1 |
YANG Jing, ZHANG Renduo, WENG Shichuang, et al. The assessment method of coastal environmental carrying capacity[J]. China Environmental Science, 2013, 33(): 178-185.
|
|
杨静, 张仁铎, 翁士创, 等. 海岸带环境承载力评价方法研究[J]. 中国环境科学, 2013, 33(): 178-185.
|
2 |
CHEN Jiyu, CHEN Shenliang. Estuarine and coastal challenges in China[J]. Marine Geology Frontiers, 2002, 18(1): 1-5.
|
|
陈吉余, 陈沈良. 中国河口海岸面临的挑战[J]. 海洋地质动态, 2002, 18(1): 1-5.
|
3 |
LIU Dahai, GUAN Song, XING Wenxiu. Integrated coastal zone management based on land-sea coordination: from planning to legislation [J]. China Land, 2019(2): 8-11.
|
|
刘大海, 管松, 邢文秀. 基于陆海统筹的海岸带综合管理: 从规划到立法[J]. 中国土地, 2019(2): 8-11.
|
4 |
TANG Jianwu, YE Shufeng, CHEN Xuechu, et al. Coastal blue carbon: concept, study method, and the application to ecological restoration [J]. Science China Earth Sciences, 2018, 48(6): 661-670.
|
|
唐剑武, 叶属峰, 陈雪初, 等. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J]. 中国科学: 地球科学, 2018, 48(6): 661-670.
|
5 |
XI Jinping. Statement at the general debate of the 75th Session of the United Nations General Assembly [J]. The Gazette of the State Council of the People’s Republic of China, 2020(28): 5-7.
|
|
习近平. 在第七十五届联合国大会一般性辩论上的讲话[J]. 中华人民共和国国务院公报, 2020(28): 5-7.
|
6 |
ZHANG Haibo, LUO Yongming, LIU Xinghua, et al. Current researches and prospects on the coastal blue carbon [J]. Scientia Sinica Terrae, 2015, 45(11): 1 641-1 648.
|
|
章海波, 骆永明, 刘兴华, 等. 海岸带蓝碳研究及其展望[J]. 中国科学: 地球科学, 2015, 45(11): 1 641-1 648.
|
7 |
WANG Xiujun, ZHANG Haibo, HAN Guangxuan. Carbon cycle and “blue carbon” potential in China’s coastal zone[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1 218-1 225.
|
|
王秀君, 章海波, 韩广轩. 中国海岸带及近海碳循环与蓝碳潜力[J]. 中国科学院院刊, 2016, 31(10): 1 218-1 225.
|
8 |
ZHOU Chenhao, MAO Qinyu, XU Xiao, et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone[J]. Scientia Sinica Vitae, 2016, 46(4): 475-486.
|
|
周晨昊, 毛覃愉, 徐晓, 等. 中国海岸带蓝碳生态系统碳汇潜力的初步分析[J]. 中国科学: 生命科学, 2016, 46(4): 475-486.
|
9 |
MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 [J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560.
|
10 |
KIRWAN M L, MUDD S M. Response of salt-marsh carbon accumulation to climate change [J]. Nature, 2012, 489(7 417): 550-553.
|
11 |
CHEN X G, ZHANG F F, LAO Y L, et al. Submarine groundwater discharge-derived carbon fluxes in mangroves: an important component of blue carbon budgets?[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6 962-6 979.
|
12 |
SANTOS I R, BURDIGE D J, JENNERJAHN T C, et al. The renaissance of Odum’s outwelling hypothesis in ‘Blue Carbon’ science[J]. Estuarine, Coastal and Shelf Science, 2021, 255: 107361.
|
13 |
SANTOS I R, MAHER D T, LARKIN R, et al. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands[J]. Limnology and Oceanography, 2019, 64(3): 996-1 013.
|
14 |
SIPPO J Z, MAHER D T, SCHULZ K G, et al. Carbon outwelling across the shelf following a massive mangrove dieback in Australia: insights from Radium isotopes[J]. Geochimica et Cosmochimica Acta, 2019, 253: 142-158.
|
15 |
CHEN X G, SANTOS I R, HU D F, et al. Pore-water exchange flushes blue carbon from intertidal saltmarsh sediments into the sea[J]. Limnology and Oceanography Letters, 2022, 7(4): 312-320.
|
16 |
YAU Y Y Y, XIN P, CHEN X G, et al. Alkalinity export to the ocean is a major carbon sequestration mechanism in a macrotidal saltmarsh[J]. Limnology and Oceanography, 2022. DOI:10.1002/lno.12155 .
|
17 |
CORREA R E, XIAO K, CONRAD S R, et al. Groundwater carbon exports exceed sediment carbon burial in a salt marsh [J]. Estuaries and Coasts, 2022, 45: 1 545-1 561.
|
18 |
TANIGUCHI M, DULAI H, BURNETT K, et al. Submarine groundwater discharge: updates on its measurement techniques, geophysical drivers, magnitudes, and effects[J]. Frontiers in Environmental Science, 2019. DOI:10.3389/fenvs.2019.00141 .
|
19 |
CHEN Xuechu, DAI Yaqi, HUANG Chaojie, et al. Design of compound ecological purification system for preserving water quality of Shanghai Yingwuzhou wetland[J]. China Water & Wastewater, 2017, 33(20): 66-69.
|
|
陈雪初, 戴雅奇, 黄超杰, 等. 上海鹦鹉洲湿地水质复合生态净化系统设计[J]. 中国给水排水, 2017, 33(20): 66-69.
|
20 |
GUAN Daoming. Coastal wetlands in China [M]. Beijing: China Ocean Press, 2012.
|
|
关道明.中国滨海湿地[M]. 北京: 海洋出版社, 2012.
|
21 |
SANTOS I R, EYRE B D, HUETTEL M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review[J]. Estuarine, Coastal and Shelf Science, 2012, 98: 1-15.
|
22 |
HONG Q Q, CAI P H, SHI X M, et al. Solute transport into the Jiulong River Estuary via pore water exchange and submarine groundwater discharge: new insights from 224Ra/228Th disequilibrium[J]. Geochimica et Cosmochimica Acta, 2017, 198: 338-359.
|
23 |
XIN P, JIN G Q, LI L, et al. Effects of crab burrows on pore water flows in salt marshes[J]. Advances in Water Resources, 2009, 32(3): 439-449.
|
24 |
STIEGLITZ T C, CLARK J F, HANCOCK G J. The mangrove pump: the tidal flushing of animal burrows in a tropical mangrove forest determined from radionuclide budgets[J]. Geochimica et Cosmochimica Acta, 2013, 102: 12-22.
|
25 |
CAI W J, WANG Y C, KREST J, et al. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean[J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 631-639.
|
26 |
XIAO K, WILSON A M, LI H L, et al. Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration[J]. Limnology and Oceanography, 2021, 66(1): 14-29.
|
27 |
LI L, BARRY D A, STAGNITTI F, et al. Submarine groundwater discharge and associated chemical input to a coastal sea[J]. Water Resources Research, 1999, 35(11): 3 253-3 259.
|
28 |
BURNETT W C, BOKUNIEWICZ H, HUETTEL M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66(1/2): 3-33.
|
29 |
MOORE W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2010, 2: 59-88.
|
30 |
GARCIA-ORELLANA J, RODELLAS V, TAMBORSKI J, et al. Radium isotopes as Submarine Groundwater Discharge (SGD) tracers: review and recommendations[J]. Earth-Science Reviews, 2021, 220: 103681.
|
31 |
FABER P A, EVRARD V, WOODLAND R J, et al. Pore-water exchange driven by tidal pumping causes alkalinity export in two intertidal inlets[J]. Limnology and Oceanography, 2014, 59(5): 1 749-1 763.
|
32 |
TAILLARDAT P, WILLEMSEN P, MARCHAND C, et al. Assessing the contribution of porewater discharge in carbon export and CO2 evasion in a mangrove tidal creek (Can Gio, Vietnam)[J]. Journal of Hydrology, 2018, 563: 303-318.
|
33 |
CHEN X G, SANTOS I R, CALL M, et al. The mangrove CO2 pump: tidally driven pore-water exchange[J]. Limnology and Oceanography, 2021, 66(4): 1 563-1 577.
|
34 |
CHEN X G, DU J Z, YU X Q, et al. Porewater-derived dissolved inorganic carbon and nutrient fluxes in a saltmarsh of the Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2021, 40(8): 32-43.
|
35 |
LIU J N, YU X Q, CHEN X G, et al. Utility of Radium quartet for evaluating porewater-derived carbon to a saltmarsh nearshore water: implications for blue carbon export[J]. Science of the Total Environment, 2021, 764: 144238.
|
36 |
TAMBORSKI J J, EAGLE M, KURYLYK B L, et al. Pore water exchange-driven inorganic carbon export from intertidal salt marshes[J]. Limnology and Oceanography, 2021, 66(5): 1 774-1 792.
|
37 |
ZHU P Y, CHEN X G, ZHANG Y, et al. Porewater-derived blue carbon outwelling and greenhouse gas emissions in a subtropical multi-species saltmarsh[J]. Frontiers in Marine Science, 2022, 9: 884951.
|
38 |
TAIT D R, MAHER D T, MACKLIN P A, et al. Mangrove pore water exchange across a latitudinal gradient[J]. Geophysical Research Letters, 2016, 43(7): 3 334-3 341.
|
39 |
MOORE W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments[J]. Nature,1996, 380 (6 575): 612-614.
|
40 |
BECK A J, CHARETTE M A, COCHRAN J K, et al. Dissolved strontium in the subterranean estuary—implications for the marine strontium isotope budget[J]. Geochimica et Cosmochimica Acta, 2013, 117: 33-52.
|
41 |
WANG G Z, JING W P, WANG S L, et al. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system[J]. Environmental Science & Technology, 2014, 48(22): 13 069-13 075.
|
42 |
WANG X J, LI H L, ZHENG C M, et al. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China[J]. Geochimica et Cosmochimica Acta, 2018, 225: 52-65.
|
43 |
SANTOS I R, BECK M, BRUMSACK H J, et al. Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: insights from coupled 222Rn and pCO2 observations in the German Wadden Sea[J]. Marine Chemistry, 2015, 171: 10-20.
|
44 |
SANTOS I R, CHEN X, LECHER A L, et al. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry[J]. Nature Reviews Earth & Environment, 2021, 2(5): 307-323.
|
45 |
LUO X, JIAO J J. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks[J]. Water Research, 2016, 102: 11-31.
|
46 |
CHEN X G, LAO Y L, WANG J L, et al. Submarine groundwater-borne nutrients in a tropical bay (Maowei Sea, China) and their impacts on the oyster aquaculture[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(3): 932-951.
|
47 |
GUO X Y, XU B C, BURNETT W C, et al. Does submarine groundwater discharge contribute to summer hypoxia in the Changjiang (Yangtze) River Estuary?[J]. The Science of the Total Environment, 2020, 719: 137450.
|
48 |
CHEN Xiaogang. Submarine groundwater discharge in mangroves, salt marshes, sandy beaches and Karst ecosystems of typical coastal zones[D]. Shanghai: East China Normal University, 2019.
|
|
陈小刚. 海岸带典型红树林、盐沼、沙质海滩和岩溶生态系统海底地下水排放[D]. 上海: 华东师范大学, 2019.
|
49 |
TAIT D R, MAHER D T, SANDERS C J, et al. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves[J]. Geochimica et Cosmochimica Acta, 2017, 200: 295-309.
|
50 |
MAHER D T, SANTOS I R, GOLSBY-SMITH L, et al. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink? [J]. Limnology and Oceanography, 2013, 58(2): 475-488.
|
51 |
CALL M, MAHER D T, SANTOS I R, et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek[J]. Geochimica et Cosmochimica Acta, 2015, 150: 211-225.
|
52 |
REITHMAIER G M S, CHEN X G, SANTOS I R, et al. Rainfall drives rapid shifts in carbon and nutrient source-sink dynamics of an urbanised, mangrove-fringed estuary[J]. Estuarine, Coastal and Shelf Science, 2021, 249: 107064.
|
53 |
WANG Yali, ZHANG Fenfen, CHEN Xiaogang, et al. Influence of submarine groundwater discharge in the blue carbon budget of typical mangrove: a case study from the Zhenzhu Bay, Guangxi[J]. Haiyang Xuebao, 2020, 42(10): 37-46.
|
|
王亚丽, 张芬芬, 陈小刚, 等. 海底地下水排放对典型红树林蓝碳收支的影响: 以广西珍珠湾为例[J]. 海洋学报, 2020, 42(10): 37-46.
|
54 |
MARCHAND C, ALBÉRIC P, LALLIER-VERGÈS E, et al. Distribution and characteristics of dissolved organic matter in mangrove sediment pore waters along the coastline of French Guiana[J]. Biogeochemistry, 2006, 81(1): 59-75.
|
55 |
BOUILLON S, MIDDELBURG J J, DEHAIRS F, et al. Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania)[J]. Biogeosciences, 2007, 4(3): 311-322.
|
56 |
BOUILLON S, DEHAIRS F, SCHIETTECATTE L S, et al. Biogeochemistry of the Tana estuary and delta (northern Kenya)[J]. Limnology and Oceanography, 2007, 52(1): 46-59.
|
57 |
TREMBLAY L B, DITTMAR T, MARSHALL A G, et al. Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier Transform-Ion Cyclotron Resonance mass spectrometry and excitation/emission spectroscopy[J]. Marine Chemistry, 2007, 105(1/2): 15-29.
|
58 |
MOORE W S, BLANTON J O, JOYE S B. Estimates of Flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina[J]. Journal of Geophysical Research: Oceans, 2006, 111(C9): C09006.
|
59 |
PORUBSKY W P, WESTON N B, MOORE W S, et al. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River Estuary, South Carolina)[J]. Geochimica et Cosmochimica Acta, 2014, 131: 81-97.
|
60 |
WANG Z A, KROEGER K D, GANJU N K, et al. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean[J]. Limnology and Oceanography, 2016, 61(5): 1 916-1 931.
|
61 |
PETERSON R N, MEILE C, PETERSON L E, et al. Groundwater discharge dynamics into a salt marsh tidal river[J]. Estuarine, Coastal and Shelf Science, 2019, 218: 324-333.
|
62 |
WEBB J R, SANTOS I R, MAHER D T, et al. Groundwater as a source of dissolved organic matter to coastal waters: insights from radon and CDOM observations in 12 shallow coastal systems[J]. Limnology and Oceanography, 2019, 64(1): 182-196.
|
63 |
DIGGLE R M, TAIT D R, MAHER D T, et al. The role of porewater exchange as a driver of CO2 flux to the atmosphere in a temperate estuary (Squamish, Canada)[J]. Environmental Earth Sciences, 2019, 78(11): 1-13.
|
64 |
WU Z J, ZHU H N, TANG D H, et al. Submarine groundwater discharge as a significant export of dissolved inorganic carbon from a mangrove tidal creek to Qinglan Bay (Hainan Island, China)[J]. Continental Shelf Research, 2021, 223: 104451.
|
65 |
LI G, LI H L, WANG X J, et al. Groundwater-surface water exchanges and associated nutrient fluxes in Dan’ao Estuary, Daya Bay, China[J]. Continental Shelf Research, 2018, 166: 83-91.
|
66 |
WANG F F, XIAO K, SANTOS I R, et al. Porewater exchange drives nutrient cycling and export in a mangrove-salt marsh ecotone[J]. Journal of Hydrology, 2022, 606: 127401.
|
67 |
XIN P, YUAN L R, LI L, et al. Tidally driven multiscale pore water flow in a creek-marsh system[J]. Water Resources Research, 2011, 47(7): W07534.
|
68 |
XIN P, ZHOU T Z, LU C H, et al. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system[J]. Advances in Water Resources, 2017, 103: 1-15.
|
69 |
SHEN C J, ZHANG C M, XIN P, et al. Salt dynamics in coastal marshes: formation of hypersaline zones[J]. Water Resources Research, 2018, 54(5): 3 259-3 276.
|
70 |
LI Hailong, WAN Li, JIAO Jiujiu. Hot issues in the study of coastal hydrogeology[J]. Advances in Earth Science, 2011, 26(7): 685-694.
|
|
李海龙, 万力, 焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011, 26(7): 685-694.
|
71 |
LI Hailong, WANG Xuejing. Submarine groundwater discharge: a review[J]. Advances in Earth Science, 2015, 30(6): 636-646.
|
|
李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6): 636-646.
|
72 |
WANG Xuejing. Estimating Submarine Groundwater Discharge (SGD) into Laizhou Bay etc using Radium isotopes[D]. Beijing: China University of Geosciences, 2015.
|
|
王学静. 镭同位素评估莱州湾等地海底地下水排泄(SGD)[D]. 北京: 中国地质大学(北京), 2015.
|
73 |
LIU Jianan. Evaluating submarine groundwater discharge and its effects on eco-environment in estuarine and coastal waters by Radium isotopes[D]. Shanghai: East China Normal University, 2019.
|
|
刘建安. 基于镭同位素评估河口和近海海底地下水排放及其环境效应[D]. 上海: 华东师范大学, 2019.
|
74 |
CHARETTE M A. Hydrologic forcing of submarine groundwater discharge: insight from a seasonal study of Radium isotopes in a groundwater-dominated salt marsh estuary[J]. Limnology and Oceanography, 2007, 52(1): 230-239.
|
75 |
SADAT-NOORI M, SANTOS I R, TAIT D R, et al. High porewater exchange in a mangrove-dominated estuary revealed from short-lived Radium isotopes[J]. Journal of Hydrology, 2017, 553: 188-198.
|
76 |
SHI X M, MASON R P, CHARETTE M A, et al. Mercury flux from salt marsh sediments: insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods[J]. Geochimica et Cosmochimica Acta, 2018, 222: 569-583.
|
77 |
SHI X M, BENITEZ-NELSON C R, CAI P H, et al. Development of a two-layer transport model in layered muddy-permeable marsh sediments using 224Ra-228Th disequilibria[J]. Limnology and Oceanography, 2019, 64(4): 1 672-1 687.
|
78 |
MAHER D T, COWLEY K, SANTOS I R, et al. Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: insights from automated in situ radioactive and stable isotope measurements[J]. Marine Chemistry, 2015, 168: 69-79.
|
79 |
CHANYOTHA S, KRANROD C, BURNETT W C, et al. Prospecting for groundwater discharge in the canals of Bangkok via natural radon and Thoron[J]. Journal of Hydrology, 2014, 519: 1 485-1 492.
|
80 |
XU B C, XIA D, BURNETT W C, et al. Natural 222Rn and 220Rn indicate the impact of the Water-Sediment Regulation Scheme (WSRS) on submarine groundwater discharge in the Yellow River Estuary, China[J]. Applied Geochemistry, 2014, 51: 79-85.
|
81 |
ZHANG Y, LI H L, XIAO K, et al. Improving estimation of submarine groundwater discharge using Radium and radon tracers: application in Jiaozhou Bay, China[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 8 263-8 277.
|
82 |
TAN E H, WANG G Z, MOORE W S, et al. Shelf-scale submarine groundwater discharge in the northern South China Sea and East China Sea and its geochemical impacts[J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 2 997-3 013.
|
83 |
WANG X L, BASKARAN M, SU K J, et al. The important role of Submarine Groundwater Discharge (SGD) to derive nutrient fluxes into river dominated ocean margins—The East China Sea[J]. Marine Chemistry, 2018, 204: 121-132.
|
84 |
MOORE W S. Sources and fluxes of submarine groundwater discharge delineated by Radium isotopes[J]. Biogeochemistry, 2003, 66(1/2): 75-93.
|
85 |
CAI P H, SHI X M, MOORE W S, et al. Measurement of 224Ra∶228Th disequilibrium in coastal sediments using a delayed coincidence counter[J]. Marine Chemistry, 2012, 138/139: 1-6.
|
86 |
CAI P H, SHI X M, MOORE W S, et al. 224Ra∶228Th disequilibrium in coastal sediments: implications for solute transfer across the sediment-water interface[J]. Geochimica et Cosmochimica Acta, 2014, 125: 68-84.
|
87 |
HONG Qingquan, SHI Xiangming, WEI Lin, et al. Progresses and outlooks of the researche on solute exchange across the sediment-water interface using a novel 224Ra/228Th disequilibrium approach[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(5): 827-840.
|
|
洪清泉, 史向明, 魏琳, 等. 沉积物—水界面交换研究的天然放射性同位素224Ra/228Th新体系[J]. 矿物岩石地球化学通报, 2018, 37(5): 827-840.
|
88 |
WILSON A M, MOORE W S, JOYE S B, et al. Storm-driven groundwater flow in a salt marsh[J]. Water Resources Research, 2011, 47(2): W02535.
|