地球科学进展 ›› 2022, Vol. 37 ›› Issue (9): 899 -914. doi: 10.11867/j.issn.1001-8166.2022.058

综述与评述 上一篇    下一篇

山地冰川生态系统微生物研究现状与展望
胡扬 1 , 2( ), 汪子微 1 , 2, 蒋洪毛 1 , 2, 陈有超 3 , 4, 刘巧 1, 段宝利 1, 鲁旭阳 1( )   
  1. 1.山地表生过程与生态调控重点实验室,中国科学院、水利部成都山地灾害与环境研究所,四川 成都 610041
    2.中国科学院大学资源与环境学院,北京 100049
    3.浙江农林大学省部共建亚热带森林培育 国家重点实验室,浙江 杭州 311300
    4.浙江农林大学资源与环境学院,浙江 杭州 311300
  • 收稿日期:2022-05-05 修回日期:2022-08-11 出版日期:2022-09-10
  • 通讯作者: 鲁旭阳 E-mail:huyang@imde.ac.cn;xylu@imde.ac.cn
  • 基金资助:
    国家自然科学基金项目“复杂下垫面海洋性冰川消融过程及其空间异质性”(41871069);四川省杰出青年科技人才项目“贡嘎山冰川表碛微生物分子生态网络及其驱动的碳氮转化”(2020JDJQ0002)

Current Knowledge and Future Prospects Regarding Microorganisms in Mountain Glacier Ecosystems

Yang HU 1 , 2( ), Ziwei WANG 1 , 2, Hongmao JIANG 1 , 2, Youchao CHEN 3 , 4, Qiao LIU 1, Baoli DUAN 1, Xuyang LU 1( )   

  1. 1.Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    2.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    3.The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
    4.College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
  • Received:2022-05-05 Revised:2022-08-11 Online:2022-09-10 Published:2022-09-28
  • Contact: Xuyang LU E-mail:huyang@imde.ac.cn;xylu@imde.ac.cn
  • About author:HU Yang (1996-), female, Qujing City, Yunnan Province, Ph. D student. Research area includes microbial ecology in glaciers. E-mail: huyang@imde.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Deglaciation process and spatial heterogeneity of temperate glacier with complex underlying surface”(41871069);The Sichuan Science and Technology Program “Molecular ecological networks, carbon and nitrogen transformation processes driven by microbes in supraglacial debris from Mt. Gongga”(2020JDJQ0002)

山地冰川生态系统包含冰、雪、冰川融水、冰尘、沉积物、冰碛物和土壤等多种栖息地,孕育了独特的生物群落,由耐寒性微生物占主导。由于对气候变化极其敏感,近几十年来,全球范围内的山地冰川正在急剧退缩。依据垂直分层特征、空间位置、环境特征和定殖微生物营养类型等,将山地冰川生态系统分为4个生态区:冰川表面区域、冰川内部区域、冰川下部区域和冰川前缘区域。从微生物的生理特征、群落组成、影响微生物分布和多样性的生态因素等几个方面,综述了山地冰川生态系统不同生态区的微生物研究现状。近10年来对冰川生态系统微生物的研究主要关注以下几方面内容: 嗜冷、耐冷细菌和真菌的分离培养; 微生物群落组成和多样性特征; 微生物群落构建和演替过程; 微生物介导的元素循环过程; 生态因子与微生物群落相互关系。目前,大部分研究集中在冰川前缘和表面区域,且主要关注细菌类群的组成和多样性。未来应该把冰川表面、内部、下部及前缘区域作为一个整体系统考虑,开展针对不同生境的多种微生物类群的长期监测和研究,重点关注类群间交互作用和功能方面。以期更好地理解极端环境下微生物介导的生态过程及其发挥的生态作用,这对维护山地冰川及其相关生态系统稳定具有重要意义。

Mountain glacier ecosystems contain diverse habitats, including ice, snow, meltwater, cryoconite, sediment, debris, and soil. These habitats harbor unique biomes that are dominated by cold-tolerant microbes. Mountain glaciers have responded strongly to climate change and have considerably shrunk in size over recent decades. Mountain glacier ecosystem was divided into supraglacial zone, englacial zone, subglacial zone, and proglacial zone, according to the vertical stratifications, horizontal locations, environmental characteristics, and trophic types of colonized microbes. This study reviewed research focused on the physiological characteristics, community composition, and diversity of the microbial community and ecological factors driving their distributions in these four zones. The studies (2010-2022) about the microbial communities in mountain glacier ecosystems that were reviewed mainly investigated the following: isolation and culture of psychrotrophs and psychrophiles; characteristics of microbial community composition and diversity; microbial community assemblage and succession processes; biogeochemical cycles driven by the microbes; and interactions between ecological factors and the microbial community. Most of the studies were conducted in the proglacial and supraglacial zones and mainly focused on the composition and diversity of the bacterial community. In future studies, all zones should be considered as an integrated system to conduct long-term monitoring and investigation of multiple microbial communities in different habitats. They should also focus on microbial interactions and functions. This study improves understanding about the ecological processes mediated by microbes and their ecological roles in extreme environments, both of which have implications for maintaining the stability of glaciers and surrounding ecosystems.

中图分类号: 

图1 山地冰川微生物的生存机制
Fig. 1 The survival mechanisms of microorganisms in mountain glacier ecosystem
图2 山地冰川生态系统示意图
Fig. 2 The diagram of mountain glacier ecosystem
表1 山地冰川生态系统四大生态区域的环境条件及典型微生物类群
Table 1 Environmental conditions and microbial taxa from four ecological zones in mountain glacier ecosystem
生态区域 生境 环境特征 碳源 能源 电子供体 存在的营养类型 主要类群 代表属 所属门类

积雪、表层冰;融水径流、湖塘;冰尘穴;表碛、岩石等 强光、强辐射、温度波动、大气沉降等 二氧化碳,有机物 光能,化学能

有机物

还原性无机物(氢气、硫化氢、硫、水)

光能无机自养型 雪藻,硅藻,蓝细菌 Polaromonas 33 - 34 Proteobacteria
Sphingomonas 35 Proteobacteria
Methylibium 33 Proteobacteria
Janthinobacterium 36 Proteobacteria
光能有机异养型 紫色硫细菌 Phormidesmis 22 Cyanobacteria
Arthrobacter 37 - 38 Actinobacteria
Pedobacter 39 Bacteroidetes
Flavobacterium 40 Bacteroidetes
Bacillus 41 Firmicutes
化能有机异养型 真菌和微型动物 Rhodotorula 42 Basidiomycota
Articulospora 43 Ascomycota
PlectusTylenchus 44 Nematoda
Adineta 44 Rotifera
Hypsibius 2 Tardigrada

冰体、冰溶洞、冰裂隙、冰内液态水脉等 无光、冰冻、低氧、高压、持续低温 二氧化碳 化学能

有机物

还原性无机物(氢气、二价铁离子、水)

化能无机自养型 产甲烷菌,硝化细菌,铁氧化细菌 Pseudomonas 39 45 Proteobacteria
Sphingomonas 45 Proteobacteria
Polaromonas 46 Proteobacteria
Bacillus 45 Firmicutes
化能有机异养型 酵母真菌 Pedobacter 46 Actinobacteria
CryobacteriumFlavobacterium 46 Bacteroidetes
Cryptococcus 47 Bacteroidetes
RhodotorulaSporobolomyces 47 Basidiomycete
Mrakia 48 Basidiomycete

冰下湖泊、径流;基岩、沉积物等 无光、厌氧、高压、持续低温 二氧化碳 化学能

有机物

还原性无机物(氢气、二价铁离子、水)

化能无机自养型 产甲烷菌,硝化细菌,铁氧化细菌 Bacillus 49 Firmicutes
Methylobacter 50 Proteobacteria
Polaromonas 50 Proteobacteria
化能有机异养型 酵母真菌和 微型动物 Sulfuricurvum 50 Proteobacteria
Flavobacterium 51 Bacteroidetes
HortaeaMeripilus 51 Ascomycota
AspergillusSimplicillium 52 Ascomycota

冰前河流、湖泊、峡湾;沉积物、土壤等 受冰川水文、地貌等变化强烈影响 二氧化碳,有机物 光能,化学能

有机物

还原性无机物(氢气、硫化氢、硫、水)

光能无机自养型 硅藻和 蓝细菌 Flavobacterium 53 Bacteroidetes
Leeuwenhoekiella 54 Bacteroidetes
Pseudomonas 23 Proteobacteria
光能有机异养型 紫色硫细菌 Arthrobacter 24 Actinobacteria
Nitrosomonas 55 Proteobacteria
Bradyrhizobium 55 Proteobacteria
Methylobacterium 55 Proteobacteria
化能有机异养型 真菌和微型动物 Tolypocladium 56 Ascomycete
Stropharia 57 Basidiomycota
RhabditisAlaimus 58 Nematode
图3 20102022年以山地冰川微生物为研究主题所涉及的国家和地区
山地冰川是除南极冰盖和格陵兰冰盖之外,全世界各纬度范围分布的山地冰川
Fig. 3 The countries and regions of studies involved in microorganisms of mountain glacier ecosystem from 2010 to 2022
Mountain glaciers (alpine glaciers) are those formed in the high mountainous region over the world, except the Antarctic and Greenland ice sheet
图4 20102022年山地冰川生态系统微生物研究的热点生态区
Fig. 4 The hot-zone of studies involved in microorganisms of mountain glacier ecosystem from 2010 to 2022
图5 20102022年山地冰川生态系统微生物研究关注的热点对象
Fig. 5 The hot-object of studies involved in microorganisms of mountain glacier ecosystem from 2010 to 2022
1 MARGESIN R, COLLINS T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge[J]. Applied Microbiology and Biotechnology, 2019, 103(6): 2 537-2 549.
2 ZAWIERUCHA K, BUDA J, AZZONI R S, et al. Water bears dominated cryoconite hole ecosystems: densities, habitat preferences and physiological adaptations of Tardigrada on an alpine glacier[J]. Aquatic Ecology, 2019, 53(4): 543-556.
3 BOETIUS A, ANESIO A M, DEMING J W, et al. Microbial ecology of the cryosphere: sea ice and glacial habitats[J]. Nature Reviews Microbiology, 2015, 13(11): 677-690.
4 TURCHETTI B, BUZZINI P, GORETTI M, et al. Psychrophilic yeasts in glacial environments of alpine glaciers[J]. FEMS Microbiology Ecology, 2008, 63(1): 73-83.
5 ANESIO A M, LAYBOURN-PARRY J. Glaciers and ice sheets as a biome[J]. Trends in Ecology & Evolution, 2012, 27(4): 219-225.
6 TAKEUCHI N. Encyclopedia of snow, ice and glaciers[M]. Heidelberg: Springer Netherlands, 2011.
7 FRANZETTI A, TAGLIAFERRI I, GANDOLFI I, et al. Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces[J]. The ISME Journal, 2016, 10(12): 2 984-2 988.
8 HOOD E, BATTIN T J, FELLMAN J, et al. Storage and release of organic carbon from glaciers and ice sheets[J]. Nature Geoscience, 2015, 8(2): 91-96.
9 ZENG J, LOU K, ZHANG C J, et al. Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of Tianshan Mountain, China[J]. Frontiers in Microbiology, 2016, 7: 1353.
10 SEGAWA T, ISHII S, OHTE N, et al. The nitrogen cycle in cryoconites:naturally occurring nitrification-denitrification granules on a glacier[J]. Environmental Microbiology, 2014, 16(10): 3 250-3 262.
11 BENISTON M, FARINOTTI D, ANDREASSEN L M, et al. The European mountain cryosphere: a review of its current state, trends, and future challenges[J]. The Cryosphere, 2018, 12: 759-794.
12 BIBI S, WANG L, LI X, et al. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review[J]. International Journal of Climatology, 2018, 38(): e1-e17.
13 HOTALING S, HOOD E, HAMILTON T L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate[J]. Environmental Microbiology, 2017, 19(8): 2 935-2 948.
14 FRANZETTI A, NAVARRA F, TAGLIAFERRI I, et al. Temporal variability of bacterial communities in cryoconite on an alpine glacier[J]. Environmental Microbiology Reports, 2017, 9(2): 71-78.
15 CHOUDHARI S, LOHIA R, GRIGORIEV A. Comparative metagenome analysis of an Alaskan glacier[J]. Journal of Bioinformatics and Computational Biology, 2014, 12(2): 1441003.
16 ALIYU H, MAAYER P D, SJÖLING S, et al. 17 metagenomic analysis of low-temperature environments[M]// MARGESIN R. Psychrophiles: from biodiversity to biotechnology. Heidelberg: Springer Berlin, 2017: 389-421.
17 HUANG Li, FENG Xuelian, DU Quansheng, et al. Focusing on key scientific issues of microbiome research in hydrosphere: NSFC major research plan for microbes in hydrosphere[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(3): 266-272.
黄力, 冯雪莲, 杜全生, 等. 水圈微生物重大研究计划: 聚焦水圈微生物组研究的核心科学问题[J]. 中国科学院院刊, 2017, 32(3): 266-272.
18 LIU Y, JI M, YU T, et al. A genome and gene catalog of glacier microbiomes[J]. Nature Biotechnology, 2022, 40: 1 341-1 348.
19 HASSAN N, ANESIO A M, RAFIQ M, et al. Temperature driven membrane lipid adaptation in glacial psychrophilic bacteria[J]. Frontiers in Microbiology, 2020, 11: 824.
20 WANG C, OLIVER E E, CHRISTNER B C, et al. Functional analysis of a bacterial antifreeze protein indicates a cooperative effect between its two ice-binding domains[J]. Biochemistry, 2016, 55(28): 3 975-3 983.
21 SINGH P, HANADA Y, SINGH S M, et al. Antifreeze protein activity in Arctic cryoconite bacteria[J]. FEMS Microbiology Letters, 2014, 351(1): 14-22.
22 CHRISMAS N A M, BARKER G, ANESIO A M, et al. Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401[J]. BMC Genomics, 2016, 17: 533.
23 TAO L, GU Y, ZHENG X, et al. Cultivable bacteria isolated from the meltwater of the Glacier No.1 at headwater of the Urumqi River in Tianshan Mountains: physiological-biochemical characteristics and phylogeny[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 511-521.
24 KUMAR R, SINGH D, SWARNKAR M K, et al. Complete genome sequence of Arthrobacter sp ERGS1: 01, a putative novel bacterium with prospective cold active industrial enzymes, isolated from East Rathong glacier in India[J]. Journal of Biotechnology, 2015, 214: 139-140.
25 LIU Q, LI W, LIU D, et al. Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin[J]. The ISME Journal, 2021,15(6):1 844-1 857.
26 DIAL R J, GANEY G Q, SKILES S M. What color should glacier algae be? An ecological role for red carbon in the cryosphere[J]. FEMS Microbiology Ecology, 2018, 94(3). DOI: 10.1093/femsec/fiy007 .
27 LEE Y M, KIM G, JUNG Y J, et al. Polar and Alpine Microbial Collection (PAMC): a culture collection dedicated to polar and alpine microorganisms[J]. Polar Biology, 2012, 35(9): 1 433-1 438.
28 PAUN V I, LAVIN P, CHIFIRIUC M C, et al. First report on antibiotic resistance and antimicrobial activity of bacterial isolates from 13,000-year old cave ice core[J]. Scientific Reports, 2021, 11(1):514.
29 RAFIQ M, HASSAN N, HAYAT M, et al. Geochemistry and insights into the distribution of biotechnological important fungi from the third pole of the world, Karakoram Mountains range[J]. Geomicrobiology Journal, 2021, 38(5): 395-403.
30 FERRARIO C, PITTINO F, TAGLIAFERRI I, et al. Bacteria contribute to pesticide degradation in cryoconite holes in an alpine glacier[J]. Environmental Pollution, 2017, 230: 919-926.
31 HODSON A, ANESIO A M, TRANTER M, et al. Glacial ecosystems[J]. Ecological Monographs, 2008, 78(1): 41-67.
32 RIME T, HARTMANN M, FREY B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier[J]. The ISME Journal, 2016, 10(7): 1 625-1 641.
33 DARCY J L, KING A J, GENDRON E M S, et al. Spatial autocorrelation of microbial communities atop a debris-covered glacier is evidence of a supraglacial chronosequence[J]. FEMS Microbiology Ecology, 2017, 93(8). DOI:10.1093/ femsec/fix095 .
34 LIU Q, ZHOU Y G, XIN Y H. High diversity and distinctive community structure of bacteria on glaciers in China revealed by 454 pyrosequencing[J]. Systematic and Applied Microbiology, 2015, 38(8): 578-585.
35 ZHANG D C, BUSSE H J, LIU H C, et al. Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(3): 587-591.
36 WEILAND-BRÄUER N, FISCHER M A, SCHRAMM K W, et al. Polychlorinated Biphenyl (PCB)-degrading potential of microbes present in a cryoconite of Jamtalferner Glacier[J]. Frontiers in Microbiology, 2017, 8: 1105.
37 MARGESIN R, SCHUMANN P, ZHANG D C, et al. Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62: 397-402.
38 LEE Y M, KIM S Y, JUNG J, et al. Cultured bacterial diversity and human impact on alpine glacier cryoconite[J]. Journal of Microbiology, 2011, 49(3): 355-362.
39 BALCAZAR W, RONDÓN J, RENGIFO M, et al. Bioprospecting glacial ice for plant growth promoting bacteria[J]. Microbiological Research, 2015, 177: 1-7.
40 ZHANG S H, YANG G L, WANG Y T, et al. Abundance and community of snow bacteria from three glaciers in the Tibetan Plateau[J]. Journal of Environmental Sciences, 2010, 22(9): 1 418-1 424.
41 SHERPA M T, NAJAR I N, DAS S, et al. Bacterial diversity in an alpine debris-free and debris-cover accumulation zone glacier ice, north Sikkim, India[J]. Indian Journal of Microbiology, 2018, 58(4): 470-478.
42 AMARETTI A, SIMONE M, QUARTIERI A, et al. Isolation of carotenoid-producing yeasts from an alpine glacier[J]. Chemical Engineering Transactions, 2014, 38: 217-222.
43 SINGH P, ROY U, TSUJI M. Characterisation of yeast and filamentous fungi from Brøggerbreen Glaciers, Svalbard[J]. Polar Record, 2016, 52(4): 442-449.
44 AZZONI R S, FRANZETTI A, FONTANETO D, et al. Nematodes and rotifers on two Alpine debris-covered glaciers[J]. Italian Journal of Zoology, 2015, 82(4): 616-623.
45 SINGH P, SINGH S M, ROY U. Taxonomic characterization and the bio-potential of bacteria isolated from glacier ice cores in the High Arctic[J]. Journal of Basic Microbiology, 2016, 56(3): 275-285.
46 CHEN Y, LI X K, SI J, et al. Changes of the bacterial abundance and communities in shallow ice cores from Dunde and Muztagata Glaciers, Western China[J]. Frontiers in Microbiology, 2016, 7:1716.
47 JIANG Yanjie, JIANG Jiawang. Screening of Lipase-producing yeasts from the Glacier No.1 in Tianshan Mountains and its phylogenetic analysis[J]. Light Industry Science and Technology, 2016, 32(3):1-3.
蒋琰洁, 蒋佳旺. 天山一号冰川产脂肪酶酵母菌的筛选及其系统发育分析[J]. 轻工科技, 2016, 32(3): 1-3.
48 BRAD T, ITCUS C, PASCU M D, et al. Fungi in perennial ice from Scărișoara Ice Cave (Romania)[J]. Scientific Reports, 2018, 8(1): 10096.
49 REN Z, GAO H K, LUO W, et al. Bacterial communities in surface and basal ice of a glacier terminus in the headwaters of Yangtze River on the Qinghai-Tibet Plateau[J]. Environmental Microbiome, 2022, 17(1): 12.
50 SUŁOWICZ S, BONDARCZUK K, IGNATIUK D, et al. Microbial communities from subglacial water of naled ice bodies in the forefield of Werenskioldbreen, Svalbard[J]. Science of the Total Environment, 2020, 723: 138025.
51 PERINI L, GOSTINČAR C, GUNDE-CIMERMAN N. Fungal and bacterial diversity of Svalbard subglacial ice[J]. Scientific Reports, 2019, 9(1): 20230.
52 WANG Xuxian, GU Yanling, NI Xuejiao, et al. Composition and phylogeny of fungal community in supraglacial cryoconite and subglacial sediments of the Glacier No.1 at headwaters of the Urumqi River in Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 781-791.
王叙贤, 顾燕玲, 倪雪姣, 等. 天山乌源1号冰川表面冰尘及底部沉积层真菌群落结构比较及其系统发育分析[J]. 冰川冻土, 2017, 39(4): 781-791.
53 ZHU L, LIU Q, LIU H C, et al. Flavobacterium noncentrifugens sp.nov., a psychrotolerant bacterium isolated from glacier meltwater[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 6: 2 032-2 037.
54 SINHA R K, KRISHNAN K P, HATHA A A M, et al. Diversity of retrievable heterotrophic bacteria in Kongsfjorden, an Arctic fjord[J]. Brazilian Journal of Microbiology, 2017, 48(1): 51-61.
55 WU X K, ZHANG W, LIU G X, et al. Bacterial diversity in the foreland of the Tianshan No. 1 glacier, China[J]. Environmental Research Letters, 2012, 7(1): 014038.
56 TIAN J Q, QIAO Y C, WU B, et al. Ecological succession pattern of fungal community in soil along a retreating glacier[J]. Frontiers in Microbiology, 2017, 8: 1028.
57 MATSUOKA S, OGISU Y, SAKOH S, et al. Taxonomic, functional, and phylogenetic diversity of fungi along primary successional and elevational gradients near Mount Robson, British Columbia[J]. Polar Science, 2019, 21: 165-171.
58 LEI Y B, ZHOU J, XIAO H F, et al. Soil nematode assemblages as bioindicators of primary succession along a 120-year-old chronosequence on the Hailuogou Glacier forefield, SW China[J]. Soil Biology & Biochemistry, 2015, 88: 362-371.
59 HAMILTON T L, HAVIG J. Primary productivity of snow algae communities on stratovolcanoes of the Pacific Northwest[J]. Geobiology, 2017, 15(2): 280-295.
60 FIOŁKA M J, TAKEUCHI N, SOFIŃSKA-CHMIEL W, et al. Morphological and physicochemical diversity of snow algae from Alaska[J]. Scientific Reports, 2020, 10(1): 19167.
61 TANAKA S, TAKEUCHI N, MIYAIRI M, et al. Snow algal communities on glaciers in the Suntar-Khayata Mountain Range in eastern Siberia, Russia[J]. Polar Science, 2016, 10(3): 227-238.
62 MØLLER A K, SØBORG D A, Abu AL-SOUD W, et al. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation[J]. Polar Research, 2013, 32(1): 17390.
63 GARCIA V D, BRIZZIO S, van BROOCK M R. Yeasts from glacial ice of Patagonian Andes, Argentina[J]. FEMS Microbiology Ecology, 2012, 82(2): 540-550.
64 HASSAN N, HASAN F, NADEEM S, et al. Community analysis and characterization of fungi from Batura Glacier, Karakoram Mountain range, Pakistan[J]. Applied Ecology and Environmental Research, 2018, 16(5): 5 323-5 341.
65 RAFIQ M, NADEEM S, HASSAN N, et al. Fungal recovery and characterization from Hindu Kush Mountain range, Tirich Mir Glacier, and their potential for biotechnological applications[J]. Journal of Basic Microbiology, 2020, 60(5): 444-457.
66 CHUVOCHINA M S, MARIE D, CHEVAILLIER S, et al. Community variability of bacteria in alpine snow (Mont Blanc) containing saharan dust deposition and their snow colonisation potential[J]. Microbes and Environments, 2011, 26(3): 237-247.
67 XING Tingting, LIU Yongqin, WANG Ninglian, et al. The physiological characteristics of culturable bacteria in Muztag,Yuzhufeng and Zadang glaciers on Tibetan Plateau, China[J]. Journal of Glaciology and Geocryology, 2016, 38(2):528-538.
邢婷婷, 刘勇勤, 王宁练, 等. 青藏高原木孜塔格冰川、玉珠峰冰川及扎当冰川可培养细菌的生理特征[J]. 冰川冻土, 2016, 38(2): 528-538.
68 ZHANG W, ZHANG G S, LIU G X, et al. Diversity of bacterial communities in the snowcover at Tianshan number 1 glacier and its relation to climate and environment[J]. Geomicrobiology Journal, 2012, 29(5): 459-469.
69 YAN P Y, HOU S G, QU J J, et al. Diversity of snow bacteria from the Zangser Kangri glacier in the Tibetan Plateau environment[J]. Geomicrobiology Journal, 2017, 34(1): 37-44.
70 ZHANG Shuhong, HOU Shugui, QIN Xiang, et al. Preliminary research on the dominant bacterial population affected by retreat of the Laohugou glacier No.12 in the Qilian Mountain[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 751-760.
张淑红, 侯书贵, 秦翔, 等. 祁连山老虎沟12号冰川退缩对细菌优势种群影响的初步研究[J]. 冰川冻土, 2013, 35(3): 751-760.
71 HERREID S, PELLICCIOTTI F. The state of rock debris covering Earth’s glaciers[J]. Nature Geoscience, 2020, 13(9): 621-627.
72 MILES K E, HUBBARD B, IRVINE-FYNN T D L, et al. Hydrology of debris-covered glaciers in High Mountain Asia[J]. Earth Science Reviews, 2020, 207: 103212.
73 FRANZETTI A, TATANGELO V, GANDOLFI I, et al. Bacterial community structure on two alpine debris-covered glaciers and biogeography of Polaromonas phylotypes[J]. The ISME Journal, 2013, 7(8): 1 483-1 492.
74 CACCIANIGA M, ANDREIS C, DIOLAIUTI G, et al. Alpine debris-covered glaciers as a habitat for plant life[J]. The Holocene, 2011, 21(6): 1 011-1 020.
75 SANNINO C, BORRUSO L, SMIRAGLIA C, et al. Dynamics of in situ growth and taxonomic structure of fungal communities in Alpine supraglacial debris[J]. Fungal Ecology, 2020, 44:100891.
76 GOBBI M, ISAIA M, de BERNARDI F. Arthropod colonisation of a debris-covered glacier[J]. The Holocene, 2011;21(2):343-349.
77 DARCY J L, SCHMIDT S K. Nutrient limitation of microbial phototrophs on a debris-covered glacier[J]. Soil Biology & Biochemistry, 2016, 95: 156-163.
78 EDWARDS A, ANESIO A M, RASSNER S M, et al. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard[J]. The ISME Journal, 2011, 5(1): 150-160.
79 KIM S J, SHIN S C, HONG S G, et al. Genome sequence of Janthinobacterium sp Strain PAMC 25724, isolated from alpine glacier cryoconite[J]. Journal of Bacteriology, 2012, 194(8): 2096.
80 FRANZETTI A, NAVARRA F, TAGLIAFERRI I, et al. Potential sources of bacteria colonizing the cryoconite of an alpine glacier[J]. PLoS ONE, 2017, 12(3):e0174786.
81 AMBROSINI R, MUSITELLI F, NAVARRA F, et al. Diversity and assembling processes of bacterial communities in cryoconite holes of a Karakoram glacier[J]. Microbial Ecology, 2017, 73(4): 827-837.
82 EDWARDS A, PACHEBAT J A, SWAIN M, et al. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem[J]. Environmental Research Letters, 2013, 8(3):035003.
83 EDWARDS A, MUR L A J, GIRDWOOD S E, et al. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers[J]. FEMS Microbiology Ecology, 2014, 89(2): 222-237.
84 EDWARDS A, DOUGLAS B, ANESIO A M, et al. A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard[J]. Fungal Ecology, 2013, 6(2): 168-176.
85 PITTINO F, MAGLIO M, GANDOLFI I, et al. Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability[J]. Annals of Glaciology, 2018, 59(77): 1-9.
86 CAMPEN R K, SOWERS T, ALLEY R B. Evidence of microbial consortia metabolizing within a low-latitude mountain glacier[J]. Geology, 2003, 31(3): 231-234.
87 ITCUS C, PASCU M D, BRAD T, et al. Diversity of cultured bacteria from the perennial ice block of Scarisoara Ice Cave, Romania[J]. International Journal of Speleology, 2016, 45(1): 89-100.
88 PAUN V I, ICAZA G, LAVIN P, et al. Total and potentially active bacteria communities entrapped in a late glacial through holocene ice core from Scarisoara Ice Cave, Romania[J]. Frontiers in Microbiology, 2019, 10:1193.
89 SHEN L, LIU Y, GU Z, et al. Massilia eurypsychrophila sp nov a facultatively psychrophilic bacteria isolated from ice core[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(7): 2 124-2 129.
90 ITCUS C, PASCU M D, LAVIN P, et al. Bacterial and archaeal community structures in perennial cave ice[J]. Scientific Reports, 2018, 8(1): 15671.
91 LIU Yongqin, YAO Tandong, XU Baiqing, et al. Bacterial abundance vary in muztagata ice core and respond to climate and environment change in the past hundred years[J]. Quaternary Sciences, 2013, 33(1): 19-25.
刘勇勤, 姚檀栋, 徐柏青, 等. 慕士塔格冰芯中近百年来细菌数量与气候环境变化的关系[J]. 第四纪研究, 2013, 33(1): 19-25.
92 LIU Y Q, PRISCU J C, YA T D, et al. Culturable bacteria isolated from seven high-altitude ice cores on the Tibetan Plateau[J]. Journal of Glaciology, 2019, 65(249): 29-38.
93 ZENG Y X, YAN M, YU Y, et al. Diversity of bacteria in surface ice of Austre Lovénbreen Glacier, Svalbard[J]. Archives of Microbiology, 2013, 195(5): 313-322.
94 ZHONG Z P, TIAN F N, ROUX S, et al. Glacier ice archives nearly 15, 000-year-old microbes and phages[J]. Microbiome, 2021, 9(1): 160.
95 MARTEINSSON V T, RÚNARSSON Á, STEFÁNSSON A, et al. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland[J]. The ISME Journal, 2013, 7(2): 427-437.
96 BOYD E S, HAMILTON T L, HAVIG J R, et al. Chemolithotrophic primary production in a subglacial ecosystem[J]. Applied and Environmental Microbiology, 2014, 80(19): 6 146-6 153.
97 DUNHAM E C, DORE J E, SKIDMORE M L, et al. Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments[J]. Proceedings of the National Academy of Sciences, 2021, 118(2): e2007051117.
98 HAMILTON T L, PETERS J W, SKIDMORE M L, et al. Molecular evidence for an active endogenous microbiome beneath glacial ice[J]. The ISME Journal, 2013, 7(7): 1 402-1 412.
99 NI Yongqing, GU Yanling, SHI Xuewei, et al. Phylogenetic and physiological diversity of cold-adapted bacteria producing protease from sediments of the bottom layer of the Glacier No.1 in the Tianshan Mountains[J]. Acta Microbiologica Sinica, 2013, 53(2): 164-172.
倪永清, 顾燕玲, 史学伟, 等. 天山一号冰川底部沉积层产蛋白酶耐低温菌株的筛选及其系统发育[J]. 微生物学报, 2013, 53(2): 164-172.
100 YU C R, LI Y, JIN H J, et al. Organic versus inorganic carbon exports from glacier and permafrost watersheds in Qinghai-Tibet Plateau[J]. Aquatic Geochemistry, 2021, 27(4): 283-296.
101 SINGER G A, FASCHING C, WILHELM L, et al. Biogeochemically diverse organic matter in alpine glaciers and its downstream fate[J]. Nature Geoscience, 2012, 5(10): 710-714.
102 HAN D, RICHTER-HEITMANN T, KIM I N, et al. Survey of bacterial phylogenetic diversity during the glacier melting season in an Arctic fjord[J]. Microbial Ecology, 2021, 81(3): 579-591.
103 GUTIÉRREZ M H, GALAND P E, MOFFAT C, et al. Melting glacier impacts community structure of bacteria, archaea and fungi in a Chilean Patagonia fjord[J]. Environmental Microbiology, 2015, 17(10): 3 882-3 897.
104 FREIMANN R, BÜRGMANN H, FINDLAY S E G, et al. Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts[J]. The ISME Journal, 2013, 7(12): 2 361-2 373.
105 CONTE A, PAPALE M, AMALFITANO S, et al. Bacterial community structure along the subtidal sandy sediment belt of a high Arctic fjord (Kongsfjorden, Svalbard Islands)[J]. Science of the Total Environment, 2018, 619/620:203-211.
106 KOHLER T J, VINŠOVÁ P, FALTEISEK L, et al. Patterns in microbial assemblages exported from the meltwater of Arctic and sub-Arctic glaciers[J]. Frontiers in Microbiology, 2020, 11: 669.
107 CAUVY-FRAUNIÉ S, ANDINO P, ESPINOSA R, et al. Ecological responses to experimental glacier-runoff reduction in alpine rivers[J]. Nature Communications, 2016, 7: 12025.
108 VOROBYEVA S S, TRUNOVA V A, STEPANOVA O G, et al. Impact of glacier changes on ecosystem of proglacial lakes in high mountain regions of East Siberia (Russia)[J]. Environmental Earth Sciences, 2015, 74(3): 2 055-2 063.
109 LIU K S, LIU Y Q, JIAO N Z, et al. Bacterial community composition and diversity in Kalakuli, an alpine glacial-fed lake in Muztagh Ata of the westernmost Tibetan Plateau[J]. FEMS Microbiology Ecology, 2017, 93(7): fix085.
110 REN Z, GAO H K. Ecological networks reveal contrasting patterns of bacterial and fungal communities in glacier-fed streams in Central Asia[J]. PeerJ, 2019, 7: e7715.
111 HU Y, YAO X, WU Y Y, et al. Contrasting patterns of the bacterial communities in melting ponds and periglacial rivers of the Zhuxi Glacier in the Tibet Plateau[J]. Microorganisms, 2020, 8(4): 509.
112 GU Z Q, LIU K S, PEDERSEN M W, et al. Community assembly processes underlying the temporal dynamics of glacial stream and lake bacterial communities[J]. Science of the Total Environment, 2021, 761: 143178.
113 BRADLEY J A, ANESIO A M, ARNDT S. Microbial and biogeochemical dynamics in glacier forefields are sensitive to century-scale climate and anthropogenic change[J]. Frontiers in Earth Science, 2017, 5: 26.
114 SUN H Y, WU Y H, ZHOU J, et al. Variations of bacterial and fungal communities along a primary successional chronosequence in the Hailuogou Glacier retreat area (Gongga Mountain, SW China)[J]. Journal of Mountain Science, 2016, 13(9): 1 621-1 631.
115 KHAN A, KONG W D, MUHAMMAD S, et al. Contrasting environmental factors drive bacterial and eukaryotic community successions in freshly deglaciated soils[J]. FEMS Microbiology Letters, 2019, 366(19): fnz229.
116 BLAALID R, CARLSEN T, KUMAR S, et al. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing[J]. Molecular Ecology, 2012, 21(8): 1 897-1 908.
117 ZUMSTEG A, LUSTER J, GÖRANSSON H, et al. Bacterial, archaeal and fungal succession in the forefield of a receding glacier[J]. Microbial Ecology, 2012, 63(3): 552-564.
118 DARCY J L, SCHMIDT S K, KNELMAN J E, et al. Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat[J]. Science Advances, 2018, 4(5): eaaq0942.
119 FRANZETTI A, PITTINO F, GANDOLFI I, et al. Early ecological succession patterns of bacterial, fungal and plant communities along a chronosequence in a recently deglaciated area of the Italian Alps[J]. FEMS Microbiology Ecology, 2020, 96(10): fiaa165.
120 LI Ningning, ZHANG Ruirui, YAN Wenli, et al. Community structure and succession of fungi in the forefront of Tianshan No. 1 Glacier, China[J]. Acta Microbiologica Sinica, 2018, 58(12): 2 134-2 146.
李宁宁, 张瑞蕊, 剡文莉, 等. 天山一号冰川前沿生态系统真菌群落结构演替及分布格局[J]. 微生物学报, 2018, 58(12): 2 134-2 146.
121 SCHMIDT S K, NEMERGUT D R, DARCY J L, et al. Do bacterial and fungal communities assemble differently during primary succession?[J]. Molecular Ecology, 2014, 23(2): 254-258.
122 JIANG Y L, LEI Y B, YANG Y, et al. Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence[J]. Soil Biology & Biochemistry, 2018, 118: 207-216.
123 TÖWE S, ALBERT A, KLEINEIDAM K, et al. Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) Heywood grown in soils from different sites of the Damma Glacier forefield[J]. Microbial Ecology, 2010, 60(4): 762-770.
124 FERNÁNDEZ-MARTÍNEZ M A, POINTING S B, PÉREZ-ORTEGA S, et al. Functional ecology of soil microbial communities along a glacier forefield in Tierra del Fuego (Chile)[J]. International Microbiology: the Official Journal of the Spanish Society for Microbiology, 2016, 19(3): 161-173.
125 CHIRI E, NAUER P A, HENNEBERGER R, et al. Soil-methane sink increases with soil age in forefields of alpine glaciers[J]. Soil Biology & Biochemistry, 2015, 84: 83-95.
126 CHIRI E, NAUER P A, RAINER E M, et al. High temporal and spatial variability of atmospheric-methane oxidation in alpine glacier forefield soils[J]. Applied and Environmental Microbiology, 2017, 83(18): e01139-17.
127 MATEOS-RIVERA A, ØVREÅS L, WILSON B, et al. Activity and diversity of methane-oxidizing bacteria along a Norwegian sub-Arctic glacier forefield[J]. FEMS Microbiology Ecology, 2018, 94(5): fiy059.
128 ZHU Y J, ZHANG Y L, CHEN H Y, et al. Soil properties and microbial diversity at the frontier of Laohugou glacier retreat in Qilian Mountains[J]. Current Microbiology, 2020, 77(3): 425-433.
129 BAI Y, HUANG X Y, ZHOU X R, et al. Variation in denitrifying bacterial communities along a primary succession in the Hailuogou glacier retreat area, China[J]. PeerJ, 2019, 7: e7356.
130 KONG Weidong. A review of microbial diversity in polar terrestrial environments[J]. Biodiversity Science, 2013, 21(4): 457-468.
孔维栋. 极地陆域微生物多样性研究进展[J]. 生物多样性, 2013, 21(4): 457-468.
131 MENEZES A B, RICHARDSON A E, THRALL P H. Linking fungal-bacterial co-occurrences to soil ecosystem function[J]. Current Opinion in Microbiology, 2017, 37: 135-141.
132 WAGG C, SCHLAEPPI K, BANERJEE S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications, 2019, 10(1): 4841.
133 ZHENG W, ZHAO Z Y, GONG Q L, et al. Responses of fungal-bacterial community and network to organic inputs vary among different spatial habitats in soil[J]. Soil Biology & Biochemistry, 2018, 125: 54-63.
134 MA B, WANG Y, YE S, et al. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes[J]. Microbiome, 2020, 8(1): 82.
135 RASSNER S M, ANESIO A M, GIRDWOOD S E, et al. Can the bacterial community of a high arctic glacier surface escape viral control?[J]. Frontiers in Microbiology, 2016, 7:956.
136 VITASSE Y, URSENBACHER S, KLEIN G, et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps[J]. Biological Reviews, 2021, 96(5): 1 816-1 835.
137 TELLING J, ANESIO A M, TRANTER M, et al. Nitrogen fixation on Arctic glaciers, Svalbard[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G3): G03039.
138 KAZEMI S, HATAM I, LANOIL B. Bacterial community succession in a high-altitude subarctic glacier foreland is a three-stage process[J]. Molecular Ecology, 2016, 25(21): 5 557-5 567.
139 LIU Y Q, VICK-MAJORS T J, PRISCU J C, et al. Biogeography of cryoconite bacterial communities on glaciers of the Tibetan Plateau[J]. FEMS Microbiology Ecology, 2017, 93(6): fix072.
140 BAI Y, XIANG Q J, ZHAO K, et al. Plant and soil development cooperatively shaped the composition of the phoD-harboring bacterial community along the primary succession in the Hailuogou glacier chronosequence[J]. mSystems, 2020, 5(4): e00475-20.
141 WANG J P, WU Y H, ZHOU J, et al. Soil microbes become a major pool of biological phosphorus during the early stage of soil development with little evidence of competition for phosphorus with plants[J]. Plant and Soil, 2020, 446(1/2): 259-274.
142 TAMBURINI F, PFAHLER V, BÜNEMANN E K, et al. Oxygen isotopes unravel the role of microorganisms in phosphate cycling in soils[J]. Environmental Science & Technology, 2012, 46(11): 5 956-5 962.
143 PROSSER J I. Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology[J]. Nature Reviews Microbiology, 2015, 13(7): 439-446.
144 SEGAWA T, YOSHIMURA Y, WATANABE K, et al. Community structure of culturable bacteria on surface of Gulkana Glacier, Alaska[J]. Polar Science, 2011, 5(1): 41-51.
145 JANSSON J K, BAKER E S. A multi-omic future for microbiome studies[J]. Nature Microbiology, 2016, 1(5): 16049.
[1] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[2] 孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
[3] 卿文武,陈仁升,刘时银,韩海东,王建. 两类度日模型在天山科其喀尔巴西冰川消融估算中的应用[J]. 地球科学进展, 2011, 26(4): 409-416.
[4] 康世昌, 黄杰,张强弓. 雪冰中汞的研究进展[J]. 地球科学进展, 2010, 25(8): 783-793.
[5] 党宏月;宋林生;李铁刚;秦蕴珊. 海底深部生物圈微生物的研究进展[J]. 地球科学进展, 2005, 20(12): 1306-1313.
阅读次数
全文


摘要