地球科学进展 ›› 2022, Vol. 37 ›› Issue (2): 202 -211. doi: 10.11867/j.issn.1001-8166.2021.114

青促会之地球科学领域 上一篇    下一篇

铁介导的土壤有机碳固持和矿化研究进展
段勋 1 , 2 , 3( ), 李哲 2 , 3, 刘淼 1 , 3, 邹元春 1( )   
  1. 1.中国科学院东北地理与农业生态研究所,湿地生态与环境重点实验室 & 吉林省长白山湿地生态 与环境重点实验室,吉林 长春 130102
    2.中国科学院亚热带农业生态研究所,亚热带农业 生态过程重点实验室,湖南 长沙 410125
    3.中国科学院大学,北京 100049
  • 收稿日期:2021-10-26 修回日期:2021-12-24 出版日期:2022-02-10
  • 通讯作者: 邹元春 E-mail:duanxun623@gmail.com;zouyc@iga.ac.cn
  • 基金资助:
    国家重点研发计划项目“长白山区水源涵养功能及流域水资源承载力研究”(2019YFC0409102);国家自然科学基金项目“退耕还湿土壤铁固持有机碳作用机制研究”(41971136)

Progress of the Iron-mediated Soil Organic Carbon Preservation and Mineralization

Xun DUAN 1 , 2 , 3( ), Zhe LI 2 , 3, Miao LIU 1 , 3, Yuanchun ZOU 1( )   

  1. 1.Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology,Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130102,China
    2.Key Laboratory of Agro-Ecological Processes in Subtropical Region,Institute of Subtropical Agriculture,Chinese Academy of Sciences,Changsha 410125,China
    3.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2021-10-26 Revised:2021-12-24 Online:2022-02-10 Published:2022-03-08
  • Contact: Yuanchun ZOU E-mail:duanxun623@gmail.com;zouyc@iga.ac.cn
  • About author:DUAN Xun (1996- ), male, Weinan City, Shaanxi Province, Ph.D student. Research areas include soil microbiological ecologycarbon cycle. E-mail: duanxun623@gmail.com
  • Supported by:
    the National Key Research and Development Program of China "Study on water conservation function and water resources carrying capacity in river basins of Changbai Mountains area"(2019YFC0409102);The National Natural Science Foundation of China "Preservation mechanisms of soil organic carbon by iron in the wetlands restored from reclaimed farmlands"(41971136)

铁作为有机碳矿物保护的核心元素之一,不仅对土壤有机碳库的结构及其稳定性有重要影响,其氧化还原动态变化也驱动着有机碳的周转过程。从铁介导的有机碳固持机制、铁结合态有机碳稳定程度的影响因素以及铁氧化还原过程驱动的有机碳矿化机制3个方面对铁—碳耦合关系进行了梳理分析。首先,铁介导的有机碳固持机制主要取决于自身的矿物学特性,能够通过吸附、络合、共沉淀和夹层复合等方式形成铁结合态有机碳,从而对有机碳起到直接的矿物保护作用。此外,铁氧化物还可以作为胶结剂促进团聚体形成,或通过改变环境pH进而间接保护有机碳。其次,铁结合态有机碳的稳定性主要受其自身性质(铁的矿物学特征、碳铁比、与有机碳的结合方式)、铁还原菌的种类以及小分子有机物的影响。第三,铁介导的有机碳矿化过程主要包括铁异化还原介导的有机碳矿化过程,以及由Fe(Ⅱ)化学氧化驱动的芬顿/类芬顿反应所生成的羟基自由基导致的非选择性有机碳矿化过程。但是,铁氧化物也能通过与外源输入碳复合形成铁结合态有机碳从而抑制土壤有机碳的矿化,以及通过降低酚氧化酶活性而减缓有机碳的矿化速率。因此,铁氧化物的矿物学特性和氧化还原敏感性对土壤有机碳的累积具有重要影响。最后提出了未来铁—碳耦合关系研究应该加强的方向,旨在深入解析铁介导的有机碳动态变化的内在机制,为土壤的固碳减排以及“碳中和”目标的实现提供理论依据。

As one of the core mineral elements for the preservation of organic carbon, iron (Fe) not only has an important influence on the structure of Soil Organic Carbon (SOC) pools and stability, but its redox dynamic changes also drive the SOC turnover processes. According to recent research progress at home and abroad, this paper analyzes the Fe-C coupling relationships from three aspects: Fe-mediated OC preservation mechanisms, factors affecting the stability of Fe-bound OC, and OC mineralization mechanisms driven by the Fe redox processes. Firstly, Fe-mediated OC preservation mechanisms mainly depend on its own mineralogical characteristics. The direct roles include forming Fe-bound OC through adsorption, complexation, co-precipitation and interlayer composites. In addition, the indirect roles include acting as a cementing agent to promote the formation of aggregates, and changing the environmental pH. Secondly, the stability of Fe-bound OC is mainly determined by its own properties (e.g. the mineralogical characteristics of Fe, C∶Fe and the combination with OC), the type of iron-reducing bacteria and the influence of low molecular weight organics. Thirdly, Fe-mediated mineralization processes of OC mainly include the mineralization processes mediated by Fe dissimilatory reduction, and the non-selective OC mineralization processes caused by the hydroxyl radicals generated by the Fenton/Fenton-like reactions driven by Fe(Ⅱ) chemical oxidation. However, iron oxide can also inhibit the excitation effect by forming iron-bound organic carbon with external input carbon, and slow down the mineralization rate of organic carbon by reducing the activity of phenol oxidase. Therefore, the mineralogical properties and redox sensitivity of Fe oxides have an important influence on the accumulation of SOC. Future research directions of Fe-C coupling relationships that should be strengthened are proposed, aiming to deeply analyze the internal mechanisms of Fe-mediated OC dynamic changes, and provide a theoretical basis for SOC sequestration and emission reduction facilitating the realization of "Carbon Neutralization".

中图分类号: 

图1 土壤铁氧化物介导的有机碳固持和矿化概念模型
Fig. 1 Conceptual model of organic carbon sequestration and mineralization mediated by soil iron oxides
图2 根系分泌物驱动的铁结合态有机碳解耦机制(据参考文献[ 38 ]修改)
Fig. 2 Decoupled mechanism of iron bound organic carbon driven by root exudatesmodified after reference 38 ])
图3 铁异化还原(a)和芬顿反应(b)介导的有机碳矿化机制(据参考文献[ 10 ]修改)
Fig. 3 Mineralization mechanism of organic carbon mediated by iron dissimilatory reductionaand Fenton reactionb) (modified after reference 10 ])
31 YEE N, SHAW S, BENNING L G, et al. The rate of ferrihydrite transformation to goethite via the Fe(Ⅱ) pathway [J]. American Mineralogist, 2015, 91(1): 92-96.
32 AMSTAETTER K, BORCH T, KAPPLER A. Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(Ⅲ) reduction [J]. Geochimica et Cosmochimica Acta, 2012, 85: 326-341.
33 CHEN C, KUKKADAPU R K, LAZAREVA O, et al. Solid-phase Fe speciation along the vertical redox gradients in floodplains using XAS and Mössbauer spectroscopies [J]. EnvironmentalScience & Technology, 2017, 51(14): 7 903-7 912.
34 JIANG Jiabin, ZHU Zhenke, LIN Sen, et al. Mineralization of goethite adsorbed and -encapsulated organic carbon and its priming effect in paddy soil [J]. Acta Pedologica Sinica, 2021,58(6):1 530-1 539.
江家彬, 祝贞科, 林森, 等. 针铁矿吸附态和包裹态有机碳在稻田土壤中的矿化及其激发效应 [J]. 土壤学报, 2021,58(6):1 530-1 539.
35 LUO M, LIU Y, HUANG J, et al. Rhizosphere processes induce changes in dissimilatory iron reduction in a tidal marsh soil: a rhizobox study [J]. Plant and Soil, 2018, 433(1): 83-100.
36 POGGENBURG C, MIKUTTA R, SANDER M, et al. Microbial reduction of ferrihydrite-organic matter coprecipitates by Shewanella putrefaciens and Geobacter metallireducens in comparison to mediated electrochemical reduction [J]. Chemical Geology, 2016, 447: 133-147.
37 DUAN X, YU X, LI Z, et al. Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands [J]. Soil Biology and Biochemistry, 2020, 149: 107949.
38 LI H, BÖLSCHER T, WINNICK M, et al. Simple Plant and microbial exudates destabilize mineral-associated organic matter via multiple pathways [J]. Environmental Science & Technology, 2021, 55(5): 3 389-3 398.
39 KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates [J]. Nature Climate Change, 2015, 5(6): 588-595.
40 DING Y, YE Q, LIU M, et al. Reductive release of Fe mineral-associated organic matter accelerated by oxalic acid [J]. The Science of the Total Environment, 2021,763: 142937.
41 JILLING A, KEILUWEIT M, GUTKNECHT J L, et al. Priming mechanisms providing plants and microbes access to mineral-associated organic matter [J]. Soil Biology and Biochemistry, 2021. DOI:10.1016/j.soilbio.2021.108265 .
42 PAN W, KAN J, INAMDAR S, et al. Dissimilatory microbial iron reduction release DOC (Dissolved Organic Carbon) from carbon-ferrihydrite association [J]. Soil Biology and Biochemistry, 2016, 103: 232-240.
43 DUAN Xun, LUO Min, HUANG Jiafang, et al. Fractions and the spatial distribution of iron in the sediments of tidal marsh in the Min River Estuary [J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3 780-3 791.
段勋, 罗敏, 黄佳芳, 等. 闽江河口潮滩沼泽湿地沉积物铁的形态和空间分布 [J]. 环境科学学报, 2017, 37(10): 3 780-3 791.
44 LUO Min, HUANG Jiafang, LIU Yuxiu, et al. Progress in effects of root bioturbation on dissimilatory iron reduction in the rhizosphere of wetland plants [J]. Acta Ecologica Sinica,2017,37(1) : 156-166.
罗敏, 黄佳芳, 刘育秀, 等. 根系活动对湿地植物根际铁异化还原的影响及机制研究进展 [J]. 生态学报, 2017, 37(1): 156-166.
45 WEISS J V, EMERSON D, MEGONIGAL J P. Geochemical control of microbial Fe(Ⅲ) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil [J]. FEMS Microbiology Ecology, 2004, 48(1): 89-100.
46 LIU Y, LUO M, CHEN J, et al. Root iron plaque abundance as an indicator of carbon decomposition rates in a tidal freshwater wetland in response to salinity and flooding [J]. Soil Biology and Biochemistry, 2021, 162: 108403.
47 TANG Ziyang, TANG Jia, ZHUANG Li, et al. Influence of iron oxides on microbial methanogenesis and related mechanisms [J]. Chinese Journal of Ecology, 2016, 35(6): 1 653- 1 660.
1 AMELUNG W, BOSSIO D, VRIES W D, et al. Towards a global-scale soil climate mitigation strategy [J]. Nature Communications, 2020, 11(1):5427.
2 SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property [J]. Nature: International Weekly Journal of Science, 2011, 478(7 367): 49-56.
3 ANDREAS K, CASEY B, MUAMMAR M, et al. An evolving view on biogeochemical cycling of iron [J]. Nature Reviews Microbiology, 2021, 19(6): 360-374.
4 YANG Zhonglan, ZENG Xibai, SUN Benhua, et al. Research advances on the fixation of soil heavy metals by iron oxide [J]. Chinese Journal of Soil Science, 2021, 52(3): 728-735.
杨忠兰, 曾希柏, 孙本华, 等. 铁氧化物固定土壤重金属的研究进展 [J]. 土壤通报, 2021, 52(3): 728-735.
5 WANG Luying, QIN Lei, Xianguo LÜ, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon [J]. Acta Pedologica Sinica, 2018, 55(5): 1 041- 1 050.
王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展 [J]. 土壤学报, 2018, 55(5): 1 041-1 050.
6 MIKUTTA R, KLEBER M, TORN M S, et al. Stabilization of soil organic matter: association with minerals or chemical recalcitrance? [J]. Biogeochemistry, 2006, 77(1): 25-56.
7 LALONDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron [J]. Nature: International Weekly Journal of Science, 2012, 483(7 388): 198-200.
8 YANG Liu, SUN Fusheng, WANG Taolüe, et al. Influence of long-term fertilization on fenton-like reactions and soil carbon storage in subtropical red soil [J]. Acta Pedologica Sinica, 2019, 56(5): 1 128-1 139.
47 唐子阳, 汤佳, 庄莉, 等. 土壤铁氧化物对有机质产甲烷过程的影响及其机制 [J]. 生态学杂志, 2016, 35(6): 1 653-1 660.
48 ZHEN Y, JOSHI P, GORSKI C A, et al. A biochemical framework for anaerobic oxidation of methane driven by Fe(Ⅲ)-dependent respiration [J]. Nature Communications, 2018, 9(1): 1642.
49 LIANG L, WANG Y, SIVAN O, et al. Metal-dependent anaerobic methane oxidation in marine sediment: insights from marine settings and other systems [J]. Science China Life Sciences, 2019, 62(10): 1 287-1 295.
50 LI Jinye, CHEN Qingfeng, YIN Zhichao, et al. A review of researches on Anaerobic Oxidation of Methane (AOM) in wetlands [J]. Acta Pedologica Sinica, 2020, 57(6):1 353-1 364.
李金业, 陈庆锋, 尹志超, 等. 湿地甲烷厌氧氧化机制研究进展 [J]. 土壤学报, 2020, 57(6): 1 353-1 364.
51 DU H, YU G, SUN F, et al. Iron minerals inhibit the growth of Pseudomonas brassicacearum J12 via a free-radical mechanism: implications for soil carbon storage [J]. Biogeosciences, 2019, 16(7): 1 433-1 445.
52 FREEMAN C, OSTLE N, KANG H. An enzymic 'latch' on a global carbon store [J]. Nature, 2001, 409(6 817): 149.
53 ZHAO Y, WU X, HUANG C, et al. Production of hydroxyl radicals following water-level drawdown in peatlands: a new induction mechanism for enhancing laccase activity in carbon cycling [J]. Soil Biology and Biochemistry, 2021, 156: 108241.
54 HALL S J, SILVER W L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils [J]. Global Change Biology, 2013, 19(9): 2 804-2 813.
55 KUZYAKOV Y. Review: factors affecting rhizosphere priming effects [J]. Journal of Plant Nutrition and Soil Science, 2002, 165(4): 382-396.
56 JIANG Z, LIU Z, YANG J, et al. Rhizosphere priming regulates soil organic carbon and nitrogen mineralization: the significance of abiotic mechanisms [J]. Geoderma, 2021, 385: 114877.
8 杨柳, 孙富生, 王韬略, 等. 长期施肥下红壤中类芬顿反应及其对碳储存的影响 [J]. 土壤学报, 2019, 56(5): 1 128-1 139.
9 YU G, YAKOV K. Fenton chemistry and reactive oxygen species in soil: abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling [J]. Earth-Science Reviews, 2021, 214: 103525.
10 CHEN C, HALL S, COWARD E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection [J]. Nature Communications, 2020, 11(1): 2255.
11 ZHAO Bin, YAO Peng, YU Zhigang. The effect of organic carbon-iron oxide association on the preservation of sedimentary organic carbon in marine environments [J]. Advances in Earth Science, 2016, 31(11): 1 151-1 158.
赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响 [J]. 地球科学进展, 2016, 31(11): 1 151-1 158.
12 WAGAI R, MAYER L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides [J]. Geochimica et Cosmochimica Acta, 2006, 71(1): 25-35.
13 CHEN C, DYNES J D J, JIAN W, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption [J]. Environmental Science & Technology, 2014, 48(23): 13 751-13 759.
14 ANDREW B, JAY B, ALESSANDRA L, et al. Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron [J]. Scientific Reports, 2017, 7(1): 366.
15 KAISER K, GUGGENBERGER G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils [J]. Organic Geochemistry, 2000, 31(7): 711-725.
16 EUSTERHUES K, RENNERT T, KNICKER H, et al. Fractionation of organic matter due to reaction with ferrihydrite: coprecipitation versus adsorption [J]. Environmental Science & Technology, 2011, 45(2): 527-533.
17 HAN L, SUN K, KEILUWEIT M, et al. Mobilization of ferrihydrite-associated organic carbon during Fe reduction: adsorption versus coprecipitation [J]. Chemical Geology, 2019, 503: 61-68.
18 JEEWANI P, LING L, FU Y, et al. The stoichiometric C-Fe ratio regulates glucose mineralization and stabilization via microbial processes [J]. Geoderma, 2021, 383: 114769.
19 TAN Wenfeng, ZHOU Suzhen, LIU Fan, et al. Advancement in the study on interactions between Iron-aluminum (Hydro-) oxides and clay minerals in soil[J]. Soils, 2007 (5): 726-730.
谭文峰, 周素珍, 刘凡, 等. 土壤中铁铝氧化物与黏土矿物交互作用的研究进展 [J]. 土壤, 2007 (5): 726-730.
20 JEEWANI P, UNINA A, TAO L, et al. Rusty sink of rhizodeposits and associated keystone microbiomes [J]. Soil Biology and Biochemistry, 2020, 147: 107840.
21 ZHANG Jie. Effect of iron oxides on soil organic carbon stability and iron-carbon binding in aggregates [D]. Hangzhou: Zhejiang University, 2021.
张杰. 铁氧化物对土壤有机碳稳定和团聚体铁碳结合的影响 [D]. 杭州: 浙江大学, 2021.
22 CORDULA V, MUELLER C W, CARMEN H, et al. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils [J]. Nature Communications, 2014, 5: 2947.
23 YANG Wei, HU Sen, ZHANG Jianchao, et al. NanoSIMS analytical technique and its applications in earth sciences [J]. Science in China Series D: Earth Sciences, 2015, 58: 1 758- 1 767.
杨蔚, 胡森, 张建超, 等. 纳米离子探针分析技术及其在地球科学中的应用 [J]. 中国科学D辑:地球科学, 2015, 45(9): 1 335-1 346.
24 YU G, XIAO J, HU S, et al. Mineral availability as a key regulator of soil carbon storage [J]. Environmental Science & Technology, 2017, 51(9): 4 960-4 969.
57 JEEWANI P, ZWIETEN L VAN, ZHU Z, et al. Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients [J]. Soil Biology and Biochemistry, 2021, 160: 108312.
58 CHEN C, AARON T. The influence of native soil organic matter and minerals on ferrous iron oxidation [J]. Geochimica et Cosmochimica Acta, 2021, 292: 254-270.
59 BLODAU C, BASILIKO N, MOORE T R. Carbon turnover in peatland mesocosms exposed to different water table levels [J]. Biogeochemistry, 2004, 67(3): 331-351.
60 FENNER N, FREEMAN C. Drought-induced carbon loss in peatlands [J]. Nature Geoscience, 2011, 4(G2): 895-900.
61 WANG Y, WANG H, HE J S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland [J]. Nature Communications, 2017, 8(1): 15972.
62 JIANG Z, LIU Y, LIN J, et al. Conversion from double-rice to maize-rice increases iron-bound organic carbon by "iron gate" and "enzyme latch" mechanisms [J]. Soil and Tillage Research, 2021, 211: 105014.
63 WEN Y, ZANG H, MA Q, et al. Is the 'enzyme latch' or 'iron gate' the key to protecting soil organic carbon in peatlands?[J]. Geoderma, 2019, 349: 107-113.
25 XIAO J, WEN Y, DOU S, et al. A new strategy for assessing the binding microenvironments in intact soil microaggregates [J]. Soil & Tillage Research, 2019, 189: 123-130.
26 ADHIKARI D, ZHAO Q, DAS K, et al. Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction [J]. Geochimica et Cosmochimica Acta, 2017, 212: 221-233.
27 KAPPLER A, BENZ M, SCHINK B, et al. Electron shuttling via humic acids in microbial iron(Ⅲ) reduction in a freshwater sediment [J]. FEMS Microbiology Ecology, 2004, 47(1): 85-92.
28 RODEN E E, KAPPLER A, BAUER I, et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances [J]. Nature Geoscience, 2010, 3(6): 417-421.
29 MASAYUKI S, ZHOU J, CHRISTIAN S, et al. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates [J]. Environmental Science & Technology, 2013, 47(23): 13 375-13 384.
30 LIU H, LI P, ZHU M, et al. Fe(Ⅱ)-induced transformation from ferrihydrite to lepidocrocite and goethite [J]. Journal of Solid State Chemistry, 2007, 180(7): 2 121-2 128.
[1] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[2] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[3] 阚泽忠,金立新,李忠惠,杨振鸿,张 华,包雨函. 成都经济区不同地貌景观区土壤有机碳分布特征及储量估算[J]. 地球科学进展, 2012, 27(10): 1126-1133.
[4] 肖胜生,董云社,齐玉春,彭琴,何亚婷,杨智杰. 草地生态系统土壤有机碳库对人为干扰和全球变化的响应研究进展[J]. 地球科学进展, 2009, 24(10): 1138-1148.
[5] 李俊,谢丽,盛杰,栾富波,周琪. Fe(Ⅱ)/铁氧化物表面结合铁系统还原有机污染物的研究进展[J]. 地球科学进展, 2009, 24(1): 25-32.
[6] 张勇,史学正,于东升,王洪杰,赵永存,孙维侠. 属性数据与空间数据连接对土壤有机碳储量估算的影响[J]. 地球科学进展, 2008, 23(8): 840-847.
[7] 孙波,潘贤章,王德建,韩晓增,张玉铭,郝明德,陈欣. 我国不同区域农田养分平衡对土壤肥力时空演变的影响[J]. 地球科学进展, 2008, 23(11): 1201-1208.
[8] 刘满强,陈小云,郭菊花,李辉信,胡锋. 土壤生物对土壤有机碳稳定性的影响[J]. 地球科学进展, 2007, 22(2): 152-158.
[9] 陈庆强,孟翊,周菊珍,顾靖华,胡克林. 长江口盐沼滩面发育对有机碳深度分布的制约[J]. 地球科学进展, 2007, 22(1): 26-32.
[10] 孟磊;丁维新;蔡祖聪;钦绳武. 长期定量施肥对土壤有机碳储量和土壤呼吸影响[J]. 地球科学进展, 2005, 20(6): 687-692.
[11] 于贵瑞;王绍强;陈泮勤;李庆康. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展, 2005, 20(5): 568-577.
[12] 周莉;李保国;周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1): 99-105.
[13] 吴金水;童成立;刘守龙. 亚热带和黄土高原区耕作土壤有机碳对全球气候变化的响应[J]. 地球科学进展, 2004, 19(1): 131-137.
[14] 张兴春. 国外铁氧化物铜—金矿床的特征及其研究现状[J]. 地球科学进展, 2003, 18(4): 551-560.
[15] 潘根兴,李恋卿,张旭辉,代静玉,周运超,张平究. 中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J]. 地球科学进展, 2003, 18(4): 609-618.
阅读次数
全文


摘要