地球科学进展 ›› 2009, Vol. 24 ›› Issue (1): 25 -32. doi: 10.11867/j.issn.1001-8166.2009.01.0025

综述与评述 上一篇    下一篇

Fe(Ⅱ)/铁氧化物表面结合铁系统还原有机污染物的研究进展
李 俊,谢 丽*,盛 杰,栾富波,周 琪   
  1. 同济大学污染控制与资源化研究国家重点实验室,上海 200092
  • 收稿日期:2008-09-20 修回日期:2008-11-30 出版日期:2009-01-10
  • 通讯作者: 谢丽(1976-),女,湖南常德人,副教授,主要从事污水处理理论与技术方面的研究. E-mail:sally.xieli@mail.tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目“湿地沉积物中亚铁—铁氧化物/腐殖质对芳香烃类有机物非生物还原转化机理及应用研究”(编号:50608056);同济大学污染控制与资源化研究国家重点实验室开放课题项目(编号:PCRRF06005)资助.

Reductive Transformation of Organic Pollutants by Surface-Bound Fe(Ⅱ) Systems:A Review

Li Jun,Xie Li,Sheng Jie,Luan Fubo,Zhou Qi   

  1. State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
  • Received:2008-09-20 Revised:2008-11-30 Online:2009-01-10 Published:2009-01-10

在土壤和沉积物的自然厌氧环境中,铁氧化物可被铁还原菌等微生物异化还原产生Fe(Ⅱ),形成的Fe(Ⅱ)/铁氧化物表面结合铁系统具有还原活性,可使有机污染物还原转化。综述了含卤和含硝基有机污染物的非生物还原转化过程和表面结合铁系统与有机污染物之间的界面反应机理,进而揭示了污染物在环境中的赋存状态和迁移转化规律;重点分析了影响该还原过程的因素,如铁氧化物类型、pH值、Fe(Ⅱ)与铁氧化物接触时间,以及过渡金属、腐殖酸等竞争因子对反应过程的影响。强化自然界中天然的Fe(Ⅱ)/铁氧化物表面结合铁系统在有机污染治理中的作用,在受污染环境修复领域具有广阔的应用前景。

Soil and sediments are anoxic and anaerobic environment, often containing high levels of Fe(Ⅱ) due to the interaction of iron reducing bacteria with iron oxide minerals which are widely present in subsurface. The Fe(Ⅱ) associated with iron oxides is highly reactive, and could play an effective role in reducing organic pollutants. This paper reviews the involved interfacial mechanisms, and the abiotic reductive transformation process of halogenated and nitroaromatic compounds occurring on the surface-bound Fe(Ⅱ) system. Impact factors such as active surface sites, pH, types of iron oxide mineral, contact time of Fe(Ⅱ) with iron oxide, metals and humic acid are discussed and evaluated. The natural surface bound Fe(Ⅱ) system is, therefore, likely to play a potential role in reductive in-situ transformation of organic pollutants in subsurface remediation, and this reaction should be enhanced and taken into account in further studies.

中图分类号: 

[1] Fredrickson J K,Gorby Y A. Environmental processes mediated by iron-reducing bacteria[J].Current Opinion Biotechnology, 1996,7(3): 287-294.
[2] Fredrickson J K,Zachara J M, Kenmedy D W, et al. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a ground water bacterium[J]. Geochemica et Cosmochemica Acta,1998, 62(19): 3 239-3 257.
[3] Ding Zhenhua.The geochemical activities and bioavailability of particulate minerals[J].Bulletin of Mineralogy, Petrology and Geochemistry,1998, 17(3): 263-268.[丁振华. 微粒矿物的地球化学活性与生物活性[J]. 矿物岩石地球化学通报, 1998, 17(3): 263-268.]
[4] Klausen J, Trober S P, Haderlein S B, et al. Reduction of substituted nitrobenzenes by Fe(Ⅱ) in aqueous mineral suspensions[J].Environmental Science Technology,1995, 29(9): 2 396-2 404.
[5] Elsner M, Schwarzenbach R P, Haderlein S. Reactivity of Fe(Ⅱ)-bearing minerals toward reductive transformation of organic contaminants[J].Environmental Science Technology,2004, 38(3): 799-807.
[6] Erbs M, Hansen H C B, Olsen C E. Reductive dechlorination of carbon tetrachloride using iron(Ⅱ) iron(Ⅲ) hydroxide sulfate(green rust)[J].Environmental Science Technology,1999, 33(2): 307-311.
[7] Butler E C, Hayes K F. Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide[J].Environmental Science Technology,1998, 32(9): 1 276-1 284.
[8] Pecher K, Haderlein S B, Schwarzenbach R P. Reduction of polyhalogenated methanes by surface-bound Fe(Ⅱ) in aqueous suspensions of iron oxides[J].Environmental Science Technology,2002, 36(8): 1 734-1 741.
[9] Amonette J E, Workman D J, Kennedy D W, et al. Dechlorination of carbon tetrachloride by Fe(Ⅱ) associated with goethite[J]. Environmental Science Technology,2000, 34(21): 4 606-4 613.
[10] Klupinski T P,Chin Y P, Traina S J. Abiotic degradation of pentachloronitrobenzene by Fe(Ⅱ): Reactions on goethite and iron oxide nanoparticles[J].Environmental Science Technology,2004, 38(16): 4 353-4 360.
[11] Vikesland P J, Valentine R L. Reaction pathways involved in the reduction of monochloramine by ferrous iron[J].Environmental Science Technology,2000, 34(1): 83-90.
[12] Hakala J A, Chin Y P, Weber E J. Influence of dissolved organic matter and Fe(Ⅱ) on the abiotic reduction of pentachloronitrobenzene[J].Environmental Science Technology,2007, 41(21): 7 337-7 342.
[13] Jeon B H, Dempsey B A, Burgos W D. Kinetics and mechanisms for reactions of Fe(Ⅱ) with iron(Ⅲ) oxides[J]. Environmental Science Technology, 2003, 37(15): 3 309-3 315.
[14] Hofstetter T B, Schwarzenbach R P, Haderlein S B. Reactivity of Fe(Ⅱ) species associated with clay minerals[J]. Environmental Science Technology, 2003, 37(3): 519-528.
[15] Schultz C A, Grundl T J. pH dependence on reduction rate of 4-Cl-nitrobenzene by Fe(Ⅱ)/montmorillonite systems[J]. Environmental Science Technology, 2000, 34(17): 3 641-3 648.
[16] Hofstetter T B, Heijman C G, Haderlein S B, et al. Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions[J].Environmental Science Technology, 1999, 33(9):1 479-1 487.
[17] March J. Advanced Organic Chemistry, 4th ed[M]. New York: John Wiley & Sons Inc., 1992.
[18] Krlegman-Kling M R, Relnhard M. Transformation of carbon tetrachloride by pyrite in aqueous solution[J].Environmental Science Technology, 1994, 28(4):692-700.
[19] Hwang I, Batchelor B. Reductive dechlorination of tetrachloroethylene by Fe(Ⅱ) in cement slurries[J].Environmental Science Technology, 2000, 34(23): 5 017-5 022.
[20] Kang W H, Hwang I, Park J Y. Dechlorination of trichloroethylene by a steel converter slag amended with Fe(Ⅱ)[J]. Chemosphere,2006, 62(2): 285-293.
[21] Vogel T M, Criddle C S, Mccarty P L. Transformations of halogenated aliphatic compound[J].Environmental Science Technology,1987, 21(8): 722-736.
[22] Danielsen K M, Hayes K F. pH Dependence of Carbon Tetrachloride Reductive Dechlorination by Magnetite[J]. Environmental Science Technology,2004, 38(18): 4 745-4 752.
[23] Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses[M]. New York: VCH Publishers, 1996.
[24] Lotgering F K, Van Diepen A M. Electron exchange between Fe2+ and Fe3+ ions on octahedral sites in spinels studied by means of paramagnetic M ssbauer spectra and susceptibility measurements[J].Journal of Phys and Chemistry of Solids, 1977, 38(6): 565-572.
[25] Walz F. The verwey transition-a topical review[J].Journal of Physics: Condensate Matter, 2002, 14(12): 285-340.
[26] Hanoch R J, Shao H, Butler E C. Transformation of carbon tetrachloride by bisulfide treated goethite, hematite, magnetite, and kaolinite[J].Chemosphere, 2006, 63(2): 323-334.
[27] Haderlein S B, Pecher K. Pollutant reduction in heterogeneous Fe(Ⅱ)/Fe(Ⅲ) systems[C]//Kinetics and Mechanisms of Reactions at the Mineral/Water Interface, ACS Symposium Series, Division of Geochemistry. Washington DC: American Chemical Society, 1998, 715(17): 342-357.
[28] Hachiya K, Sasaki M, Ikeda T, et al. Static and kinetic studies of adsorption-desorption of metal ions on a gamma-alumina surface 2. Kinetic study by means of pressure-jump technique[J].Journal of Physics and Chemistry, 1984, 88: 27-31.
[29] Lu Yahai, Huang Changyong, Yuan Ke′neng, et al. Specific adsorption of heavy metal ions on latosol and its minerals[J]. Acta Pedologica Sinica,1995 , 32 (4): 370-376.[陆雅海,黄昌勇,袁可能,等. 砖红壤及其矿物表面对重金属离子的专性吸附研究[J]. 土壤学报, 1995 , 32 (4): 370-376.]
[30] Maithreepala R A, Doong R A. Synergistic effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bound Fe(Ⅱ) associated with goethite[J].Environmental Science Technology,2004, 38(1): 260-268.
[31] O′Loughlin E J, Kemner K M, Burris D R. Effects of AgI, AuIII, and CuII on the reductive dechlorination of carbon tetrachloride by green rust[J].Environmental Science Technology,2003, 37(13): 2 905-2 912.
[32] Stumm W. Aquatic Surface Chemistry. Chemical Processes at the Particle-Water Interface[M]. New York: John Wiley & Sons, 1987:83-110.
[33] Lou Tao, Chen Guohua, Xie Huixiang, et al. Advances of the act of humic substance with the organic pollutants[J].Marine Environmental Science,2004, 23(3): 72-76.[楼涛,陈国华, 谢会祥,等. 腐殖质与有机污染物作用研究进展[J]. 海洋环境科学, 2004, 23(3): 72-76.]
[34] Tratnyek P G, Scherer M M, Deng B L, et al. Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron[J].Water Research, 2001, 35(18): 4 435-4 443.
[35] Curtis G P, Reinhard M. Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic Acid[J].Environmental Science Technology,1994, 28(13): 2 393-2 401.
[36] Chen J, Gu B, Royer R A. The role of natural organic matter in chemical and microbial reduction of ferric iron[J].The Science of the Total Environment, 2003, 307(1/3): 167-178.
[37] Xie L, Shang C. Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron[J].Environmental Science Technology,2005, 39(4): 1 092-1 100.
[38] Roden E E, Urrutia M M, Ferrous iron removal promotes microbial reduction of crystalline iron(Ⅲ) oxides[J].Environmental Science Technology,1999,33(11): 1 847-1 853.
[39] Moore P A, Patrick W H Jr. Iron availability and uptake by rice in acid sulfate soils[J].Soil Science Society of America Journal,1989, 53(2): 471-476.
[40] Buerge I J, Hug S J. Influence of mineral surfaces on Chromium(Ⅵ) reduction by Iron(Ⅱ)[J].Environmental Science Technology,1999, 33(23): 4 285-4 291.
[41] Cui D Q, Eriksen T E. Reduction of pertechnetate by ferrous iron in solution: Influence of sorbed and precipitated Fe(Ⅱ)[J]. Environmental Science Technology,1996, 30(7): 2 259-2 262.
[42] Liger E, Charlet L, Cappellen P V. Surface catalysis of uranium(Ⅵ) reduction by iron(Ⅱ)[J].Geochimica et Cosmochimica Acta, 1999, 63(19/20): 2 939-2 955.

[1] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[2] 张兴春. 国外铁氧化物铜—金矿床的特征及其研究现状[J]. 地球科学进展, 2003, 18(4): 551-560.
阅读次数
全文


摘要