地球科学进展 ›› 2022, Vol. 37 ›› Issue (9): 881 -898. doi: 10.11867/j.issn.1001-8166.2022.066

综述与评述    下一篇

红树林和盐沼湿地间隙水交换过程及其碳汇潜力
陈小刚 1 , 2( ), 李凌 1 , 2( ), 杜金洲 3 , 4   
  1. 1.西湖大学工学院 浙江省海岸带环境与资源研究重点实验室,浙江 杭州 310024
    2.浙江西湖 高等研究院 前沿技术研究所,浙江 杭州 310024
    3.华东师范大学 河口海岸学 国家重点实验室,上海 200241
    4.崇明生态研究院,上海 202162
  • 收稿日期:2022-06-13 修回日期:2022-08-13 出版日期:2022-09-10
  • 通讯作者: 李凌 E-mail:chenxiaogang@westlake.edu.cn;liling@westlake.edu.cn
  • 基金资助:
    国家自然科学基金项目“潮汐和降雨作用对盐沼湿地海底地下水排放及其碳通量的影响”(42006152);浙江省自然科学基金项目“杭州湾典型盐沼湿地海底地下水碳排放过程研究”(LQ21D060005)

Porewater Exchange and the Related Carbon Sink Potential in Mangroves and Saltmarshes

Xiaogang CHEN 1 , 2( ), Ling LI 1 , 2( ), Jinzhou DU 3 , 4   

  1. 1.Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
    2.Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
    3.State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
    4.Institute of Eco-Chongming, Shanghai 202162, China
  • Received:2022-06-13 Revised:2022-08-13 Online:2022-09-10 Published:2022-09-28
  • Contact: Ling LI E-mail:chenxiaogang@westlake.edu.cn;liling@westlake.edu.cn
  • About author:CHEN Xiaogang (1989-), male, Lintao County, Gansu Province, Research assistant professor. Research areas include isotopic oceanography and marine biogeochemistry. E-mail: chenxiaogang@westlake.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Effects of tide and rainfall on submarine groundwater discharge and carbon fluxes in salt marsh wetland”(42006152);The Zhejiang Provincial Natural Science Foundation of China “Study on the carbon fluxes via submarine groundwater discharge in typical salt marshes of Hangzhou Bay”(LQ21D060005)

全球气候变化对资源、生态和环境的负面影响日益显现,降低大气CO2浓度已经成为全球关注的焦点。潮间带湿地(如红树林和盐沼)具有很强的碳汇功能,是降低CO2浓度和减缓全球气候变化的重要途径。红树林和盐沼作为重要的海岸带蓝碳生态系统,其土壤具有极高的储碳能力。由于受潮汐和降雨等驱动力的控制,红树林和盐沼土壤间隙水碳交换过程在海岸带蓝碳汇估算中具有较大的不确定性。同时,红树林和盐沼间隙水碳交换过程也是海岸带蓝碳汇相关研究中的前沿性科学问题,具有较大的挑战性。红树林和盐沼间隙水交换促使大量沉积物中的碳输出并存储于海洋,其可能是除了湿地碳埋藏之外的另一个重要碳汇,但目前对此尚未开展系统研究。总结论述了红树林和盐沼生境土壤间隙水交换速率及其携带蓝碳通量和控制因素,期望在对全球红树林和盐沼生态系统蓝碳收支和碳汇潜力进行评估中对其土壤间隙水过程携带的蓝碳通量引起足够的重视。这将深化对红树林和盐沼生态系统碳收支平衡和循环过程的认识,进而在全球气候变化的背景下,为更好地发挥海岸带蓝碳汇功能、促进红树林和盐沼生态系统建设和保护以及海岸带可持续发展提供科学支撑。

The negative impact of global climate change on resources, ecology, and the environment is becoming increasingly apparent. Hence, reducing the atmospheric carbon dioxide (CO2) concentration has become a global concern. Intertidal wetlands (e.g., mangroves and salt marshes) have strong carbon sink functions that can reduce the CO2 concentration, thus mitigating global climate change. Mangroves and salt marshes are important coastal blue carbon ecosystems characterized by high soil carbon storage. Porewater exchange and associated carbon exchange driven by tides and rainfall in mangroves and salt marshes are challenging issues when estimating the effects of coastal blue carbon sinks. Large amounts of porewater-derived sediment carbon outwellings remain in the ocean and may represent an important carbon sink; however, they are poorly understood, despite being potentially significant components of the salt marsh carbon budget. This review aims to quantify the porewater exchange rate and related carbon fluxes, analyze their driving mechanisms, and reassess the carbon budgets and carbon sink potentials of mangroves and salt marshes. This study promotes understanding the carbon balance and cycle processes associated with mangrove and salt marsh ecosystems, and provides a scientific basis for the construction, protection, and sustainable development of coastal blue carbon sinks in the context of global climate change.

中图分类号: 

1 YANG Jing, ZHANG Renduo, WENG Shichuang, et al. The assessment method of coastal environmental carrying capacity[J]. China Environmental Science, 2013, 33(): 178-185.
杨静, 张仁铎, 翁士创, 等. 海岸带环境承载力评价方法研究[J]. 中国环境科学, 2013, 33(): 178-185.
2 CHEN Jiyu, CHEN Shenliang. Estuarine and coastal challenges in China[J]. Marine Geology Frontiers, 2002, 18(1): 1-5.
陈吉余, 陈沈良. 中国河口海岸面临的挑战[J]. 海洋地质动态, 2002, 18(1): 1-5.
3 LIU Dahai, GUAN Song, XING Wenxiu. Integrated coastal zone management based on land-sea coordination: from planning to legislation [J]. China Land, 2019(2): 8-11.
刘大海, 管松, 邢文秀. 基于陆海统筹的海岸带综合管理: 从规划到立法[J]. 中国土地, 2019(2): 8-11.
4 TANG Jianwu, YE Shufeng, CHEN Xuechu, et al. Coastal blue carbon: concept, study method, and the application to ecological restoration [J]. Science China Earth Sciences, 2018, 48(6): 661-670.
唐剑武, 叶属峰, 陈雪初, 等. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J]. 中国科学: 地球科学, 2018, 48(6): 661-670.
5 XI Jinping. Statement at the general debate of the 75th Session of the United Nations General Assembly [J]. The Gazette of the State Council of the People’s Republic of China, 2020(28): 5-7.
习近平. 在第七十五届联合国大会一般性辩论上的讲话[J]. 中华人民共和国国务院公报, 2020(28): 5-7.
6 ZHANG Haibo, LUO Yongming, LIU Xinghua, et al. Current researches and prospects on the coastal blue carbon [J]. Scientia Sinica Terrae, 2015, 45(11): 1 641-1 648.
章海波, 骆永明, 刘兴华, 等. 海岸带蓝碳研究及其展望[J]. 中国科学: 地球科学, 2015, 45(11): 1 641-1 648.
7 WANG Xiujun, ZHANG Haibo, HAN Guangxuan. Carbon cycle and “blue carbon” potential in China’s coastal zone[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1 218-1 225.
王秀君, 章海波, 韩广轩. 中国海岸带及近海碳循环与蓝碳潜力[J]. 中国科学院院刊, 2016, 31(10): 1 218-1 225.
8 ZHOU Chenhao, MAO Qinyu, XU Xiao, et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone[J]. Scientia Sinica Vitae, 2016, 46(4): 475-486.
周晨昊, 毛覃愉, 徐晓, 等. 中国海岸带蓝碳生态系统碳汇潜力的初步分析[J]. 中国科学: 生命科学, 2016, 46(4): 475-486.
9 MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 [J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560.
10 KIRWAN M L, MUDD S M. Response of salt-marsh carbon accumulation to climate change [J]. Nature, 2012, 489(7 417): 550-553.
11 CHEN X G, ZHANG F F, LAO Y L, et al. Submarine groundwater discharge-derived carbon fluxes in mangroves: an important component of blue carbon budgets?[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6 962-6 979.
12 SANTOS I R, BURDIGE D J, JENNERJAHN T C, et al. The renaissance of Odum’s outwelling hypothesis in ‘Blue Carbon’ science[J]. Estuarine, Coastal and Shelf Science, 2021, 255: 107361.
13 SANTOS I R, MAHER D T, LARKIN R, et al. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands[J]. Limnology and Oceanography, 2019, 64(3): 996-1 013.
14 SIPPO J Z, MAHER D T, SCHULZ K G, et al. Carbon outwelling across the shelf following a massive mangrove dieback in Australia: insights from Radium isotopes[J]. Geochimica et Cosmochimica Acta, 2019, 253: 142-158.
15 CHEN X G, SANTOS I R, HU D F, et al. Pore-water exchange flushes blue carbon from intertidal saltmarsh sediments into the sea[J]. Limnology and Oceanography Letters, 2022, 7(4): 312-320.
16 YAU Y Y Y, XIN P, CHEN X G, et al. Alkalinity export to the ocean is a major carbon sequestration mechanism in a macrotidal saltmarsh[J]. Limnology and Oceanography, 2022. DOI:10.1002/lno.12155 .
17 CORREA R E, XIAO K, CONRAD S R, et al. Groundwater carbon exports exceed sediment carbon burial in a salt marsh [J]. Estuaries and Coasts, 2022, 45: 1 545-1 561.
18 TANIGUCHI M, DULAI H, BURNETT K, et al. Submarine groundwater discharge: updates on its measurement techniques, geophysical drivers, magnitudes, and effects[J]. Frontiers in Environmental Science, 2019. DOI:10.3389/fenvs.2019.00141 .
19 CHEN Xuechu, DAI Yaqi, HUANG Chaojie, et al. Design of compound ecological purification system for preserving water quality of Shanghai Yingwuzhou wetland[J]. China Water & Wastewater, 2017, 33(20): 66-69.
陈雪初, 戴雅奇, 黄超杰, 等. 上海鹦鹉洲湿地水质复合生态净化系统设计[J]. 中国给水排水, 2017, 33(20): 66-69.
20 GUAN Daoming. Coastal wetlands in China [M]. Beijing: China Ocean Press, 2012.
关道明.中国滨海湿地[M]. 北京: 海洋出版社, 2012.
21 SANTOS I R, EYRE B D, HUETTEL M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review[J]. Estuarine, Coastal and Shelf Science, 2012, 98: 1-15.
22 HONG Q Q, CAI P H, SHI X M, et al. Solute transport into the Jiulong River Estuary via pore water exchange and submarine groundwater discharge: new insights from 224Ra/228Th disequilibrium[J]. Geochimica et Cosmochimica Acta, 2017, 198: 338-359.
23 XIN P, JIN G Q, LI L, et al. Effects of crab burrows on pore water flows in salt marshes[J]. Advances in Water Resources, 2009, 32(3): 439-449.
24 STIEGLITZ T C, CLARK J F, HANCOCK G J. The mangrove pump: the tidal flushing of animal burrows in a tropical mangrove forest determined from radionuclide budgets[J]. Geochimica et Cosmochimica Acta, 2013, 102: 12-22.
25 CAI W J, WANG Y C, KREST J, et al. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean[J]. Geochimica et Cosmochimica Acta, 2003, 67(4): 631-639.
26 XIAO K, WILSON A M, LI H L, et al. Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration[J]. Limnology and Oceanography, 2021, 66(1): 14-29.
27 LI L, BARRY D A, STAGNITTI F, et al. Submarine groundwater discharge and associated chemical input to a coastal sea[J]. Water Resources Research, 1999, 35(11): 3 253-3 259.
28 BURNETT W C, BOKUNIEWICZ H, HUETTEL M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66(1/2): 3-33.
29 MOORE W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2010, 2: 59-88.
30 GARCIA-ORELLANA J, RODELLAS V, TAMBORSKI J, et al. Radium isotopes as Submarine Groundwater Discharge (SGD) tracers: review and recommendations[J]. Earth-Science Reviews, 2021, 220: 103681.
31 FABER P A, EVRARD V, WOODLAND R J, et al. Pore-water exchange driven by tidal pumping causes alkalinity export in two intertidal inlets[J]. Limnology and Oceanography, 2014, 59(5): 1 749-1 763.
32 TAILLARDAT P, WILLEMSEN P, MARCHAND C, et al. Assessing the contribution of porewater discharge in carbon export and CO2 evasion in a mangrove tidal creek (Can Gio, Vietnam)[J]. Journal of Hydrology, 2018, 563: 303-318.
33 CHEN X G, SANTOS I R, CALL M, et al. The mangrove CO2 pump: tidally driven pore-water exchange[J]. Limnology and Oceanography, 2021, 66(4): 1 563-1 577.
34 CHEN X G, DU J Z, YU X Q, et al. Porewater-derived dissolved inorganic carbon and nutrient fluxes in a saltmarsh of the Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2021, 40(8): 32-43.
35 LIU J N, YU X Q, CHEN X G, et al. Utility of Radium quartet for evaluating porewater-derived carbon to a saltmarsh nearshore water: implications for blue carbon export[J]. Science of the Total Environment, 2021, 764: 144238.
36 TAMBORSKI J J, EAGLE M, KURYLYK B L, et al. Pore water exchange-driven inorganic carbon export from intertidal salt marshes[J]. Limnology and Oceanography, 2021, 66(5): 1 774-1 792.
37 ZHU P Y, CHEN X G, ZHANG Y, et al. Porewater-derived blue carbon outwelling and greenhouse gas emissions in a subtropical multi-species saltmarsh[J]. Frontiers in Marine Science, 2022, 9: 884951.
38 TAIT D R, MAHER D T, MACKLIN P A, et al. Mangrove pore water exchange across a latitudinal gradient[J]. Geophysical Research Letters, 2016, 43(7): 3 334-3 341.
39 MOORE W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments[J]. Nature,1996, 380 (6 575): 612-614.
40 BECK A J, CHARETTE M A, COCHRAN J K, et al. Dissolved strontium in the subterranean estuary—implications for the marine strontium isotope budget[J]. Geochimica et Cosmochimica Acta, 2013, 117: 33-52.
41 WANG G Z, JING W P, WANG S L, et al. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system[J]. Environmental Science & Technology, 2014, 48(22): 13 069-13 075.
42 WANG X J, LI H L, ZHENG C M, et al. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China[J]. Geochimica et Cosmochimica Acta, 2018, 225: 52-65.
43 SANTOS I R, BECK M, BRUMSACK H J, et al. Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: insights from coupled 222Rn and pCO2 observations in the German Wadden Sea[J]. Marine Chemistry, 2015, 171: 10-20.
44 SANTOS I R, CHEN X, LECHER A L, et al. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry[J]. Nature Reviews Earth & Environment, 2021, 2(5): 307-323.
45 LUO X, JIAO J J. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks[J]. Water Research, 2016, 102: 11-31.
46 CHEN X G, LAO Y L, WANG J L, et al. Submarine groundwater-borne nutrients in a tropical bay (Maowei Sea, China) and their impacts on the oyster aquaculture[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(3): 932-951.
47 GUO X Y, XU B C, BURNETT W C, et al. Does submarine groundwater discharge contribute to summer hypoxia in the Changjiang (Yangtze) River Estuary?[J]. The Science of the Total Environment, 2020, 719: 137450.
48 CHEN Xiaogang. Submarine groundwater discharge in mangroves, salt marshes, sandy beaches and Karst ecosystems of typical coastal zones[D]. Shanghai: East China Normal University, 2019.
陈小刚. 海岸带典型红树林、盐沼、沙质海滩和岩溶生态系统海底地下水排放[D]. 上海: 华东师范大学, 2019.
49 TAIT D R, MAHER D T, SANDERS C J, et al. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves[J]. Geochimica et Cosmochimica Acta, 2017, 200: 295-309.
50 MAHER D T, SANTOS I R, GOLSBY-SMITH L, et al. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink? [J]. Limnology and Oceanography, 2013, 58(2): 475-488.
51 CALL M, MAHER D T, SANTOS I R, et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek[J]. Geochimica et Cosmochimica Acta, 2015, 150: 211-225.
52 REITHMAIER G M S, CHEN X G, SANTOS I R, et al. Rainfall drives rapid shifts in carbon and nutrient source-sink dynamics of an urbanised, mangrove-fringed estuary[J]. Estuarine, Coastal and Shelf Science, 2021, 249: 107064.
53 WANG Yali, ZHANG Fenfen, CHEN Xiaogang, et al. Influence of submarine groundwater discharge in the blue carbon budget of typical mangrove: a case study from the Zhenzhu Bay, Guangxi[J]. Haiyang Xuebao, 2020, 42(10): 37-46.
王亚丽, 张芬芬, 陈小刚, 等. 海底地下水排放对典型红树林蓝碳收支的影响: 以广西珍珠湾为例[J]. 海洋学报, 2020, 42(10): 37-46.
54 MARCHAND C, ALBÉRIC P, LALLIER-VERGÈS E, et al. Distribution and characteristics of dissolved organic matter in mangrove sediment pore waters along the coastline of French Guiana[J]. Biogeochemistry, 2006, 81(1): 59-75.
55 BOUILLON S, MIDDELBURG J J, DEHAIRS F, et al. Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania)[J]. Biogeosciences, 2007, 4(3): 311-322.
56 BOUILLON S, DEHAIRS F, SCHIETTECATTE L S, et al. Biogeochemistry of the Tana estuary and delta (northern Kenya)[J]. Limnology and Oceanography, 2007, 52(1): 46-59.
57 TREMBLAY L B, DITTMAR T, MARSHALL A G, et al. Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier Transform-Ion Cyclotron Resonance mass spectrometry and excitation/emission spectroscopy[J]. Marine Chemistry, 2007, 105(1/2): 15-29.
58 MOORE W S, BLANTON J O, JOYE S B. Estimates of Flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina[J]. Journal of Geophysical Research: Oceans, 2006, 111(C9): C09006.
59 PORUBSKY W P, WESTON N B, MOORE W S, et al. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River Estuary, South Carolina)[J]. Geochimica et Cosmochimica Acta, 2014, 131: 81-97.
60 WANG Z A, KROEGER K D, GANJU N K, et al. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean[J]. Limnology and Oceanography, 2016, 61(5): 1 916-1 931.
61 PETERSON R N, MEILE C, PETERSON L E, et al. Groundwater discharge dynamics into a salt marsh tidal river[J]. Estuarine, Coastal and Shelf Science, 2019, 218: 324-333.
62 WEBB J R, SANTOS I R, MAHER D T, et al. Groundwater as a source of dissolved organic matter to coastal waters: insights from radon and CDOM observations in 12 shallow coastal systems[J]. Limnology and Oceanography, 2019, 64(1): 182-196.
63 DIGGLE R M, TAIT D R, MAHER D T, et al. The role of porewater exchange as a driver of CO2 flux to the atmosphere in a temperate estuary (Squamish, Canada)[J]. Environmental Earth Sciences, 2019, 78(11): 1-13.
64 WU Z J, ZHU H N, TANG D H, et al. Submarine groundwater discharge as a significant export of dissolved inorganic carbon from a mangrove tidal creek to Qinglan Bay (Hainan Island, China)[J]. Continental Shelf Research, 2021, 223: 104451.
65 LI G, LI H L, WANG X J, et al. Groundwater-surface water exchanges and associated nutrient fluxes in Dan’ao Estuary, Daya Bay, China[J]. Continental Shelf Research, 2018, 166: 83-91.
66 WANG F F, XIAO K, SANTOS I R, et al. Porewater exchange drives nutrient cycling and export in a mangrove-salt marsh ecotone[J]. Journal of Hydrology, 2022, 606: 127401.
67 XIN P, YUAN L R, LI L, et al. Tidally driven multiscale pore water flow in a creek-marsh system[J]. Water Resources Research, 2011, 47(7): W07534.
68 XIN P, ZHOU T Z, LU C H, et al. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system[J]. Advances in Water Resources, 2017, 103: 1-15.
69 SHEN C J, ZHANG C M, XIN P, et al. Salt dynamics in coastal marshes: formation of hypersaline zones[J]. Water Resources Research, 2018, 54(5): 3 259-3 276.
70 LI Hailong, WAN Li, JIAO Jiujiu. Hot issues in the study of coastal hydrogeology[J]. Advances in Earth Science, 2011, 26(7): 685-694.
李海龙, 万力, 焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011, 26(7): 685-694.
71 LI Hailong, WANG Xuejing. Submarine groundwater discharge: a review[J]. Advances in Earth Science, 2015, 30(6): 636-646.
李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6): 636-646.
72 WANG Xuejing. Estimating Submarine Groundwater Discharge (SGD) into Laizhou Bay etc using Radium isotopes[D]. Beijing: China University of Geosciences, 2015.
王学静. 镭同位素评估莱州湾等地海底地下水排泄(SGD)[D]. 北京: 中国地质大学(北京), 2015.
73 LIU Jianan. Evaluating submarine groundwater discharge and its effects on eco-environment in estuarine and coastal waters by Radium isotopes[D]. Shanghai: East China Normal University, 2019.
刘建安. 基于镭同位素评估河口和近海海底地下水排放及其环境效应[D]. 上海: 华东师范大学, 2019.
74 CHARETTE M A. Hydrologic forcing of submarine groundwater discharge: insight from a seasonal study of Radium isotopes in a groundwater-dominated salt marsh estuary[J]. Limnology and Oceanography, 2007, 52(1): 230-239.
75 SADAT-NOORI M, SANTOS I R, TAIT D R, et al. High porewater exchange in a mangrove-dominated estuary revealed from short-lived Radium isotopes[J]. Journal of Hydrology, 2017, 553: 188-198.
76 SHI X M, MASON R P, CHARETTE M A, et al. Mercury flux from salt marsh sediments: insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods[J]. Geochimica et Cosmochimica Acta, 2018, 222: 569-583.
77 SHI X M, BENITEZ-NELSON C R, CAI P H, et al. Development of a two-layer transport model in layered muddy-permeable marsh sediments using 224Ra-228Th disequilibria[J]. Limnology and Oceanography, 2019, 64(4): 1 672-1 687.
78 MAHER D T, COWLEY K, SANTOS I R, et al. Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: insights from automated in situ radioactive and stable isotope measurements[J]. Marine Chemistry, 2015, 168: 69-79.
79 CHANYOTHA S, KRANROD C, BURNETT W C, et al. Prospecting for groundwater discharge in the canals of Bangkok via natural radon and Thoron[J]. Journal of Hydrology, 2014, 519: 1 485-1 492.
80 XU B C, XIA D, BURNETT W C, et al. Natural 222Rn and 220Rn indicate the impact of the Water-Sediment Regulation Scheme (WSRS) on submarine groundwater discharge in the Yellow River Estuary, China[J]. Applied Geochemistry, 2014, 51: 79-85.
81 ZHANG Y, LI H L, XIAO K, et al. Improving estimation of submarine groundwater discharge using Radium and radon tracers: application in Jiaozhou Bay, China[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 8 263-8 277.
82 TAN E H, WANG G Z, MOORE W S, et al. Shelf-scale submarine groundwater discharge in the northern South China Sea and East China Sea and its geochemical impacts[J]. Journal of Geophysical Research: Oceans, 2018, 123(4): 2 997-3 013.
83 WANG X L, BASKARAN M, SU K J, et al. The important role of Submarine Groundwater Discharge (SGD) to derive nutrient fluxes into river dominated ocean margins—The East China Sea[J]. Marine Chemistry, 2018, 204: 121-132.
84 MOORE W S. Sources and fluxes of submarine groundwater discharge delineated by Radium isotopes[J]. Biogeochemistry, 2003, 66(1/2): 75-93.
85 CAI P H, SHI X M, MOORE W S, et al. Measurement of 224Ra∶228Th disequilibrium in coastal sediments using a delayed coincidence counter[J]. Marine Chemistry, 2012, 138/139: 1-6.
86 CAI P H, SHI X M, MOORE W S, et al. 224Ra∶228Th disequilibrium in coastal sediments: implications for solute transfer across the sediment-water interface[J]. Geochimica et Cosmochimica Acta, 2014, 125: 68-84.
87 HONG Qingquan, SHI Xiangming, WEI Lin, et al. Progresses and outlooks of the researche on solute exchange across the sediment-water interface using a novel 224Ra/228Th disequilibrium approach[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(5): 827-840.
洪清泉, 史向明, 魏琳, 等. 沉积物—水界面交换研究的天然放射性同位素224Ra/228Th新体系[J]. 矿物岩石地球化学通报, 2018, 37(5): 827-840.
88 WILSON A M, MOORE W S, JOYE S B, et al. Storm-driven groundwater flow in a salt marsh[J]. Water Resources Research, 2011, 47(2): W02535.
[1] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[2] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[3] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
[4] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[5] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[6] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[7] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[8] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[9] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[10] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[11] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[12] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[13] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[14] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[15] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
阅读次数
全文


摘要