1 |
MARGESIN R, COLLINS T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge[J]. Applied Microbiology and Biotechnology, 2019, 103(6): 2 537-2 549.
|
2 |
ZAWIERUCHA K, BUDA J, AZZONI R S, et al. Water bears dominated cryoconite hole ecosystems: densities, habitat preferences and physiological adaptations of Tardigrada on an alpine glacier[J]. Aquatic Ecology, 2019, 53(4): 543-556.
|
3 |
BOETIUS A, ANESIO A M, DEMING J W, et al. Microbial ecology of the cryosphere: sea ice and glacial habitats[J]. Nature Reviews Microbiology, 2015, 13(11): 677-690.
|
4 |
TURCHETTI B, BUZZINI P, GORETTI M, et al. Psychrophilic yeasts in glacial environments of alpine glaciers[J]. FEMS Microbiology Ecology, 2008, 63(1): 73-83.
|
5 |
ANESIO A M, LAYBOURN-PARRY J. Glaciers and ice sheets as a biome[J]. Trends in Ecology & Evolution, 2012, 27(4): 219-225.
|
6 |
TAKEUCHI N. Encyclopedia of snow, ice and glaciers[M]. Heidelberg: Springer Netherlands, 2011.
|
7 |
FRANZETTI A, TAGLIAFERRI I, GANDOLFI I, et al. Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces[J]. The ISME Journal, 2016, 10(12): 2 984-2 988.
|
8 |
HOOD E, BATTIN T J, FELLMAN J, et al. Storage and release of organic carbon from glaciers and ice sheets[J]. Nature Geoscience, 2015, 8(2): 91-96.
|
9 |
ZENG J, LOU K, ZHANG C J, et al. Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of Tianshan Mountain, China[J]. Frontiers in Microbiology, 2016, 7: 1353.
|
10 |
SEGAWA T, ISHII S, OHTE N, et al. The nitrogen cycle in cryoconites:naturally occurring nitrification-denitrification granules on a glacier[J]. Environmental Microbiology, 2014, 16(10): 3 250-3 262.
|
11 |
BENISTON M, FARINOTTI D, ANDREASSEN L M, et al. The European mountain cryosphere: a review of its current state, trends, and future challenges[J]. The Cryosphere, 2018, 12: 759-794.
|
12 |
BIBI S, WANG L, LI X, et al. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review[J]. International Journal of Climatology, 2018, 38(): e1-e17.
|
13 |
HOTALING S, HOOD E, HAMILTON T L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate[J]. Environmental Microbiology, 2017, 19(8): 2 935-2 948.
|
14 |
FRANZETTI A, NAVARRA F, TAGLIAFERRI I, et al. Temporal variability of bacterial communities in cryoconite on an alpine glacier[J]. Environmental Microbiology Reports, 2017, 9(2): 71-78.
|
15 |
CHOUDHARI S, LOHIA R, GRIGORIEV A. Comparative metagenome analysis of an Alaskan glacier[J]. Journal of Bioinformatics and Computational Biology, 2014, 12(2): 1441003.
|
16 |
ALIYU H, MAAYER P D, SJÖLING S, et al. 17 metagenomic analysis of low-temperature environments[M]// MARGESIN R. Psychrophiles: from biodiversity to biotechnology. Heidelberg: Springer Berlin, 2017: 389-421.
|
17 |
HUANG Li, FENG Xuelian, DU Quansheng, et al. Focusing on key scientific issues of microbiome research in hydrosphere: NSFC major research plan for microbes in hydrosphere[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(3): 266-272.
|
|
黄力, 冯雪莲, 杜全生, 等. 水圈微生物重大研究计划: 聚焦水圈微生物组研究的核心科学问题[J]. 中国科学院院刊, 2017, 32(3): 266-272.
|
18 |
LIU Y, JI M, YU T, et al. A genome and gene catalog of glacier microbiomes[J]. Nature Biotechnology, 2022, 40: 1 341-1 348.
|
19 |
HASSAN N, ANESIO A M, RAFIQ M, et al. Temperature driven membrane lipid adaptation in glacial psychrophilic bacteria[J]. Frontiers in Microbiology, 2020, 11: 824.
|
20 |
WANG C, OLIVER E E, CHRISTNER B C, et al. Functional analysis of a bacterial antifreeze protein indicates a cooperative effect between its two ice-binding domains[J]. Biochemistry, 2016, 55(28): 3 975-3 983.
|
21 |
SINGH P, HANADA Y, SINGH S M, et al. Antifreeze protein activity in Arctic cryoconite bacteria[J]. FEMS Microbiology Letters, 2014, 351(1): 14-22.
|
22 |
CHRISMAS N A M, BARKER G, ANESIO A M, et al. Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401[J]. BMC Genomics, 2016, 17: 533.
|
23 |
TAO L, GU Y, ZHENG X, et al. Cultivable bacteria isolated from the meltwater of the Glacier No.1 at headwater of the Urumqi River in Tianshan Mountains: physiological-biochemical characteristics and phylogeny[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 511-521.
|
24 |
KUMAR R, SINGH D, SWARNKAR M K, et al. Complete genome sequence of Arthrobacter sp ERGS1: 01, a putative novel bacterium with prospective cold active industrial enzymes, isolated from East Rathong glacier in India[J]. Journal of Biotechnology, 2015, 214: 139-140.
|
25 |
LIU Q, LI W, LIU D, et al. Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin[J]. The ISME Journal, 2021,15(6):1 844-1 857.
|
26 |
DIAL R J, GANEY G Q, SKILES S M. What color should glacier algae be? An ecological role for red carbon in the cryosphere[J]. FEMS Microbiology Ecology, 2018, 94(3). DOI: 10.1093/femsec/fiy007 .
|
27 |
LEE Y M, KIM G, JUNG Y J, et al. Polar and Alpine Microbial Collection (PAMC): a culture collection dedicated to polar and alpine microorganisms[J]. Polar Biology, 2012, 35(9): 1 433-1 438.
|
28 |
PAUN V I, LAVIN P, CHIFIRIUC M C, et al. First report on antibiotic resistance and antimicrobial activity of bacterial isolates from 13,000-year old cave ice core[J]. Scientific Reports, 2021, 11(1):514.
|
29 |
RAFIQ M, HASSAN N, HAYAT M, et al. Geochemistry and insights into the distribution of biotechnological important fungi from the third pole of the world, Karakoram Mountains range[J]. Geomicrobiology Journal, 2021, 38(5): 395-403.
|
30 |
FERRARIO C, PITTINO F, TAGLIAFERRI I, et al. Bacteria contribute to pesticide degradation in cryoconite holes in an alpine glacier[J]. Environmental Pollution, 2017, 230: 919-926.
|
31 |
HODSON A, ANESIO A M, TRANTER M, et al. Glacial ecosystems[J]. Ecological Monographs, 2008, 78(1): 41-67.
|
32 |
RIME T, HARTMANN M, FREY B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier[J]. The ISME Journal, 2016, 10(7): 1 625-1 641.
|
33 |
DARCY J L, KING A J, GENDRON E M S, et al. Spatial autocorrelation of microbial communities atop a debris-covered glacier is evidence of a supraglacial chronosequence[J]. FEMS Microbiology Ecology, 2017, 93(8). DOI:10.1093/ femsec/fix095 .
|
34 |
LIU Q, ZHOU Y G, XIN Y H. High diversity and distinctive community structure of bacteria on glaciers in China revealed by 454 pyrosequencing[J]. Systematic and Applied Microbiology, 2015, 38(8): 578-585.
|
35 |
ZHANG D C, BUSSE H J, LIU H C, et al. Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(3): 587-591.
|
36 |
WEILAND-BRÄUER N, FISCHER M A, SCHRAMM K W, et al. Polychlorinated Biphenyl (PCB)-degrading potential of microbes present in a cryoconite of Jamtalferner Glacier[J]. Frontiers in Microbiology, 2017, 8: 1105.
|
37 |
MARGESIN R, SCHUMANN P, ZHANG D C, et al. Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62: 397-402.
|
38 |
LEE Y M, KIM S Y, JUNG J, et al. Cultured bacterial diversity and human impact on alpine glacier cryoconite[J]. Journal of Microbiology, 2011, 49(3): 355-362.
|
39 |
BALCAZAR W, RONDÓN J, RENGIFO M, et al. Bioprospecting glacial ice for plant growth promoting bacteria[J]. Microbiological Research, 2015, 177: 1-7.
|
40 |
ZHANG S H, YANG G L, WANG Y T, et al. Abundance and community of snow bacteria from three glaciers in the Tibetan Plateau[J]. Journal of Environmental Sciences, 2010, 22(9): 1 418-1 424.
|
41 |
SHERPA M T, NAJAR I N, DAS S, et al. Bacterial diversity in an alpine debris-free and debris-cover accumulation zone glacier ice, north Sikkim, India[J]. Indian Journal of Microbiology, 2018, 58(4): 470-478.
|
42 |
AMARETTI A, SIMONE M, QUARTIERI A, et al. Isolation of carotenoid-producing yeasts from an alpine glacier[J]. Chemical Engineering Transactions, 2014, 38: 217-222.
|
43 |
SINGH P, ROY U, TSUJI M. Characterisation of yeast and filamentous fungi from Brøggerbreen Glaciers, Svalbard[J]. Polar Record, 2016, 52(4): 442-449.
|
44 |
AZZONI R S, FRANZETTI A, FONTANETO D, et al. Nematodes and rotifers on two Alpine debris-covered glaciers[J]. Italian Journal of Zoology, 2015, 82(4): 616-623.
|
45 |
SINGH P, SINGH S M, ROY U. Taxonomic characterization and the bio-potential of bacteria isolated from glacier ice cores in the High Arctic[J]. Journal of Basic Microbiology, 2016, 56(3): 275-285.
|
46 |
CHEN Y, LI X K, SI J, et al. Changes of the bacterial abundance and communities in shallow ice cores from Dunde and Muztagata Glaciers, Western China[J]. Frontiers in Microbiology, 2016, 7:1716.
|
47 |
JIANG Yanjie, JIANG Jiawang. Screening of Lipase-producing yeasts from the Glacier No.1 in Tianshan Mountains and its phylogenetic analysis[J]. Light Industry Science and Technology, 2016, 32(3):1-3.
|
|
蒋琰洁, 蒋佳旺. 天山一号冰川产脂肪酶酵母菌的筛选及其系统发育分析[J]. 轻工科技, 2016, 32(3): 1-3.
|
48 |
BRAD T, ITCUS C, PASCU M D, et al. Fungi in perennial ice from Scărișoara Ice Cave (Romania)[J]. Scientific Reports, 2018, 8(1): 10096.
|
49 |
REN Z, GAO H K, LUO W, et al. Bacterial communities in surface and basal ice of a glacier terminus in the headwaters of Yangtze River on the Qinghai-Tibet Plateau[J]. Environmental Microbiome, 2022, 17(1): 12.
|
50 |
SUŁOWICZ S, BONDARCZUK K, IGNATIUK D, et al. Microbial communities from subglacial water of naled ice bodies in the forefield of Werenskioldbreen, Svalbard[J]. Science of the Total Environment, 2020, 723: 138025.
|
51 |
PERINI L, GOSTINČAR C, GUNDE-CIMERMAN N. Fungal and bacterial diversity of Svalbard subglacial ice[J]. Scientific Reports, 2019, 9(1): 20230.
|
52 |
WANG Xuxian, GU Yanling, NI Xuejiao, et al. Composition and phylogeny of fungal community in supraglacial cryoconite and subglacial sediments of the Glacier No.1 at headwaters of the Urumqi River in Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 781-791.
|
|
王叙贤, 顾燕玲, 倪雪姣, 等. 天山乌源1号冰川表面冰尘及底部沉积层真菌群落结构比较及其系统发育分析[J]. 冰川冻土, 2017, 39(4): 781-791.
|
53 |
ZHU L, LIU Q, LIU H C, et al. Flavobacterium noncentrifugens sp.nov., a psychrotolerant bacterium isolated from glacier meltwater[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 6: 2 032-2 037.
|
54 |
SINHA R K, KRISHNAN K P, HATHA A A M, et al. Diversity of retrievable heterotrophic bacteria in Kongsfjorden, an Arctic fjord[J]. Brazilian Journal of Microbiology, 2017, 48(1): 51-61.
|
55 |
WU X K, ZHANG W, LIU G X, et al. Bacterial diversity in the foreland of the Tianshan No. 1 glacier, China[J]. Environmental Research Letters, 2012, 7(1): 014038.
|
56 |
TIAN J Q, QIAO Y C, WU B, et al. Ecological succession pattern of fungal community in soil along a retreating glacier[J]. Frontiers in Microbiology, 2017, 8: 1028.
|
57 |
MATSUOKA S, OGISU Y, SAKOH S, et al. Taxonomic, functional, and phylogenetic diversity of fungi along primary successional and elevational gradients near Mount Robson, British Columbia[J]. Polar Science, 2019, 21: 165-171.
|
58 |
LEI Y B, ZHOU J, XIAO H F, et al. Soil nematode assemblages as bioindicators of primary succession along a 120-year-old chronosequence on the Hailuogou Glacier forefield, SW China[J]. Soil Biology & Biochemistry, 2015, 88: 362-371.
|
59 |
HAMILTON T L, HAVIG J. Primary productivity of snow algae communities on stratovolcanoes of the Pacific Northwest[J]. Geobiology, 2017, 15(2): 280-295.
|
60 |
FIOŁKA M J, TAKEUCHI N, SOFIŃSKA-CHMIEL W, et al. Morphological and physicochemical diversity of snow algae from Alaska[J]. Scientific Reports, 2020, 10(1): 19167.
|
61 |
TANAKA S, TAKEUCHI N, MIYAIRI M, et al. Snow algal communities on glaciers in the Suntar-Khayata Mountain Range in eastern Siberia, Russia[J]. Polar Science, 2016, 10(3): 227-238.
|
62 |
MØLLER A K, SØBORG D A, Abu AL-SOUD W, et al. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation[J]. Polar Research, 2013, 32(1): 17390.
|
63 |
GARCIA V D, BRIZZIO S, van BROOCK M R. Yeasts from glacial ice of Patagonian Andes, Argentina[J]. FEMS Microbiology Ecology, 2012, 82(2): 540-550.
|
64 |
HASSAN N, HASAN F, NADEEM S, et al. Community analysis and characterization of fungi from Batura Glacier, Karakoram Mountain range, Pakistan[J]. Applied Ecology and Environmental Research, 2018, 16(5): 5 323-5 341.
|
65 |
RAFIQ M, NADEEM S, HASSAN N, et al. Fungal recovery and characterization from Hindu Kush Mountain range, Tirich Mir Glacier, and their potential for biotechnological applications[J]. Journal of Basic Microbiology, 2020, 60(5): 444-457.
|
66 |
CHUVOCHINA M S, MARIE D, CHEVAILLIER S, et al. Community variability of bacteria in alpine snow (Mont Blanc) containing saharan dust deposition and their snow colonisation potential[J]. Microbes and Environments, 2011, 26(3): 237-247.
|
67 |
XING Tingting, LIU Yongqin, WANG Ninglian, et al. The physiological characteristics of culturable bacteria in Muztag,Yuzhufeng and Zadang glaciers on Tibetan Plateau, China[J]. Journal of Glaciology and Geocryology, 2016, 38(2):528-538.
|
|
邢婷婷, 刘勇勤, 王宁练, 等. 青藏高原木孜塔格冰川、玉珠峰冰川及扎当冰川可培养细菌的生理特征[J]. 冰川冻土, 2016, 38(2): 528-538.
|
68 |
ZHANG W, ZHANG G S, LIU G X, et al. Diversity of bacterial communities in the snowcover at Tianshan number 1 glacier and its relation to climate and environment[J]. Geomicrobiology Journal, 2012, 29(5): 459-469.
|
69 |
YAN P Y, HOU S G, QU J J, et al. Diversity of snow bacteria from the Zangser Kangri glacier in the Tibetan Plateau environment[J]. Geomicrobiology Journal, 2017, 34(1): 37-44.
|
70 |
ZHANG Shuhong, HOU Shugui, QIN Xiang, et al. Preliminary research on the dominant bacterial population affected by retreat of the Laohugou glacier No.12 in the Qilian Mountain[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 751-760.
|
|
张淑红, 侯书贵, 秦翔, 等. 祁连山老虎沟12号冰川退缩对细菌优势种群影响的初步研究[J]. 冰川冻土, 2013, 35(3): 751-760.
|
71 |
HERREID S, PELLICCIOTTI F. The state of rock debris covering Earth’s glaciers[J]. Nature Geoscience, 2020, 13(9): 621-627.
|
72 |
MILES K E, HUBBARD B, IRVINE-FYNN T D L, et al. Hydrology of debris-covered glaciers in High Mountain Asia[J]. Earth Science Reviews, 2020, 207: 103212.
|
73 |
FRANZETTI A, TATANGELO V, GANDOLFI I, et al. Bacterial community structure on two alpine debris-covered glaciers and biogeography of Polaromonas phylotypes[J]. The ISME Journal, 2013, 7(8): 1 483-1 492.
|
74 |
CACCIANIGA M, ANDREIS C, DIOLAIUTI G, et al. Alpine debris-covered glaciers as a habitat for plant life[J]. The Holocene, 2011, 21(6): 1 011-1 020.
|
75 |
SANNINO C, BORRUSO L, SMIRAGLIA C, et al. Dynamics of in situ growth and taxonomic structure of fungal communities in Alpine supraglacial debris[J]. Fungal Ecology, 2020, 44:100891.
|
76 |
GOBBI M, ISAIA M, de BERNARDI F. Arthropod colonisation of a debris-covered glacier[J]. The Holocene, 2011;21(2):343-349.
|
77 |
DARCY J L, SCHMIDT S K. Nutrient limitation of microbial phototrophs on a debris-covered glacier[J]. Soil Biology & Biochemistry, 2016, 95: 156-163.
|
78 |
EDWARDS A, ANESIO A M, RASSNER S M, et al. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard[J]. The ISME Journal, 2011, 5(1): 150-160.
|
79 |
KIM S J, SHIN S C, HONG S G, et al. Genome sequence of Janthinobacterium sp Strain PAMC 25724, isolated from alpine glacier cryoconite[J]. Journal of Bacteriology, 2012, 194(8): 2096.
|
80 |
FRANZETTI A, NAVARRA F, TAGLIAFERRI I, et al. Potential sources of bacteria colonizing the cryoconite of an alpine glacier[J]. PLoS ONE, 2017, 12(3):e0174786.
|
81 |
AMBROSINI R, MUSITELLI F, NAVARRA F, et al. Diversity and assembling processes of bacterial communities in cryoconite holes of a Karakoram glacier[J]. Microbial Ecology, 2017, 73(4): 827-837.
|
82 |
EDWARDS A, PACHEBAT J A, SWAIN M, et al. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem[J]. Environmental Research Letters, 2013, 8(3):035003.
|
83 |
EDWARDS A, MUR L A J, GIRDWOOD S E, et al. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers[J]. FEMS Microbiology Ecology, 2014, 89(2): 222-237.
|
84 |
EDWARDS A, DOUGLAS B, ANESIO A M, et al. A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard[J]. Fungal Ecology, 2013, 6(2): 168-176.
|
85 |
PITTINO F, MAGLIO M, GANDOLFI I, et al. Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability[J]. Annals of Glaciology, 2018, 59(77): 1-9.
|
86 |
CAMPEN R K, SOWERS T, ALLEY R B. Evidence of microbial consortia metabolizing within a low-latitude mountain glacier[J]. Geology, 2003, 31(3): 231-234.
|
87 |
ITCUS C, PASCU M D, BRAD T, et al. Diversity of cultured bacteria from the perennial ice block of Scarisoara Ice Cave, Romania[J]. International Journal of Speleology, 2016, 45(1): 89-100.
|
88 |
PAUN V I, ICAZA G, LAVIN P, et al. Total and potentially active bacteria communities entrapped in a late glacial through holocene ice core from Scarisoara Ice Cave, Romania[J]. Frontiers in Microbiology, 2019, 10:1193.
|
89 |
SHEN L, LIU Y, GU Z, et al. Massilia eurypsychrophila sp nov a facultatively psychrophilic bacteria isolated from ice core[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(7): 2 124-2 129.
|
90 |
ITCUS C, PASCU M D, LAVIN P, et al. Bacterial and archaeal community structures in perennial cave ice[J]. Scientific Reports, 2018, 8(1): 15671.
|
91 |
LIU Yongqin, YAO Tandong, XU Baiqing, et al. Bacterial abundance vary in muztagata ice core and respond to climate and environment change in the past hundred years[J]. Quaternary Sciences, 2013, 33(1): 19-25.
|
|
刘勇勤, 姚檀栋, 徐柏青, 等. 慕士塔格冰芯中近百年来细菌数量与气候环境变化的关系[J]. 第四纪研究, 2013, 33(1): 19-25.
|
92 |
LIU Y Q, PRISCU J C, YA T D, et al. Culturable bacteria isolated from seven high-altitude ice cores on the Tibetan Plateau[J]. Journal of Glaciology, 2019, 65(249): 29-38.
|
93 |
ZENG Y X, YAN M, YU Y, et al. Diversity of bacteria in surface ice of Austre Lovénbreen Glacier, Svalbard[J]. Archives of Microbiology, 2013, 195(5): 313-322.
|
94 |
ZHONG Z P, TIAN F N, ROUX S, et al. Glacier ice archives nearly 15, 000-year-old microbes and phages[J]. Microbiome, 2021, 9(1): 160.
|
95 |
MARTEINSSON V T, RÚNARSSON Á, STEFÁNSSON A, et al. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland[J]. The ISME Journal, 2013, 7(2): 427-437.
|
96 |
BOYD E S, HAMILTON T L, HAVIG J R, et al. Chemolithotrophic primary production in a subglacial ecosystem[J]. Applied and Environmental Microbiology, 2014, 80(19): 6 146-6 153.
|
97 |
DUNHAM E C, DORE J E, SKIDMORE M L, et al. Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments[J]. Proceedings of the National Academy of Sciences, 2021, 118(2): e2007051117.
|
98 |
HAMILTON T L, PETERS J W, SKIDMORE M L, et al. Molecular evidence for an active endogenous microbiome beneath glacial ice[J]. The ISME Journal, 2013, 7(7): 1 402-1 412.
|
99 |
NI Yongqing, GU Yanling, SHI Xuewei, et al. Phylogenetic and physiological diversity of cold-adapted bacteria producing protease from sediments of the bottom layer of the Glacier No.1 in the Tianshan Mountains[J]. Acta Microbiologica Sinica, 2013, 53(2): 164-172.
|
|
倪永清, 顾燕玲, 史学伟, 等. 天山一号冰川底部沉积层产蛋白酶耐低温菌株的筛选及其系统发育[J]. 微生物学报, 2013, 53(2): 164-172.
|
100 |
YU C R, LI Y, JIN H J, et al. Organic versus inorganic carbon exports from glacier and permafrost watersheds in Qinghai-Tibet Plateau[J]. Aquatic Geochemistry, 2021, 27(4): 283-296.
|
101 |
SINGER G A, FASCHING C, WILHELM L, et al. Biogeochemically diverse organic matter in alpine glaciers and its downstream fate[J]. Nature Geoscience, 2012, 5(10): 710-714.
|
102 |
HAN D, RICHTER-HEITMANN T, KIM I N, et al. Survey of bacterial phylogenetic diversity during the glacier melting season in an Arctic fjord[J]. Microbial Ecology, 2021, 81(3): 579-591.
|
103 |
GUTIÉRREZ M H, GALAND P E, MOFFAT C, et al. Melting glacier impacts community structure of bacteria, archaea and fungi in a Chilean Patagonia fjord[J]. Environmental Microbiology, 2015, 17(10): 3 882-3 897.
|
104 |
FREIMANN R, BÜRGMANN H, FINDLAY S E G, et al. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts[J]. The ISME Journal, 2013, 7(12): 2 361-2 373.
|
105 |
CONTE A, PAPALE M, AMALFITANO S, et al. Bacterial community structure along the subtidal sandy sediment belt of a high Arctic fjord (Kongsfjorden, Svalbard Islands)[J]. Science of the Total Environment, 2018, 619/620:203-211.
|
106 |
KOHLER T J, VINŠOVÁ P, FALTEISEK L, et al. Patterns in microbial assemblages exported from the meltwater of Arctic and sub-Arctic glaciers[J]. Frontiers in Microbiology, 2020, 11: 669.
|
107 |
CAUVY-FRAUNIÉ S, ANDINO P, ESPINOSA R, et al. Ecological responses to experimental glacier-runoff reduction in alpine rivers[J]. Nature Communications, 2016, 7: 12025.
|
108 |
VOROBYEVA S S, TRUNOVA V A, STEPANOVA O G, et al. Impact of glacier changes on ecosystem of proglacial lakes in high mountain regions of East Siberia (Russia)[J]. Environmental Earth Sciences, 2015, 74(3): 2 055-2 063.
|
109 |
LIU K S, LIU Y Q, JIAO N Z, et al. Bacterial community composition and diversity in Kalakuli, an alpine glacial-fed lake in Muztagh Ata of the westernmost Tibetan Plateau[J]. FEMS Microbiology Ecology, 2017, 93(7): fix085.
|
110 |
REN Z, GAO H K. Ecological networks reveal contrasting patterns of bacterial and fungal communities in glacier-fed streams in Central Asia[J]. PeerJ, 2019, 7: e7715.
|
111 |
HU Y, YAO X, WU Y Y, et al. Contrasting patterns of the bacterial communities in melting ponds and periglacial rivers of the Zhuxi Glacier in the Tibet Plateau[J]. Microorganisms, 2020, 8(4): 509.
|
112 |
GU Z Q, LIU K S, PEDERSEN M W, et al. Community assembly processes underlying the temporal dynamics of glacial stream and lake bacterial communities[J]. Science of the Total Environment, 2021, 761: 143178.
|
113 |
BRADLEY J A, ANESIO A M, ARNDT S. Microbial and biogeochemical dynamics in glacier forefields are sensitive to century-scale climate and anthropogenic change[J]. Frontiers in Earth Science, 2017, 5: 26.
|
114 |
SUN H Y, WU Y H, ZHOU J, et al. Variations of bacterial and fungal communities along a primary successional chronosequence in the Hailuogou Glacier retreat area (Gongga Mountain, SW China)[J]. Journal of Mountain Science, 2016, 13(9): 1 621-1 631.
|
115 |
KHAN A, KONG W D, MUHAMMAD S, et al. Contrasting environmental factors drive bacterial and eukaryotic community successions in freshly deglaciated soils[J]. FEMS Microbiology Letters, 2019, 366(19): fnz229.
|
116 |
BLAALID R, CARLSEN T, KUMAR S, et al. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing[J]. Molecular Ecology, 2012, 21(8): 1 897-1 908.
|
117 |
ZUMSTEG A, LUSTER J, GÖRANSSON H, et al. Bacterial, archaeal and fungal succession in the forefield of a receding glacier[J]. Microbial Ecology, 2012, 63(3): 552-564.
|
118 |
DARCY J L, SCHMIDT S K, KNELMAN J E, et al. Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat[J]. Science Advances, 2018, 4(5): eaaq0942.
|
119 |
FRANZETTI A, PITTINO F, GANDOLFI I, et al. Early ecological succession patterns of bacterial, fungal and plant communities along a chronosequence in a recently deglaciated area of the Italian Alps[J]. FEMS Microbiology Ecology, 2020, 96(10): fiaa165.
|
120 |
LI Ningning, ZHANG Ruirui, YAN Wenli, et al. Community structure and succession of fungi in the forefront of Tianshan No. 1 Glacier, China[J]. Acta Microbiologica Sinica, 2018, 58(12): 2 134-2 146.
|
|
李宁宁, 张瑞蕊, 剡文莉, 等. 天山一号冰川前沿生态系统真菌群落结构演替及分布格局[J]. 微生物学报, 2018, 58(12): 2 134-2 146.
|
121 |
SCHMIDT S K, NEMERGUT D R, DARCY J L, et al. Do bacterial and fungal communities assemble differently during primary succession?[J]. Molecular Ecology, 2014, 23(2): 254-258.
|
122 |
JIANG Y L, LEI Y B, YANG Y, et al. Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence[J]. Soil Biology & Biochemistry, 2018, 118: 207-216.
|
123 |
TÖWE S, ALBERT A, KLEINEIDAM K, et al. Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) Heywood grown in soils from different sites of the Damma Glacier forefield[J]. Microbial Ecology, 2010, 60(4): 762-770.
|
124 |
FERNÁNDEZ-MARTÍNEZ M A, POINTING S B, PÉREZ-ORTEGA S, et al. Functional ecology of soil microbial communities along a glacier forefield in Tierra del Fuego (Chile)[J]. International Microbiology: the Official Journal of the Spanish Society for Microbiology, 2016, 19(3): 161-173.
|
125 |
CHIRI E, NAUER P A, HENNEBERGER R, et al. Soil-methane sink increases with soil age in forefields of alpine glaciers[J]. Soil Biology & Biochemistry, 2015, 84: 83-95.
|
126 |
CHIRI E, NAUER P A, RAINER E M, et al. High temporal and spatial variability of atmospheric-methane oxidation in alpine glacier forefield soils[J]. Applied and Environmental Microbiology, 2017, 83(18): e01139-17.
|
127 |
MATEOS-RIVERA A, ØVREÅS L, WILSON B, et al. Activity and diversity of methane-oxidizing bacteria along a Norwegian sub-Arctic glacier forefield[J]. FEMS Microbiology Ecology, 2018, 94(5): fiy059.
|
128 |
ZHU Y J, ZHANG Y L, CHEN H Y, et al. Soil properties and microbial diversity at the frontier of Laohugou glacier retreat in Qilian Mountains[J]. Current Microbiology, 2020, 77(3): 425-433.
|
129 |
BAI Y, HUANG X Y, ZHOU X R, et al. Variation in denitrifying bacterial communities along a primary succession in the Hailuogou glacier retreat area, China[J]. PeerJ, 2019, 7: e7356.
|
130 |
KONG Weidong. A review of microbial diversity in polar terrestrial environments[J]. Biodiversity Science, 2013, 21(4): 457-468.
|
|
孔维栋. 极地陆域微生物多样性研究进展[J]. 生物多样性, 2013, 21(4): 457-468.
|
131 |
MENEZES A B, RICHARDSON A E, THRALL P H. Linking fungal-bacterial co-occurrences to soil ecosystem function[J]. Current Opinion in Microbiology, 2017, 37: 135-141.
|
132 |
WAGG C, SCHLAEPPI K, BANERJEE S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications, 2019, 10(1): 4841.
|
133 |
ZHENG W, ZHAO Z Y, GONG Q L, et al. Responses of fungal-bacterial community and network to organic inputs vary among different spatial habitats in soil[J]. Soil Biology & Biochemistry, 2018, 125: 54-63.
|
134 |
MA B, WANG Y, YE S, et al. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes[J]. Microbiome, 2020, 8(1): 82.
|
135 |
RASSNER S M, ANESIO A M, GIRDWOOD S E, et al. Can the bacterial community of a high arctic glacier surface escape viral control?[J]. Frontiers in Microbiology, 2016, 7:956.
|
136 |
VITASSE Y, URSENBACHER S, KLEIN G, et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps[J]. Biological Reviews, 2021, 96(5): 1 816-1 835.
|
137 |
TELLING J, ANESIO A M, TRANTER M, et al. Nitrogen fixation on Arctic glaciers, Svalbard[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G3): G03039.
|
138 |
KAZEMI S, HATAM I, LANOIL B. Bacterial community succession in a high-altitude subarctic glacier foreland is a three-stage process[J]. Molecular Ecology, 2016, 25(21): 5 557-5 567.
|
139 |
LIU Y Q, VICK-MAJORS T J, PRISCU J C, et al. Biogeography of cryoconite bacterial communities on glaciers of the Tibetan Plateau[J]. FEMS Microbiology Ecology, 2017, 93(6): fix072.
|
140 |
BAI Y, XIANG Q J, ZHAO K, et al. Plant and soil development cooperatively shaped the composition of the phoD-harboring bacterial community along the primary succession in the Hailuogou glacier chronosequence[J]. mSystems, 2020, 5(4): e00475-20.
|
141 |
WANG J P, WU Y H, ZHOU J, et al. Soil microbes become a major pool of biological phosphorus during the early stage of soil development with little evidence of competition for phosphorus with plants[J]. Plant and Soil, 2020, 446(1/2): 259-274.
|
142 |
TAMBURINI F, PFAHLER V, BÜNEMANN E K, et al. Oxygen isotopes unravel the role of microorganisms in phosphate cycling in soils[J]. Environmental Science & Technology, 2012, 46(11): 5 956-5 962.
|
143 |
PROSSER J I. Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology[J]. Nature Reviews Microbiology, 2015, 13(7): 439-446.
|
144 |
SEGAWA T, YOSHIMURA Y, WATANABE K, et al. Community structure of culturable bacteria on surface of Gulkana Glacier, Alaska[J]. Polar Science, 2011, 5(1): 41-51.
|
145 |
JANSSON J K, BAKER E S. A multi-omic future for microbiome studies[J]. Nature Microbiology, 2016, 1(5): 16049.
|