SOM components and a decreasing proportion of labile SOM components. In addition, SOM stability continued to increase. The changes in the chemical structure and composition of SOM in the reclamation areas, constructed in different years along the Yangtze River estuary, were studied using solid-state 13C NMR and the results improve understanding about the temporal trend and chemical mechanism underlying soil carbon sink stability.

中图分类号: 

表1 钻探与林地表层取样信息
Table 1 Sampling information for drilling cores and topsoils in the woods around the cores
图1 不同年代围垦区表层样品土壤有机质核磁共振波谱图
(a)CM2孔林地;(b)CM4孔林地;(c)CM5孔林地;(d)CM6孔5~6 cm
Fig. 1 Nuclear magnetic resonance spectra of soil organic matter in topsoil samples from reclamation areas constructed in different time
(a)The woods around Core CM2; (b) The woods around Core CM4; (c) The woods around Core CM5; (d) 5~6 cm of Core CM6
图2 不同年代围垦区埋藏盐沼土壤有机质核磁共振波谱图
(a)CM2孔140~141 cm;(b)CM4孔170~171 cm;(c)CM5孔112~113 cm;(d)CM6孔72~73 cm
Fig. 2 Nuclear magnetic resonance spectra of soil organic matter in buried salt marsh samples from reclamation areas constructed in different time
(a) 140~141 cm of Core CM2; (b) 170~171 cm of Core CM4; (c) 112~113 cm of Core CM5; (d) 72~73 cm of Core CM6
表2 不同年代围垦区表层与埋藏盐沼土壤有机碳官能团比例
Table 2 Ratios of organic carbon functional groups for topsoil and buried salt marsh samples from reclamation areas constructed in different time
表3 不同年代围垦区表层与埋藏盐沼土壤的理化参数
Table 3 Several physical and chemical parameters for topsoil and buried salt marsh samples from reclamation areas constructed in different time
1 MALTBY E, IMMIRZI P. Carbon dynamics in peatlands and other wetland soils regional and global perspectives[J]. Chemosphere, 1993, 27(6): 999-1 023.
2 LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5 677): 1 623-1 627.
3 CAO Lei, SONG Jinming, LI Xuegang, et al. Deposition and burial of organic carbon in coastal salt marsh: research progress[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 2 040-2 048.
曹磊, 宋金明, 李学刚, 等. 滨海盐沼湿地有机碳的沉积与埋藏研究进展[J]. 应用生态学报, 2013, 24(7): 2 040-2 048.
4 MAO D H, WANG Z M, LI L, et al. Soil organic carbon in the Sanjiang Plain of China: storage, distribution and controlling factors[J]. Biogeosciences, 2015, 12(6): 1 635-1 645.
5 CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 2003, 17(4): 1111.
6 TRUMBORE S E, CZIMCZIK C I. An uncertain future for soil carbon[J]. Science, 2008, 321(5 895): 1 455-1 456.
7 LI Zhongpei, LIU Ming, JIANG Chunyu. Decomposition, accumulation and distribution of soil organic matter in typical red soil region of China[J]. Soils, 2015, 47(2):220-228.
李忠佩, 刘明, 江春玉. 红壤典型区土壤中有机质的分解、积累与分布特征研究进展[J]. 土壤, 2015, 47(2): 220-228.
8 CEPÁKOVÁ S, FROUZ J. Changes in chemical composition of litter during decomposition: a review of published 13C NMR spectra[J]. Journal of Soil Science and Plant Nutrition, 2015, 15(3): 215-219.
9 SOUCÉMARIANADIN L N, ERHAGEN B, NILSSON M B, et al. Two dimensional NMR spectroscopy for molecular characterization of soil organic matter: application to boreal soils and litter[J]. Organic Geochemistry, 2017, 113: 184-195.
10 NEWELL S Y, PORTER D. Microbial secondary production from salt marsh-grass shoots, and its known and potential fates[M]//WEINSTEIN M P, KREEGER D A. Concepts and controversies in tidal marsh ecology. Dordrecht: Springer, 2002: 159-185.
11 BENBI D K, BOPARAI A K, BRAR K. Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter[J]. Soil Biology and Biochemistry, 2014, 70(2): 183-192.
12 WANG Feng, CHEN Yuzhen, YOU Zhiming, et al. Effect of temperature on organic carbon mineralization in two types of soil at tea plantations[J]. Fujian Journal of Agricultural Sciences, 2016, 31(9): 993-999.
王峰, 陈玉真, 尤志明, 等. 培养温度对不同类型茶园土壤有机碳矿化的影响[J]. 福建农业学报, 2016, 31(9): 993-999.
13 WANG Jingkuan, XU Yingde, DING Fan, et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review[J]. Acta Pedologica Sinica,2019,56(3): 528-540.
汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展[J]. 土壤学报, 2019, 56(3): 528-540.
14 TOWETT E K, SHEPHERD K D, TONDOH J E, et al. Total elemental composition of soils in Sub-Saharan Africa and relationship with soil forming factors[J]. Geoderma Regional, 2015, 5: 157-168.
15 LEINWEBER P, JANDL G, BAUM C, et al. Stability and composition of soil organic matter control respiration and soil enzyme activities[J]. Soil Biology and Biochemistry, 2008, 40(6): 1 496-1 505.
16 YAZDANSHENAS H, TAVILI A, JAFARI M, et al. Evidence for relationship between carbon storage and surface cover characteristics of soil in rangelands[J]. CATENA, 2018, 167: 139-146.
17 HANG Z S, WANG J J, LYU X G, et al. Impacts of land use change on soil organic matter chemistry in the Everglades, Florida: a characterization with pyrolysis-gas chromatography mass spectrometry[J]. Geoderma, 2019, 338: 393-400.
18 WU Qingbiao, WANG Xiaoke, GUO Ran. Soil organic carbon stability and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(5): 743-747.
吴庆标, 王效科, 郭然. 土壤有机碳稳定性及其影响因素[J]. 土壤通报, 2005, 36(5): 743-747.
19 YANG Zhongwei. The quantitative technique of pyrolysis GC-MS and its application in geochemistry[D]. Beijing: University of Chinese Academy of Sciences, 2012.
杨中威. 裂解气相色谱质谱定量技术及其应用[D]. 北京: 中国科学院研究生院, 2012.
20 HANG Ziqing, WANG Guoxiang, LIU Jine, et al. Characterization of soil organic carbon fractions at Spartina alterniflora salt marsh in north Jiangsu[J]. Acta Ecologica Sinica, 2014, 34(15): 4 175-4 182.
杭子清, 王国祥, 刘金娥, 等. 互花米草盐沼土壤有机碳库组分及结构特征[J]. 生态学报, 2014, 34(15): 4 175-4 182.
21 WANG Junmei, OUYANG Jie, SHANG Qian, et al. Application of the NMR techniques in studies on organic matters in soil[J]. Chinese Journal of Magnetic Resonance, 2008, 25(2): 287-295.
王俊美, 欧阳捷, 尚倩, 等. 土壤有机质研究中的核磁共振技术[J]. 波谱学杂志, 2008, 25(2): 287-295.
22 LI Guodong, LIU Guoqun, ZHUANG Shunyao, et al. Changes of organic matter in soils planted Lei Bamboo with different years[J]. Chinese Journal of Soil Science, 2010, 41(4): 845-849.
李国栋, 刘国群, 庄舜尧, 等. 不同种植年限下雷竹林土壤的有机质转化[J]. 土壤通报, 2010, 41(4): 845-849.
23 ZHOU Ping, PICCOLO A, PAN Genxing, et al. SOC enhancement in three major types of paddy soils in a long-term agro-ecosystem experiment in south China Ⅲ. structural variation of particulate organic matter of two paddy soils[J]. Acta Pedologica Sinica, 2009, 46(3): 398-405.
周萍, Alessandro Piccolo, 潘根兴, 等. 三种南方典型水稻土长期试验下有机碳积累机制研究Ⅲ.两种水稻土颗粒有机质结构特征的变化[J]. 土壤学报, 2009, 46(3): 398-405.
24 ZHOU Ping, PAN Genxing, PICCOLO A, et al. SOC enhancement in major types of paddy soils under long-term agro-ecosystem experiments from South China Ⅳ.molecular characterization of particulate organic carbon by TMAH Thermochemolysis-GC/MS[J]. Acta Pedologica Sinica, 2011, 48(1): 112-124.
周萍, 潘根兴, Alessandro Piccolo, 等. 南方典型水稻土长期试验下有机碳积累机制研究Ⅳ.颗粒有机质热裂解—气相—质谱法分子结构初步表征[J]. 土壤学报, 2011, 48(1): 112-124.
25 SANTÍN C, de la ROSA J M, KNICKER H, et al. Effects of reclamation and regeneration processes on organic matter from estuarine soils and sediments[J]. Organic Geochemistry, 2009, 40(9): 931-941.
26 de la ROSA J M, GONZÁLEZ-PÉREZ J A, GONZÁLEZ-VILA F J, et al. Molecular composition of sedimentary humic acids from south west Iberian Peninsula: a multi-proxy approach[J]. Organic Geochemistry, 2011, 42(7): 791-802.
27 YAO Zhenxing. Response of evolution of the salt marsh in the eastern part of Chongming Island to the sediment discharge from Yangtze River in recent six decades[D]. Shanghai: East China Normal University, 2018.
姚振兴. 近六十年来崇明岛东部盐沼发育对长江入海水沙的响应[D]. 上海: 华东师范大学, 2018.
28 FONTAINE S, BAROT S, BARRÉ P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450: 277-280.
29 RUMPEL C, KÖGEL-KNABNER I. Deep soil organic matter: a key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2011, 338(1/2): 143-158.
30 SUN Huimin, JIANG Jiang, CUI Lina, et al. Effects of Spartina alterniflora invasion on soil organic carbon composition of mangrove wetland in Zhangjiang River estuary[J]. Chinese Journal of Plant Ecology, 2018, 42(7): 774-784.
孙慧敏, 姜姜, 崔莉娜, 等. 互花米草入侵对漳江口红树林湿地土壤有机碳官能团特征的影响[J]. 植物生态学报, 2018, 42(7): 774-784.
31 TRINSOUTROT I, MONROZIER L J, CELLIER J, et al. Assessment of the biochemical composition of oilseed rape (Brassica napus L.) 13C-labelled residues by global methods, FTIR and 13C NMR CP/MAS[J]. Plant and Soil, 2001, 234(1): 61-72.
32 LIANG Y T, JIANG Y J, WANG F, et al. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover[J]. The ISME Journal, 2015, 9(12): 2 561-2 572.
33 BIEDERBECK V O, JANZEN H H, CAMPBELL C A, et al. Labile soil organic matter as influenced by cropping practices in an arid environment[J]. Soil Biology & Biochemistry, 1994, 26(12): 1 647-1 656.
34 PARFITT R L, NEWMAN R H. 13C-NMR study of pine needle decomposition[J]. Plant and Soil, 2000, 219(1/2): 273-278.
35 KÖGEL-KNABNER I. 13C and 15N NMR spectroscopy as a tool in soil organic matter studies[J]. Geoderma, 1997, 80(3/4):243-270.
36 LI Changming, WANG Xiaoyue, SUN Bo. Advances in studying mechanisms of plant residue decomposition and turnover based on solid-state 13C nuclear magnetic resonance spectroscopy[J]. Soils, 2017, 49(4): 658-664.
李昌明, 王晓玥, 孙波. 基于固态13C核磁共振波谱研究植物残体分解和转化机制的进展[J]. 土壤, 2017, 49(4): 658-664.
37 MAO J D, OLK D C, FANG X W, et al. Influence of animal manure application on the chemical structures of soil organic matter as investigated by advanced solid-state NMR and FT-IR spectroscopy[J]. Geoderma, 2008, 146(1/2): 353-362.
38 USSIRI D A N, JOHNSON C E. Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods[J]. Geoderma, 2003, 111(1/2): 123-149.
39 SOLOMON D, LEHMANN J, KINYANGI J, et al. Long term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems[J]. Global Change Biology, 2007, 13(2): 511-530.
40 VEUM K S, GOYNE K W, KREMER R J, et al. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum[J]. Biogeochemistry, 2014, 117(1): 81-99.
41 LI Jinjin, JI Hongbing. Study on solid state 13C nuclear magnetic resonance technology of soil humic substances[J]. Journal of Anhui Agricultural Sciences, 2015, 43(10): 111-112, 115.
李今今, 季宏兵. 土壤腐殖物质的固体13C核磁共振技术研究[J]. 安徽农业科学, 2015, 43(10): 111-112, 115.
42 WANG Xueyue, CHEN Qingqiang. Changes of soil organic matter composition in typical reclamation areas of eastern Chongming Island[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 374-387.
王雪悦, 陈庆强. 崇明岛东部不同年代围垦区土壤有机质组成变化研究[J]. 环境科学学报, 2022, 42(2): 374-387.
43 GONÇALVES C N, DALMOLIN R S, DICK D P, et al. The effect of 10% HF treatment on the resolution of CPMAS 13C NMR spectra and on the quality of organic matter in Ferralsols[J]. Geoderma, 2003, 116(3/4): 373-392.
44 DOU S, ZHANG J J, LI K. Effect of organic matter applications on 13C-NMR spectra of humic acids of soil[J]. European Journal of Soil Science, 2008, 59(3): 532-539.
45 ZHUO Suneng, WEN Qixiao. New advances in applying nuclear magnetic resonance spectroscopy in soil organic matter research[J]. Progress in Soil Science, 1994, 22(5): 46-52.
卓苏能, 文启孝. 核磁共振技术在土壤有机质研究中应用的新进展(上)[J]. 土壤学进展, 1994, 22(5): 46-52.
46 SPACCINI R, MBAGWU J S, CONTE P, et al. Changes of humic substances characteristics from forested to cultivated soils in Ethiopia[J]. Geoderma, 2006, 132(1/2): 9-19.
47 QUIDEAU S A, ANDERSON M A, GRAHAM R C, et al. Soil organic matter processes: characterization by 13C NMR and 14C measurements[J]. Forest Ecology and Management, 2000, 138(1/2/3): 19-27.
48 LEMMA B, NILSSON I, KLEJA D B, et al. Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia[J]. Soil Biology and Biochemistry, 2007, 39(9): 2 317-2 328.
[1] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[2] 李建国, 王文超, 濮励杰, 刘丽丽, 张忠启, 李强. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.
[3] 吴伊婧, 范代读, 印萍, 胡虞杨. 近岸底层水体低氧沉积记录研究进展[J]. 地球科学进展, 2016, 31(6): 567-580.
[4] 李启权,王昌全,岳天祥,张文江,余勇. 基于神经网络模型的中国表层土壤有机质空间分布模拟方法[J]. 地球科学进展, 2012, 27(2): 175-184.
[5] 赵同谦,张华,徐华山,贺玉晓. 黄河湿地孟津段不同植物群落类型土壤有机质含量变化特征研究[J]. 地球科学进展, 2008, 23(6): 638-643.
[6] 陈庆强,孟翊,周菊珍,顾靖华,胡克林. 长江口盐沼滩面发育对有机碳深度分布的制约[J]. 地球科学进展, 2007, 22(1): 26-32.
[7] 吴乐知,蔡祖聪. 中国土壤有机质含量变异性与空间尺度的关系[J]. 地球科学进展, 2006, 21(9): 965-972.
[8] 饶志国,朱照宇,陈发虎,张家武. 黄土有机质稳定碳同位素研究进展[J]. 地球科学进展, 2006, 21(1): 62-69.
[9] 陶贞;沈承德;易惟熙;高全洲. 土壤碳动力学同位素示踪研究进展[J]. 地球科学进展, 2004, 19(5): 793-801.
[10] 魏俊峰,吴大清. 矿物—水界面的表面离子化和络合反应模式[J]. 地球科学进展, 2000, 15(1): 90-96.
[11] 陈庆强,沈承德,易惟熙,彭少麟,李志安. 土壤碳循环研究进展[J]. 地球科学进展, 1998, 13(6): 555-563.
阅读次数
全文


摘要