[1] Fredrickson J K,Gorby Y A. Environmental processes mediated by iron-reducing bacteria[J].Current Opinion Biotechnology, 1996,7(3): 287-294. [2] Fredrickson J K,Zachara J M, Kenmedy D W, et al. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a ground water bacterium[J]. Geochemica et Cosmochemica Acta,1998, 62(19): 3 239-3 257. [3] Ding Zhenhua.The geochemical activities and bioavailability of particulate minerals[J].Bulletin of Mineralogy, Petrology and Geochemistry,1998, 17(3): 263-268.[丁振华. 微粒矿物的地球化学活性与生物活性[J]. 矿物岩石地球化学通报, 1998, 17(3): 263-268.] [4] Klausen J, Trober S P, Haderlein S B, et al. Reduction of substituted nitrobenzenes by Fe(Ⅱ) in aqueous mineral suspensions[J].Environmental Science Technology,1995, 29(9): 2 396-2 404. [5] Elsner M, Schwarzenbach R P, Haderlein S. Reactivity of Fe(Ⅱ)-bearing minerals toward reductive transformation of organic contaminants[J].Environmental Science Technology,2004, 38(3): 799-807. [6] Erbs M, Hansen H C B, Olsen C E. Reductive dechlorination of carbon tetrachloride using iron(Ⅱ) iron(Ⅲ) hydroxide sulfate(green rust)[J].Environmental Science Technology,1999, 33(2): 307-311. [7] Butler E C, Hayes K F. Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide[J].Environmental Science Technology,1998, 32(9): 1 276-1 284. [8] Pecher K, Haderlein S B, Schwarzenbach R P. Reduction of polyhalogenated methanes by surface-bound Fe(Ⅱ) in aqueous suspensions of iron oxides[J].Environmental Science Technology,2002, 36(8): 1 734-1 741. [9] Amonette J E, Workman D J, Kennedy D W, et al. Dechlorination of carbon tetrachloride by Fe(Ⅱ) associated with goethite[J]. Environmental Science Technology,2000, 34(21): 4 606-4 613. [10] Klupinski T P,Chin Y P, Traina S J. Abiotic degradation of pentachloronitrobenzene by Fe(Ⅱ): Reactions on goethite and iron oxide nanoparticles[J].Environmental Science Technology,2004, 38(16): 4 353-4 360. [11] Vikesland P J, Valentine R L. Reaction pathways involved in the reduction of monochloramine by ferrous iron[J].Environmental Science Technology,2000, 34(1): 83-90. [12] Hakala J A, Chin Y P, Weber E J. Influence of dissolved organic matter and Fe(Ⅱ) on the abiotic reduction of pentachloronitrobenzene[J].Environmental Science Technology,2007, 41(21): 7 337-7 342. [13] Jeon B H, Dempsey B A, Burgos W D. Kinetics and mechanisms for reactions of Fe(Ⅱ) with iron(Ⅲ) oxides[J]. Environmental Science Technology, 2003, 37(15): 3 309-3 315. [14] Hofstetter T B, Schwarzenbach R P, Haderlein S B. Reactivity of Fe(Ⅱ) species associated with clay minerals[J]. Environmental Science Technology, 2003, 37(3): 519-528. [15] Schultz C A, Grundl T J. pH dependence on reduction rate of 4-Cl-nitrobenzene by Fe(Ⅱ)/montmorillonite systems[J]. Environmental Science Technology, 2000, 34(17): 3 641-3 648. [16] Hofstetter T B, Heijman C G, Haderlein S B, et al. Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions[J].Environmental Science Technology, 1999, 33(9):1 479-1 487. [17] March J. Advanced Organic Chemistry, 4th ed[M]. New York: John Wiley & Sons Inc., 1992. [18] Krlegman-Kling M R, Relnhard M. Transformation of carbon tetrachloride by pyrite in aqueous solution[J].Environmental Science Technology, 1994, 28(4):692-700. [19] Hwang I, Batchelor B. Reductive dechlorination of tetrachloroethylene by Fe(Ⅱ) in cement slurries[J].Environmental Science Technology, 2000, 34(23): 5 017-5 022. [20] Kang W H, Hwang I, Park J Y. Dechlorination of trichloroethylene by a steel converter slag amended with Fe(Ⅱ)[J]. Chemosphere,2006, 62(2): 285-293. [21] Vogel T M, Criddle C S, Mccarty P L. Transformations of halogenated aliphatic compound[J].Environmental Science Technology,1987, 21(8): 722-736. [22] Danielsen K M, Hayes K F. pH Dependence of Carbon Tetrachloride Reductive Dechlorination by Magnetite[J]. Environmental Science Technology,2004, 38(18): 4 745-4 752. [23] Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses[M]. New York: VCH Publishers, 1996. [24] Lotgering F K, Van Diepen A M. Electron exchange between Fe2+ and Fe3+ ions on octahedral sites in spinels studied by means of paramagnetic M ssbauer spectra and susceptibility measurements[J].Journal of Phys and Chemistry of Solids, 1977, 38(6): 565-572. [25] Walz F. The verwey transition-a topical review[J].Journal of Physics: Condensate Matter, 2002, 14(12): 285-340. [26] Hanoch R J, Shao H, Butler E C. Transformation of carbon tetrachloride by bisulfide treated goethite, hematite, magnetite, and kaolinite[J].Chemosphere, 2006, 63(2): 323-334. [27] Haderlein S B, Pecher K. Pollutant reduction in heterogeneous Fe(Ⅱ)/Fe(Ⅲ) systems[C]//Kinetics and Mechanisms of Reactions at the Mineral/Water Interface, ACS Symposium Series, Division of Geochemistry. Washington DC: American Chemical Society, 1998, 715(17): 342-357. [28] Hachiya K, Sasaki M, Ikeda T, et al. Static and kinetic studies of adsorption-desorption of metal ions on a gamma-alumina surface 2. Kinetic study by means of pressure-jump technique[J].Journal of Physics and Chemistry, 1984, 88: 27-31. [29] Lu Yahai, Huang Changyong, Yuan Ke′neng, et al. Specific adsorption of heavy metal ions on latosol and its minerals[J]. Acta Pedologica Sinica,1995 , 32 (4): 370-376.[陆雅海,黄昌勇,袁可能,等. 砖红壤及其矿物表面对重金属离子的专性吸附研究[J]. 土壤学报, 1995 , 32 (4): 370-376.] [30] Maithreepala R A, Doong R A. Synergistic effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bound Fe(Ⅱ) associated with goethite[J].Environmental Science Technology,2004, 38(1): 260-268. [31] O′Loughlin E J, Kemner K M, Burris D R. Effects of AgI, AuIII, and CuII on the reductive dechlorination of carbon tetrachloride by green rust[J].Environmental Science Technology,2003, 37(13): 2 905-2 912. [32] Stumm W. Aquatic Surface Chemistry. Chemical Processes at the Particle-Water Interface[M]. New York: John Wiley & Sons, 1987:83-110. [33] Lou Tao, Chen Guohua, Xie Huixiang, et al. Advances of the act of humic substance with the organic pollutants[J].Marine Environmental Science,2004, 23(3): 72-76.[楼涛,陈国华, 谢会祥,等. 腐殖质与有机污染物作用研究进展[J]. 海洋环境科学, 2004, 23(3): 72-76.] [34] Tratnyek P G, Scherer M M, Deng B L, et al. Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron[J].Water Research, 2001, 35(18): 4 435-4 443. [35] Curtis G P, Reinhard M. Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic Acid[J].Environmental Science Technology,1994, 28(13): 2 393-2 401. [36] Chen J, Gu B, Royer R A. The role of natural organic matter in chemical and microbial reduction of ferric iron[J].The Science of the Total Environment, 2003, 307(1/3): 167-178. [37] Xie L, Shang C. Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron[J].Environmental Science Technology,2005, 39(4): 1 092-1 100. [38] Roden E E, Urrutia M M, Ferrous iron removal promotes microbial reduction of crystalline iron(Ⅲ) oxides[J].Environmental Science Technology,1999,33(11): 1 847-1 853. [39] Moore P A, Patrick W H Jr. Iron availability and uptake by rice in acid sulfate soils[J].Soil Science Society of America Journal,1989, 53(2): 471-476. [40] Buerge I J, Hug S J. Influence of mineral surfaces on Chromium(Ⅵ) reduction by Iron(Ⅱ)[J].Environmental Science Technology,1999, 33(23): 4 285-4 291. [41] Cui D Q, Eriksen T E. Reduction of pertechnetate by ferrous iron in solution: Influence of sorbed and precipitated Fe(Ⅱ)[J]. Environmental Science Technology,1996, 30(7): 2 259-2 262. [42] Liger E, Charlet L, Cappellen P V. Surface catalysis of uranium(Ⅵ) reduction by iron(Ⅱ)[J].Geochimica et Cosmochimica Acta, 1999, 63(19/20): 2 939-2 955. |