Please wait a minute...
img img
高级检索
地球科学进展  2015, Vol. 30 Issue (7): 763-772    DOI: 10.11867/j.issn.1001-8166.2015.07.0763
综述与评述     
大气甲烷浓度变化的源汇因素模拟研究进展
鲁易2, 张稳2*, *, 李婷婷2, 周筠珺1
1.成都信息工程大学大气科学学院,四川 成都,610041;
2. 大气边界层物理与大气化学国家重点实验室,中国科学院大气物理研究所,北京,100029
Progress in the Simulation of the Impacts of Sources and Sinks on the Tempo-spatial Variations of the Atmospheric Methane
Lu Yi1, 2, Zhang Wen2, Li Tingting2, Zhou Yunjun1
1. School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610041, China;
2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmosphere Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
 全文: PDF(1132 KB)  
摘要:

从甲烷大气化学过程、传输模式和反向模拟机理等方面综述了大气甲烷浓度变化及其源汇研究的主要进展及存在的问题。基于数据同化算法的反向模拟能有效降低全球及国家尺度甲烷排放估计的不确定性。但在具体的算法实施中,先验的甲烷排放估计和地面站大气甲烷浓度测定的不确定性量化仍然主要是经验性的,缺乏严格和系统性的量化算法。相对于有限的地面站测定,基于卫星平台的大气甲烷浓度变化监测数据极大地提高了数据的空间覆盖度,进一步促进了反向模拟的应用。当前的反向模拟研究在全球尺度上确认了自然湿地甲烷排放对大气甲烷浓度年际波动的决定性作用;在国家尺度上,反向模拟在国家温室气体清单的“可核查”方面也有广泛的应用前景。

关键词: 源汇不确定性甲烷模式反向模拟    
Abstract:

By reviewing the advances in chemical processes, transport models and inverse modeling technologies concerning the atmospheric methane, problems in exploiting the sources and sinks of the atmospheric methane were discussed. The inverse modelling with the atmospheric chemical transport models significantly reduced the uncertainty in the estimation of methane emissions from the terrestrial and oceanic methane sources, when the observational data of the atmospheric methane concentration were assimilated in the inverse modeling. But at present, the quantification of the uncertainty in a priori estimations and the measurements of the atmosphere methane concentration were primarily empirically assigned and no scientifically reliable algorithm is available. Remotely sensed observations of the atmospheric methane concentration dynamics of global covering have greatly promoted the availability of the observations and thereafter improved the efficiency of the inverse modeling. With inverse modeling, the methane emission from natural wetland was identified as the major contributor to the inter-annual variation of the atmospheric methane concentration on global scale. And on regional scales, the inversion modeling has been used to revise national methane emission inventories in some countries and will be an option for verifying the national inventory in compliance with the UNFCCC articles.

Key words: Model    Inverse modeling    Uncertainty.    Methane    Source and sink
收稿日期: 2015-01-12 出版日期: 2015-07-20
:  P402  
基金资助:

国家自然科学基金项目“我国大气甲烷浓度时空变化的地面排放源解析研究”(编号:41175132); 国家自然科学基金创新研究群体项目“地气碳氮交换及其与气候的相互作用”(编号:41321064)资助

通讯作者: 张稳(1968-),男,河北涿鹿人,研究员,主要从事温室气体与全球气候变化研究.     E-mail: zhw@mail.iap.ac.cn
作者简介: 鲁易(1989-),男,湖北黄冈人,硕士研究生,主要从事大气环境与大气化学传输模拟研究.E-mail:xiaoyia1919@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张稳
李婷婷
周筠珺
鲁易

引用本文:

鲁易, 张稳, 李婷婷, 周筠珺. 大气甲烷浓度变化的源汇因素模拟研究进展[J]. 地球科学进展, 2015, 30(7): 763-772.

Lu Yi, Zhang Wen, Li Tingting, Zhou Yunjun. Progress in the Simulation of the Impacts of Sources and Sinks on the Tempo-spatial Variations of the Atmospheric Methane. Advances in Earth Science, 2015, 30(7): 763-772.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2015.07.0763        http://www.adearth.ac.cn/CN/Y2015/V30/I7/763

[1] Kiehl J T, Trenberth K E. Earth’s annual global mean energy budget[J]. Bulletin of the American Meteorological Society, 1997, 78(2): 197-208.
[2] IPCC. Climate Change 2000: Special Report on Emissions Scenarios[M]. Chadwick M, Parikh J, eds. Cambridge, UK and New York, USA: Cambridge University Press, 2000.
[3] Hansen J E, Lacis A A. Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change[J]. Nature, 1990, 346(6 286): 713-719.
[4] IPCC. Climate Change 2007: The Physical Science Basis[M]. Boonpragob K, Giorgi F, Jallow B P, et al, eds. Cambridge, UK and New York, USA: Cambridge University Press, 2007.
[5] IPCC. Climate Change 2013: The Physical Science Basis[M]. Joussaume S, Penner J, Tangang F, et al, eds. Cambridge, UK and New York, USA: Cambridge University Press, 2013.
[6] Lelieveld J, Crutzen P J, Dentener F J.Changing concentration,lifetime and climate forcing of atmospheric methane[J].Tellus B, 1998, 50(2): 128-150.
[7] Bousquet P, Ciais P, Miller J B, et al. Contribution of anthropogenic and natural sources to atmospheric methane variability[J].Nature, 2006, 443(7 110) : 439-443.
[8] Dlugokencky E J, Nisbet E G, Fisher R, et al. Global atmospheric methane: Budget, changes and dangers[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1 943): 2 058-2 072.
[9] Li Yuhong, Zhan Liyang, Chen Liqi. Advances in the study of methane in the Arctic Ocean[J].Advances in Earth Science,2014, 29(12):1 355-1 361. [李玉红,詹力扬,陈立奇.北冰洋CH 4 研究进展[J].地球科学进展,2014,29(12):1 355-1 361.]
[10] Hein R, Crutzen P J, Heimann M. An inverse modeling approach to investigate the global atmospheric methane cycle[J]. Global Biogeochemistry Cycles, 1997, 11(1): 53-76.
[11] Patra P K, Houweling S, Krol M, et al. TransCom model simulations of CH 4 and related species: Linking transport, surface flux and chemical loss with CH 4 variability in the troposphere and lower stratosphere[J]. Atmospheric Chemistry and Physics, 2011, 11: 12 813-12 837.
[12] Pickett-Heaps C A, Jacob D J, Wecht K J. Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada)[J]. Atmospheric Chemistry and Physics, 2011, 11: 3 773-3 779.
[13] Fraser A, Miller C C, Palmer P I, et al. The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model[J]. Journal of Geophysical Research, 2011, 116:D20306, doi:10.1029/2011JD015964.
[14] Krol M C, Lelieveld J, Oram D E, et al. Continuing emissions of methyl chloroform from Europe[J]. Nature, 2003, 421(6 919): 131-135.
[15] Gent P R, Yeager S G, Neale R B, et al. Improvements in a half degree atmosphere/land version of the CCSM[J]. Climate Dynamics, 2009, 79: 25-58.
[16] Chipperfield M P. New version of the TOMCAT/SLIMCAT offline chemical transport model: Intercomparison of stratospheric tracer experiments[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132: 1 179-1 203.
[17] Corbin K D, Law R M. Extending Atmospheric CO 2 and Tracer Capabilities in ACCESS[R]. CAWCR Technical Report No. 35, The Centre for Australian Weather and Climate Research, Aspendale, 2011.
[18] Locatelli R, Bergamaschi P, Chevallier F, et al. Impact of transport model errors on the global and regional methane emissions estimated by inverse modeling[J]. Atmospheric Chemistry and Physics, 2013, 13: 9 917-9 937.
[19] Bergamaschi P, Krol M, Dentener F, et al. Inverse modelling of national and European CH 4 emissions using the atmospheric zoom model TM5[J]. Atmospheric Chemistry and Physics, 2005, 5: 2 431-2 460.
[20] Houweling S, Kaminski T, Dentener F, et al. Inverse modeling of methane sources and sinks using the adjoint of a global transport model[J]. Journal of Geophysical Research, 1999, 104(D21): 26 137-26 160.
[21] Wang J S, Logan J A, McElroy M B, et al. A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997[J]. Global Biogeochemistry Cycles, 2004, 18:GB3011, doi:10.1029/2003GB002180.
[22] Meirink J F, Bergamaschi P, Krol M C. Four-dimensional variational data assimilation for inverse modeling of atmospheric methane emissions: Method and comparison with synthesis inversion[J]. Atmospheric Chemistry and Physics, 2008, 8: 6 341-6 353.
[23] Meirink J F, Bergamaschi P, Frankenberg C, et al. Four-dimensional variational data assimilation for inverse modeling of atmospheric methane emissions: Analysis of SCIAMACHY observations[J]. Journal of Geophysical Research, 2008, 113, D17301, doi:10.1029/2007JD009740.
[24] Heimann M, Kaminski T. Inverse modeling approaches to infer surface trace gas fluxes from observed atmospheric mixing ratios, Approaches to scaling of trace gas fluxes in ecosystems[C]∥Bouwman A F, ed. Approaches to Scaling of Trace Gas Fluxes in Ecosystems. Amsterdam: Elsevier, 1999: 275-295.
[25] Enting I G. Green’s function methods of tracer inversion[C]∥Kasibhatla P, Heimann M, Rayner P, et al, eds. Inverse Methods in Global Biogeochemical Cycles. Washington DC: American Geophysical Union, 2000: 19-31.
[26] Enting I G. Inverse Problems in Atmospheric Constituent Transport[M]. New York: Cambridge University Press, 2002.
[27] Bergamaschi P, Frankenberg C, Meirink J F, et al. Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations[J]. Journal of Geophysical Research, 2007,112: D02304, doi:10.1029/2006JD007268.
[28] Fung I, John J, Lerner J, et al. Three-dimensional model synthesis of the global methane cycle[J]. Journal of Geophysical Research, 1991, 96(D7): 13 033-13 065.
[29] Chen Y H, Prinn R G. Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model[J]. Journal of Geophysical Research, 2006, 111: D10307, doi:10.1029/2005JD006058.
[30] Frankenberg C, Meirink J F, van Weele M, et al. Assessing methane emissions from global space-borne observations[J]. Science, 2005, 308(5 724): 1 010-1 014.
[31] Frankenberg C, Platt U, Wagner T. Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH 4 and CO 2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT[J]. Atmospheric Chemistry and Physics, 2005, 5: 9-22.
[32] Parker R, Boesch H, Cogan A, et al. Methane observations from the greenhouse gases observing SATellite: Comparison to ground—Based TCCON data and model calculations[J]. Geophysical Research Letters, 2011, 38:L15807, doi:10.1029/2011GL047871.
[33] Schneising O, Bergamaschi P, Bovensmann H, et al. Atmospheric greenhouse gases retrieved from SCIAMACHY: Comparison to ground-based FTS measurements and model results[J]. Atmospheric Chemistry and Physics,2012, 12: 1 527-1 540.
[34] Houweling S, Krol M, Bergamaschi P, et al. A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements[J]. Atmospheric Chemistry and Physics, 2014, 14: 3 991-4 012.
[35] Fraser A, Palmer P I, Feng L, et al. Estimating regional methane surface fluxes: The relative importance of surface and GOSAT mole fraction measurements[J]. Atmospheric Chemistry and Physics, 2013, 13: 5 697-5 713.
[36] Fisher M, Courtier P. Estimating the Covariance Matrices of Analysis and Forecast Error in Variational Data Assimilation[R]. ECMWF, UK, Technical Memorandum No.220, 1995.
[37] Dlugokencky E J, Steele L P, Lang P M, et al. The growth rate and distribution of atmospheric methane[J]. Journal of Geophysical Research, 1994, 99(8): 17 021-17 044.
[38] Dlugokencky E J, Houweling S, Bruhwiler L, et al. Atmospheric methane levels off: Temporary pause or a new steady-state?[J]. Geophysical Research Letters, 2003, 30(19), doi:10.1029/2003GL018126.
[39] Wunch D, Toon G C, Blavier J L, et al. The Total Carbon Column Observing Network (TCCON)[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1 943): 2 087-2 112.
[40] Deutscher N M, Grifith D W T, Bryant G W, et al. Total column CO 2 measurements at Darwin, Australia-Site description and calibration against in situ aircraft profiles[J]. Atmospheric Measurement Techniques, 2010, 3(4): 947-958.
[41] Bousquet P, Ringeval B, Pison I, et al. Source attribution of the changes in atmospheric methane for 2006-2008[J]. Atmospheric Chemistry and Physics, 2011, 11: 3 689-3 700.
[42] Frankenberg C, Meirink J F, Bergamaschi P, et al. Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004[J]. Journal of Geophysical Research, 2006, 111: D07303, doi:10.1029/2005JD006235.
[43] Bergamaschi P, Frankenberg C, Meirink J F, et al. Inverse modeling of global and regional CH 4 emissions using SCIAMACHY satellite retrievals[J]. Journal of Geophysical Research, 2009, 114: D22301, doi:10.1029/2009JD012287.
[44] Klaassen G, Amann M, Berglund C, et al. The Extension of the RAINS Model to Greenhouse Gases[R]. International Institute for Applied Systems Analysis, IIASA Interim Report IR-04-015,2004.
[45] Matthews E, Fung I. Methane emissions from natural wetlands: Global distribution, area, and environmental characteristics of sources[J]. Global Biogeochemistry Cycles, 1987, 1: 61-86.
[46] van der Werf G R, Randerson J T, Collatz G J, et al. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period[J]. Science, 2004, 303: 73-76.
[47] Walter B P, Heimann M, Matthews E. Modeling modern methane emissions from natural wetlands: 1. Model description and results[J]. Journal of Geophysical Research, 2001, 106: 34 189-34 206.
[48] Olivier J, Bouwman A, Maas C, et al. Description of EDGAR Version 2.0: A Set of Global Emission Inventories of Greenhouse Gases and Ozone-depleting Substances for All Anthropogenic and Most Natural Sources on a Per Country Basis and on 1°×1° Grid[R]. National Institute for Public Health and the Environment (RIVM), Report No.771060 002/TNO-MEP Report No. R96/119, 1996.
[49] Sanderson M G. Biomass of termites and their emissions of methane and carbon dioxide: A global database[J]. Global Biogeochemistry Cycles, 1996, 10: 543-557.
[50] Ridgwell A J, Marshall S J, Gregson K. Consumption of atmospheric methane by soils: A process-based model[J]. Global Biogeochemistry Cycles, 1999, 13(1): 59-70.
[51] Curry C L. Modeling the soil consumption of atmospheric methane at the global scale[J]. Global Biogeochemistry Cycles, 2007, 21(4): GB4012-1-15, doi:10.1029/2006GB002818.
[52] Bergamaschi P, Houweling S, Segers A, et al. Atmospheric CH 4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 7 350-7 369, doi:10.1002/jgrd.50480.
[53] Bousquet P, Hauglustaine D A, Peylin P, et al. Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform[J]. Atmospheric Chemistry and Physics, 2005, 5: 2 635-2 656.
[54] Prinn R G, Huang J, Weiss R F, et al. Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades[J]. Science, 2001, 293(5 532): 1 048-1 048.
[55] Pison I, Ringeval B, Bousquet P, et al. Stable atmospheric methane in the 2000s key-role of emissions from natural wetlands[J]. Atmospheric Chemistry and Physics, 2013, 13: 11 609-11 623.
[56] Kirschke S, Bousquet P, Ciais P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6: 813-823.
[57] Ringeval B, Noblet-Ducoudre N, Ciais P, et al. An attempt to quantify the impact of changes in wetland extenton methane emissions at the seasonal and interannual time scales[J]. Global Biogeochemistry Cycles, 2010, 24:GB2003, doi:10.1029/2008GB003354.
[58] Li T T, Huang Y, Zhang W, et al. CH 4 MODwetland: A biogeophysical model for simulating methane emission from natural wetlands[J]. Ecological Modelling, 2009, 221: 666-680.
[59] Bergamaschi P, Krol M, Meirink J F, et al. Inverse modeling of European CH 4 emissions 2001-2006[J]. Journal of Geophysical Research, 2010, 115:D22309, doi:10.1029/2010JD014180.
[60] Zhang D Y, Liao H, Wang Y S. Simulated spatial distribution and seasonal variation of atmospheric methane over China: Contributions from key sources[J]. Advances in Atmospheric Sciences, 2014, 31: 283-292.

[1] 马雷鸣, 鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展, 2017, 32(7): 679-687.
[2] 刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787.
[3] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[4] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
[5] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[6] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[7] 容新尧, 刘征宇, 段晚锁. 耦合模式中北太平洋和北大西洋海表面温度年代际可预报性和预报技巧的季节依赖性[J]. 地球科学进展, 2017, 32(4): 382-395.
[8] 张丽霞, 张文霞, 周天军, 吴波. ENSEMBLES耦合模式对全球陆地季风区夏季降水的年代际预测能力评估[J]. 地球科学进展, 2017, 32(4): 409-419.
[9] 孙倩, 吴波, 周天军. 基于可预测模态分析技术的亚澳夏季风统计—动力季节预测模型及其回报技巧评估[J]. 地球科学进展, 2017, 32(4): 420-434.
[10] 周天军, 吴波. 年代际气候预测问题:科学前沿与挑战[J]. 地球科学进展, 2017, 32(4): 331-341.
[11] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[12] 王昊亮, 刘玉宝, 赵天良, 郭凤霞, 冯双磊, 王勃. 基于数值天气模式及其模式输出的闪电预报研究进展[J]. 地球科学进展, 2017, 32(1): 44-55.
[13] 卿文武, 刘俊峰, 杨钰泉, 陈仁升, 韩春坛. 基于气温的物质平衡模型的参数不确定性分析——以祁连山十一冰川为例[J]. 地球科学进展, 2016, 31(9): 937-945.
[14] 李得勤, 张述文, 文小航, 贺慧. 土壤湿度参数化及对天气和气候模拟影响的研究进展[J]. 地球科学进展, 2016, 31(3): 236-247.
[15] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.