地球科学进展 ›› 2022, Vol. 37 ›› Issue (9): 925 -936. doi: 10.11867/j.issn.1001-8166.2022.052

研究论文 上一篇    下一篇

河西走廊不同强度槽型沙尘暴垂直动量传输特征分析
张春燕 1 , 2( ), 李岩瑛 1 , 2( ), 马幸蔚 1, 李晓京 1, 聂鑫 2   
  1. 1.武威市气象局,甘肃 武威 733000
    2.中国气象局兰州干旱气象研究所,甘肃省干旱气候变化 与减灾重点实验室/中国气象局干旱气候变化与减灾重点开放实验室,甘肃 兰州 730020
  • 收稿日期:2022-01-20 修回日期:2022-07-24 出版日期:2022-09-10
  • 通讯作者: 李岩瑛 E-mail:1325086269@qq.com;lyyqxj@163.com
  • 基金资助:
    国家自然科学基金面上项目“河西地区高层大气向边界层动量下传对强沙尘暴的影响机制”(41975015)

Analysis of the Vertical Momentum Transmission Characteristics of Different Intensity Trough Type Sandstorm Along the Hexi Corridor, China

Chunyan ZHANG 1 , 2( ), Yanying LI 1 , 2( ), Xingwei MA 1, Xiaojing LI 1, Xin NIE 2   

  1. 1.Wuwei Meteorological Bureau, Wuwei Gansu 733000, China
    2.Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province/Key Open Laboratory of Arid Climatic Change and Disaster Reduction of China Meteorological Administration/Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China
  • Received:2022-01-20 Revised:2022-07-24 Online:2022-09-10 Published:2022-09-28
  • Contact: Yanying LI E-mail:1325086269@qq.com;lyyqxj@163.com
  • About author:ZHANG Chunyan (1990-), female, Baiyin City, Gansu Province, Engineer. Research areas include weather forecast and research. E-mail: 1325086269@qq.com
  • Supported by:
    the National Natural Science Foundation of China “Influence mechanism of momentum downward propagation from upper atmosphere to boundary layer on strong sandstorms over Hexi area”(41975015)

利用河西走廊13个气象站逐时地面气象观测资料和MICAPS高低空资料,对该区2010年4月24~25日、2014年4月23~24日和2018年4月4日3次不同强度槽型沙尘暴过程垂直动量特征进行诊断分析,得到槽型沙尘暴的垂直动量传输特征,更好地为槽型沙尘暴的精细化网格预报预警提供有力技术支撑,增强大风强沙尘暴的防灾减灾能力。结果表明:300 hPa极锋急流是造成河西走廊地区槽型沙尘暴的主要高空动力系统,大风沙尘暴出现在高空偏西风急流(≥32 m/s)、中空急流(≥20 m/s)和低空急流(≥12 m/s)附近。沙尘暴前期,近地层大气干热,当高空冷空气侵入,与中低层暖空气进行剧烈交换,在边界层形成不稳定层结;高空槽后冷空气下沉(冷平流中心强度小于等于-10×10-5 K/s),将强风迅速向下传递到地面产生大风;槽前高空急流加强垂直动力抽吸,深厚的辐合辐散区与地面冷锋增强上升运动,最大上升速度位于500 hPa,强度小于等于-30×10-5 Pa/s。沙尘暴区距离高空急流轴中心位置越近,辐合辐散中心差值越大、垂直距离越近,辐合中心位置越低,对流性不稳定层结越厚、所处高度越低,冷平流中心强度越强,最大上升速度区与冷平流中心距离越近,沙尘暴强度越强、持续时间越长;300 hPa高空急流轴中心控制河西走廊地区的范围越广,沙尘暴出现范围越大。

Hourly surface meteorological observation data from 13 weather stations along the Hexi Corridor, China, and MICAPS high- and low-air data were used to analyze the vertical structure characteristics of trough-type strong sandstorm weather over the Hexi Corridor on April 24~25, 2010, April 23~24, 2014, and April 4, 2018. The results show that the polar front jet at 300 hPa is the main upper air dynamic system causing trough sandstorms in the Hexi Corridor area. Gale sandstorms appear near the upper-air westerly jet (≥32 m/s), hollow jet (≥20 m/s), and low-level jet (≥12 m/s). In the early stages of a sandstorm, the surface layer air is dry and hot. Then, the cold air invades, resulting in a violent exchange between the cold and warm air, which leads to the formation of an unstable layer junction in the boundary layer. The cold air sinks after the high trough (the central strength of cold current less than or equal to -10×10-5 K/s), which rapidly transfers the strong wind down to the ground and generates strong winds. The upper-level jet in front of the trough strengthens the vertical dynamic pumping, and the deep convergence and divergence zones and the surface cold front enhance the upward movement. The maximum upward velocity was observed at 500 hPa and its intensity was less than or equal to -30×10-5 Pa/s. The closer the sandstorm is to the center of the jet stream axis, the greater the difference in convergence and divergence centers. The closer the vertical distance, the lower the convergence center position, the thicker the convectional unstable stratification, the lower the height, the stronger the intensity of the cold advection center, and the rising speed area reaches a maximum. The nearer the cold advection is to the center distance, the stronger the sandstorm and the longer the duration. The wider the center, the more the 300 hPa upper-level jet axis controls the Hexi corridor area and the wider the sandstorm appears.

中图分类号: 

1 ZHANG Zhengcai, PAN Kaijia, LIANG Aimin, et al. Progress on process and mechanism of sand and dust emission on Gobi[J]. Advances in Earth Science, 2019, 34(9): 891-900.
张正偲, 潘凯佳, 梁爱民, 等. 戈壁沙尘释放过程与机理研究进展[J]. 地球科学进展, 2019, 34(9): 891-900.
2 LI Lingping, LI Yanying, LI Xiaojing, et al. Characteristics of circulation and dynamic of the different cold front sandstorm processes in Hexi Corridor[J]. Journal of Desert Research, 2021, 41(5): 219-228.
李玲萍, 李岩瑛, 李晓京, 等. 河西走廊不同强度冷锋型沙尘暴环流和动力特征[J]. 中国沙漠, 2021, 41(5): 219-228.
3 NKOSI V, MATHEE A, BLESIC S, et al. Exploring meteorological conditions and human health impacts during two dust storm events in northern Cape Province, South Africa: findings and lessons learnt[J]. Atmosphere, 2022, 13(3): 424.
4 GAROFALIDE S, POSTOLACHI C, COCEAN A, et al. Saharan dust storm aerosol characterization of the event (9 to 13 May 2020) over European AERONET sites[J]. Atmosphere, 2022, 13(3): 493.
5 MALEKI H, SOROOSHIAN A, ALAM K, et al. The impact of meteorological parameters on PM10 and visibility during the Middle Eastern dust storms[J]. Journal of Environmental Health Science and Engineering, 2022, 20(1): 495-507.
6 SAHA S, SHARMA S, CHHABRA A, et al. Impact of dust storm on the atmospheric boundary layer: a case study from western India[J]. Natural Hazards, 2022, 113(1): 143-155.
7 YANG Xiaojun, ZHANG Qiang, YE Peilong, et al. Characteristics and causes of persistent sand-dust weather in mid-March 2021 over Northern China[J]. Journal of Desert Research, 2021, 41(3): 245-255.
杨晓军, 张强, 叶培龙, 等. 中国北方2021年3月中旬持续性沙尘天气的特征及其成因[J]. 中国沙漠, 2021, 41(3): 245-255.
8 LI Na, MIN Yue, TANG Hao, et al. Analyzing the dynamic structural characteristics of the severe sandstorm caused by cold air crossing mountains in Southern Xinjiang on April 23rd, 2014[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 792-800.
李娜, 闵月, 汤浩, 等. “4·23”南疆翻山型强沙尘暴动力结构特征分析[J]. 冰川冻土, 2017, 39(4): 792-800.
9 WANG Minzhong, WEI Wenshou, YANG Lianmei, et al. Analysis on circulation dynamical structure of a strong sand-dust storm case from east in Tarim Basin[J]. Journal of Desert Research, 2008, 28(2): 370-376.
王敏仲, 魏文寿, 杨莲梅, 等. 塔里木盆地一次东灌型沙尘暴环流动力结构分析[J]. 中国沙漠, 2008, 28(2): 370-376.
[1] 邓振镛,王鹤龄,李国昌,辛吉武,张宇飞,徐金芳. 气候变暖对河西走廊棉花生产影响的成因与对策研究[J]. 地球科学进展, 2008, 23(2): 160-166.
[2] 蓝永超, 康尔泗,张济世,胡兴林,陈仁升. 河西内陆干旱区地表和地下水资源的相互转化研究[J]. 地球科学进展, 2002, 17(4): 535-545.
阅读次数
全文


摘要