31 |
YEE N, SHAW S, BENNING L G, et al. The rate of ferrihydrite transformation to goethite via the Fe(Ⅱ) pathway [J]. American Mineralogist, 2015, 91(1): 92-96.
|
32 |
AMSTAETTER K, BORCH T, KAPPLER A. Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(Ⅲ) reduction [J]. Geochimica et Cosmochimica Acta, 2012, 85: 326-341.
|
33 |
CHEN C, KUKKADAPU R K, LAZAREVA O, et al. Solid-phase Fe speciation along the vertical redox gradients in floodplains using XAS and Mössbauer spectroscopies [J]. EnvironmentalScience & Technology, 2017, 51(14): 7 903-7 912.
|
34 |
JIANG Jiabin, ZHU Zhenke, LIN Sen, et al. Mineralization of goethite adsorbed and -encapsulated organic carbon and its priming effect in paddy soil [J]. Acta Pedologica Sinica, 2021,58(6):1 530-1 539.
|
|
江家彬, 祝贞科, 林森, 等. 针铁矿吸附态和包裹态有机碳在稻田土壤中的矿化及其激发效应 [J]. 土壤学报, 2021,58(6):1 530-1 539.
|
35 |
LUO M, LIU Y, HUANG J, et al. Rhizosphere processes induce changes in dissimilatory iron reduction in a tidal marsh soil: a rhizobox study [J]. Plant and Soil, 2018, 433(1): 83-100.
|
36 |
POGGENBURG C, MIKUTTA R, SANDER M, et al. Microbial reduction of ferrihydrite-organic matter coprecipitates by Shewanella putrefaciens and Geobacter metallireducens in comparison to mediated electrochemical reduction [J]. Chemical Geology, 2016, 447: 133-147.
|
37 |
DUAN X, YU X, LI Z, et al. Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands [J]. Soil Biology and Biochemistry, 2020, 149: 107949.
|
38 |
LI H, BÖLSCHER T, WINNICK M, et al. Simple Plant and microbial exudates destabilize mineral-associated organic matter via multiple pathways [J]. Environmental Science & Technology, 2021, 55(5): 3 389-3 398.
|
39 |
KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates [J]. Nature Climate Change, 2015, 5(6): 588-595.
|
40 |
DING Y, YE Q, LIU M, et al. Reductive release of Fe mineral-associated organic matter accelerated by oxalic acid [J]. The Science of the Total Environment, 2021,763: 142937.
|
41 |
JILLING A, KEILUWEIT M, GUTKNECHT J L, et al. Priming mechanisms providing plants and microbes access to mineral-associated organic matter [J]. Soil Biology and Biochemistry, 2021. DOI:10.1016/j.soilbio.2021.108265 .
|
42 |
PAN W, KAN J, INAMDAR S, et al. Dissimilatory microbial iron reduction release DOC (Dissolved Organic Carbon) from carbon-ferrihydrite association [J]. Soil Biology and Biochemistry, 2016, 103: 232-240.
|
43 |
DUAN Xun, LUO Min, HUANG Jiafang, et al. Fractions and the spatial distribution of iron in the sediments of tidal marsh in the Min River Estuary [J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3 780-3 791.
|
|
段勋, 罗敏, 黄佳芳, 等. 闽江河口潮滩沼泽湿地沉积物铁的形态和空间分布 [J]. 环境科学学报, 2017, 37(10): 3 780-3 791.
|
44 |
LUO Min, HUANG Jiafang, LIU Yuxiu, et al. Progress in effects of root bioturbation on dissimilatory iron reduction in the rhizosphere of wetland plants [J]. Acta Ecologica Sinica,2017,37(1) : 156-166.
|
|
罗敏, 黄佳芳, 刘育秀, 等. 根系活动对湿地植物根际铁异化还原的影响及机制研究进展 [J]. 生态学报, 2017, 37(1): 156-166.
|
45 |
WEISS J V, EMERSON D, MEGONIGAL J P. Geochemical control of microbial Fe(Ⅲ) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil [J]. FEMS Microbiology Ecology, 2004, 48(1): 89-100.
|
46 |
LIU Y, LUO M, CHEN J, et al. Root iron plaque abundance as an indicator of carbon decomposition rates in a tidal freshwater wetland in response to salinity and flooding [J]. Soil Biology and Biochemistry, 2021, 162: 108403.
|
47 |
TANG Ziyang, TANG Jia, ZHUANG Li, et al. Influence of iron oxides on microbial methanogenesis and related mechanisms [J]. Chinese Journal of Ecology, 2016, 35(6): 1 653- 1 660.
|
1 |
AMELUNG W, BOSSIO D, VRIES W D, et al. Towards a global-scale soil climate mitigation strategy [J]. Nature Communications, 2020, 11(1):5427.
|
2 |
SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property [J]. Nature: International Weekly Journal of Science, 2011, 478(7 367): 49-56.
|
3 |
ANDREAS K, CASEY B, MUAMMAR M, et al. An evolving view on biogeochemical cycling of iron [J]. Nature Reviews Microbiology, 2021, 19(6): 360-374.
|
4 |
YANG Zhonglan, ZENG Xibai, SUN Benhua, et al. Research advances on the fixation of soil heavy metals by iron oxide [J]. Chinese Journal of Soil Science, 2021, 52(3): 728-735.
|
|
杨忠兰, 曾希柏, 孙本华, 等. 铁氧化物固定土壤重金属的研究进展 [J]. 土壤通报, 2021, 52(3): 728-735.
|
5 |
WANG Luying, QIN Lei, Xianguo LÜ, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon [J]. Acta Pedologica Sinica, 2018, 55(5): 1 041- 1 050.
|
|
王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展 [J]. 土壤学报, 2018, 55(5): 1 041-1 050.
|
6 |
MIKUTTA R, KLEBER M, TORN M S, et al. Stabilization of soil organic matter: association with minerals or chemical recalcitrance? [J]. Biogeochemistry, 2006, 77(1): 25-56.
|
7 |
LALONDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron [J]. Nature: International Weekly Journal of Science, 2012, 483(7 388): 198-200.
|
8 |
YANG Liu, SUN Fusheng, WANG Taolüe, et al. Influence of long-term fertilization on fenton-like reactions and soil carbon storage in subtropical red soil [J]. Acta Pedologica Sinica, 2019, 56(5): 1 128-1 139.
|
47 |
唐子阳, 汤佳, 庄莉, 等. 土壤铁氧化物对有机质产甲烷过程的影响及其机制 [J]. 生态学杂志, 2016, 35(6): 1 653-1 660.
|
48 |
ZHEN Y, JOSHI P, GORSKI C A, et al. A biochemical framework for anaerobic oxidation of methane driven by Fe(Ⅲ)-dependent respiration [J]. Nature Communications, 2018, 9(1): 1642.
|
49 |
LIANG L, WANG Y, SIVAN O, et al. Metal-dependent anaerobic methane oxidation in marine sediment: insights from marine settings and other systems [J]. Science China Life Sciences, 2019, 62(10): 1 287-1 295.
|
50 |
LI Jinye, CHEN Qingfeng, YIN Zhichao, et al. A review of researches on Anaerobic Oxidation of Methane (AOM) in wetlands [J]. Acta Pedologica Sinica, 2020, 57(6):1 353-1 364.
|
|
李金业, 陈庆锋, 尹志超, 等. 湿地甲烷厌氧氧化机制研究进展 [J]. 土壤学报, 2020, 57(6): 1 353-1 364.
|
51 |
DU H, YU G, SUN F, et al. Iron minerals inhibit the growth of Pseudomonas brassicacearum J12 via a free-radical mechanism: implications for soil carbon storage [J]. Biogeosciences, 2019, 16(7): 1 433-1 445.
|
52 |
FREEMAN C, OSTLE N, KANG H. An enzymic 'latch' on a global carbon store [J]. Nature, 2001, 409(6 817): 149.
|
53 |
ZHAO Y, WU X, HUANG C, et al. Production of hydroxyl radicals following water-level drawdown in peatlands: a new induction mechanism for enhancing laccase activity in carbon cycling [J]. Soil Biology and Biochemistry, 2021, 156: 108241.
|
54 |
HALL S J, SILVER W L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils [J]. Global Change Biology, 2013, 19(9): 2 804-2 813.
|
55 |
KUZYAKOV Y. Review: factors affecting rhizosphere priming effects [J]. Journal of Plant Nutrition and Soil Science, 2002, 165(4): 382-396.
|
56 |
JIANG Z, LIU Z, YANG J, et al. Rhizosphere priming regulates soil organic carbon and nitrogen mineralization: the significance of abiotic mechanisms [J]. Geoderma, 2021, 385: 114877.
|
8 |
杨柳, 孙富生, 王韬略, 等. 长期施肥下红壤中类芬顿反应及其对碳储存的影响 [J]. 土壤学报, 2019, 56(5): 1 128-1 139.
|
9 |
YU G, YAKOV K. Fenton chemistry and reactive oxygen species in soil: abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling [J]. Earth-Science Reviews, 2021, 214: 103525.
|
10 |
CHEN C, HALL S, COWARD E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection [J]. Nature Communications, 2020, 11(1): 2255.
|
11 |
ZHAO Bin, YAO Peng, YU Zhigang. The effect of organic carbon-iron oxide association on the preservation of sedimentary organic carbon in marine environments [J]. Advances in Earth Science, 2016, 31(11): 1 151-1 158.
|
|
赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响 [J]. 地球科学进展, 2016, 31(11): 1 151-1 158.
|
12 |
WAGAI R, MAYER L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides [J]. Geochimica et Cosmochimica Acta, 2006, 71(1): 25-35.
|
13 |
CHEN C, DYNES J D J, JIAN W, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption [J]. Environmental Science & Technology, 2014, 48(23): 13 751-13 759.
|
14 |
ANDREW B, JAY B, ALESSANDRA L, et al. Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron [J]. Scientific Reports, 2017, 7(1): 366.
|
15 |
KAISER K, GUGGENBERGER G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils [J]. Organic Geochemistry, 2000, 31(7): 711-725.
|
16 |
EUSTERHUES K, RENNERT T, KNICKER H, et al. Fractionation of organic matter due to reaction with ferrihydrite: coprecipitation versus adsorption [J]. Environmental Science & Technology, 2011, 45(2): 527-533.
|
17 |
HAN L, SUN K, KEILUWEIT M, et al. Mobilization of ferrihydrite-associated organic carbon during Fe reduction: adsorption versus coprecipitation [J]. Chemical Geology, 2019, 503: 61-68.
|
18 |
JEEWANI P, LING L, FU Y, et al. The stoichiometric C-Fe ratio regulates glucose mineralization and stabilization via microbial processes [J]. Geoderma, 2021, 383: 114769.
|
19 |
TAN Wenfeng, ZHOU Suzhen, LIU Fan, et al. Advancement in the study on interactions between Iron-aluminum (Hydro-) oxides and clay minerals in soil[J]. Soils, 2007 (5): 726-730.
|
|
谭文峰, 周素珍, 刘凡, 等. 土壤中铁铝氧化物与黏土矿物交互作用的研究进展 [J]. 土壤, 2007 (5): 726-730.
|
20 |
JEEWANI P, UNINA A, TAO L, et al. Rusty sink of rhizodeposits and associated keystone microbiomes [J]. Soil Biology and Biochemistry, 2020, 147: 107840.
|
21 |
ZHANG Jie. Effect of iron oxides on soil organic carbon stability and iron-carbon binding in aggregates [D]. Hangzhou: Zhejiang University, 2021.
|
|
张杰. 铁氧化物对土壤有机碳稳定和团聚体铁碳结合的影响 [D]. 杭州: 浙江大学, 2021.
|
22 |
CORDULA V, MUELLER C W, CARMEN H, et al. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils [J]. Nature Communications, 2014, 5: 2947.
|
23 |
YANG Wei, HU Sen, ZHANG Jianchao, et al. NanoSIMS analytical technique and its applications in earth sciences [J]. Science in China Series D: Earth Sciences, 2015, 58: 1 758- 1 767.
|
|
杨蔚, 胡森, 张建超, 等. 纳米离子探针分析技术及其在地球科学中的应用 [J]. 中国科学D辑:地球科学, 2015, 45(9): 1 335-1 346.
|
24 |
YU G, XIAO J, HU S, et al. Mineral availability as a key regulator of soil carbon storage [J]. Environmental Science & Technology, 2017, 51(9): 4 960-4 969.
|
57 |
JEEWANI P, ZWIETEN L VAN, ZHU Z, et al. Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients [J]. Soil Biology and Biochemistry, 2021, 160: 108312.
|
58 |
CHEN C, AARON T. The influence of native soil organic matter and minerals on ferrous iron oxidation [J]. Geochimica et Cosmochimica Acta, 2021, 292: 254-270.
|
59 |
BLODAU C, BASILIKO N, MOORE T R. Carbon turnover in peatland mesocosms exposed to different water table levels [J]. Biogeochemistry, 2004, 67(3): 331-351.
|
60 |
FENNER N, FREEMAN C. Drought-induced carbon loss in peatlands [J]. Nature Geoscience, 2011, 4(G2): 895-900.
|
61 |
WANG Y, WANG H, HE J S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland [J]. Nature Communications, 2017, 8(1): 15972.
|
62 |
JIANG Z, LIU Y, LIN J, et al. Conversion from double-rice to maize-rice increases iron-bound organic carbon by "iron gate" and "enzyme latch" mechanisms [J]. Soil and Tillage Research, 2021, 211: 105014.
|
63 |
WEN Y, ZANG H, MA Q, et al. Is the 'enzyme latch' or 'iron gate' the key to protecting soil organic carbon in peatlands?[J]. Geoderma, 2019, 349: 107-113.
|
25 |
XIAO J, WEN Y, DOU S, et al. A new strategy for assessing the binding microenvironments in intact soil microaggregates [J]. Soil & Tillage Research, 2019, 189: 123-130.
|
26 |
ADHIKARI D, ZHAO Q, DAS K, et al. Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction [J]. Geochimica et Cosmochimica Acta, 2017, 212: 221-233.
|
27 |
KAPPLER A, BENZ M, SCHINK B, et al. Electron shuttling via humic acids in microbial iron(Ⅲ) reduction in a freshwater sediment [J]. FEMS Microbiology Ecology, 2004, 47(1): 85-92.
|
28 |
RODEN E E, KAPPLER A, BAUER I, et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances [J]. Nature Geoscience, 2010, 3(6): 417-421.
|
29 |
MASAYUKI S, ZHOU J, CHRISTIAN S, et al. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates [J]. Environmental Science & Technology, 2013, 47(23): 13 375-13 384.
|
30 |
LIU H, LI P, ZHU M, et al. Fe(Ⅱ)-induced transformation from ferrihydrite to lepidocrocite and goethite [J]. Journal of Solid State Chemistry, 2007, 180(7): 2 121-2 128.
|