地球科学进展 ›› 2015, Vol. 30 ›› Issue (7): 763 -772. doi: 10.11867/j.issn.1001-8166.2015.07.0763

上一篇    下一篇

鲁易 2, 张稳 2,,A; *( ), 李婷婷 2, 周筠珺 1   
  1. 1.成都信息工程大学大气科学学院,四川 成都,610041
    2. 大气边界层物理与大气化学国家重点实验室,中国科学院大气物理研究所,北京,100029
  • 出版日期:2015-07-20
  • 通讯作者: 张稳 E-mail:zhw@mail.iap.ac.cn
  • 基金资助:

Progress in the Simulation of the Impacts of Sources and Sinks on the Tempo-spatial Variations of the Atmospheric Methane

Yi Lu 1, 2, Wen Zhang 2( ), Tingting Li 2, Yunjun Zhou 1   

  1. 1. School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610041, China
    2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmosphere Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
  • Online:2015-07-20 Published:2015-07-20


By reviewing the advances in chemical processes, transport models and inverse modeling technologies concerning the atmospheric methane, problems in exploiting the sources and sinks of the atmospheric methane were discussed. The inverse modelling with the atmospheric chemical transport models significantly reduced the uncertainty in the estimation of methane emissions from the terrestrial and oceanic methane sources, when the observational data of the atmospheric methane concentration were assimilated in the inverse modeling. But at present, the quantification of the uncertainty in a priori estimations and the measurements of the atmosphere methane concentration were primarily empirically assigned and no scientifically reliable algorithm is available. Remotely sensed observations of the atmospheric methane concentration dynamics of global covering have greatly promoted the availability of the observations and thereafter improved the efficiency of the inverse modeling. With inverse modeling, the methane emission from natural wetland was identified as the major contributor to the inter-annual variation of the atmospheric methane concentration on global scale. And on regional scales, the inversion modeling has been used to revise national methane emission inventories in some countries and will be an option for verifying the national inventory in compliance with the UNFCCC articles.


表1 全球甲烷排放源(Tg/a)的先验估计及其反向模拟结果对比
图1 全球甲烷浓度及其增长速率随时间的变化 [ 8 ]
Fig. 1 Temporal changes of the global atmospheric CH 4 concentration and its inter-annual rate [ 8 ]
[1] Kiehl J T, Trenberth K E.Earth’s annual global mean energy budget[J]. Bulletin of the American Meteorological Society, 1997, 78(2): 197-208.
[2] IPCC. Climate Change 2000: Special Report on Emissions Scenarios[M]. Chadwick M, Parikh J, eds. Cambridge, UK and New York, USA: Cambridge University Press, 2000.
[3] Hansen J E, Lacis A A.Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change[J]. Nature, 1990, 346(6 286): 713-719.
[4] IPCC. Climate Change 2007: The Physical Science Basis[M]. Boonpragob K, Giorgi F, Jallow B P, et al, eds. Cambridge, UK and New York, USA: Cambridge University Press, 2007.
[5] IPCC. Climate Change 2013: The Physical Science Basis[M]. Joussaume S, Penner J, Tangang F, et al, eds. Cambridge, UK and New York, USA: Cambridge University Press, 2013.
[6] Lelieveld J, Crutzen P J, Dentener F J.Changing concentration,lifetime and climate forcing of atmospheric methane[J].Tellus B, 1998, 50(2): 128-150.
[7] Bousquet P, Ciais P, Miller J B, et al.Contribution of anthropogenic and natural sources to atmospheric methane variability[J].Nature, 2006, 443(7 110) : 439-443.
[8] Dlugokencky E J, Nisbet E G, Fisher R, et al.Global atmospheric methane: Budget, changes and dangers[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1 943): 2 058-2 072.
[9] Li Yuhong, Zhan Liyang, Chen Liqi.Advances in the study of methane in the Arctic Ocean[J].Advances in Earth Science,2014, 29(12):1 355-1 361.
[李玉红,詹力扬,陈立奇.北冰洋CH4研究进展[J].地球科学进展,2014,29(12):1 355-1 361.]
[10] Hein R, Crutzen P J, Heimann M.An inverse modeling approach to investigate the global atmospheric methane cycle[J]. Global Biogeochemistry Cycles, 1997, 11(1): 53-76.
[11] Patra P K, Houweling S, Krol M, et al.TransCom model simulations of CH4 and related species: Linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere[J]. Atmospheric Chemistry and Physics, 2011, 11: 12 813-12 837.
[12] Pickett-Heaps C A, Jacob D J, Wecht K J. Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada)[J]. Atmospheric Chemistry and Physics, 2011, 11: 3 773-3 779.
[13] Fraser A, Miller C C, Palmer P I, et al.The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model[J]. Journal of Geophysical Research, 2011, 116:D20306, doi:10.1029/2011JD015964.
[14] Krol M C, Lelieveld J, Oram D E, et al.Continuing emissions of methyl chloroform from Europe[J]. Nature, 2003, 421(6 919): 131-135.
[15] Gent P R, Yeager S G, Neale R B, et al.Improvements in a half degree atmosphere/land version of the CCSM[J]. Climate Dynamics, 2009, 79: 25-58.
[16] Chipperfield M P.New version of the TOMCAT/SLIMCAT offline chemical transport model: Intercomparison of stratospheric tracer experiments[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132: 1 179-1 203.
[17] Corbin K D, Law R M.Extending Atmospheric CO2 and Tracer Capabilities in ACCESS[R]. CAWCR Technical Report No. 35, The Centre for Australian Weather and Climate Research, Aspendale, 2011.
[18] Locatelli R, Bergamaschi P, Chevallier F, et al.Impact of transport model errors on the global and regional methane emissions estimated by inverse modeling[J]. Atmospheric Chemistry and Physics, 2013, 13: 9 917-9 937.
[19] Bergamaschi P, Krol M, Dentener F, et al. Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5[J]. Atmospheric Chemistry and Physics, 2005, 5: 2 431-2 460.
[20] Houweling S, Kaminski T, Dentener F, et al.Inverse modeling of methane sources and sinks using the adjoint of a global transport model[J]. Journal of Geophysical Research, 1999, 104(D21): 26 137-26 160.
[21] Wang J S, Logan J A, McElroy M B, et al. A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from1988 to 1997[J]. Global Biogeochemistry Cycles, 2004, 18:GB3011, doi:10.1029/2003GB002180.
[22] Meirink J F, Bergamaschi P, Krol M C.Four-dimensional variational data assimilation for inverse modeling of atmospheric methane emissions: Method and comparison with synthesis inversion[J]. Atmospheric Chemistry and Physics, 2008, 8: 6 341-6 353.
[23] Meirink J F, Bergamaschi P, Frankenberg C, et al.Four-dimensional variational data assimilation for inverse modeling of atmospheric methane emissions: Analysis of SCIAMACHY observations[J]. Journal of Geophysical Research, 2008, 113, D17301, doi:10.1029/2007JD009740.
[24] Heimann M, Kaminski T.Inverse modeling approaches to infer surface trace gas fluxes from observed atmospheric mixing ratios, Approaches to scaling of trace gas fluxes in ecosystems[C]∥Bouwman A F, ed. Approaches to Scaling of Trace Gas Fluxes in Ecosystems. Amsterdam: Elsevier, 1999: 275-295.
[25] Enting I G.Green’s function methods of tracer inversion[C]∥Kasibhatla P, Heimann M, Rayner P, et al, eds. Inverse Methods in Global Biogeochemical Cycles. Washington DC: American Geophysical Union, 2000: 19-31.
[26] Enting I G.Inverse Problems in Atmospheric Constituent Transport[M]. New York: Cambridge University Press, 2002.
[27] Bergamaschi P, Frankenberg C, Meirink J F, et al.Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations[J]. Journal of Geophysical Research, 2007,112: D02304, doi:10.1029/2006JD007268.
[28] Fung I, John J, Lerner J, et al.Three-dimensional model synthesis of the global methane cycle[J]. Journal of Geophysical Research, 1991, 96(D7): 13 033-13 065.
[29] Chen Y H, Prinn R G.Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model[J]. Journal of Geophysical Research, 2006, 111: D10307, doi:10.1029/2005JD006058.
[30] Frankenberg C, Meirink J F, van Weele M, et al. Assessing methane emissions from global space-borne observations[J]. Science, 2005, 308(5 724): 1 010-1 014.
[31] Frankenberg C, Platt U, Wagner T.Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT[J]. Atmospheric Chemistry and Physics, 2005, 5: 9-22.
[32] Parker R, Boesch H, Cogan A, et al.Methane observations from the greenhouse gases observing SATellite: Comparison to ground—Based TCCON data and model calculations[J]. Geophysical Research Letters, 2011, 38:L15807, doi:10.1029/2011GL047871.
[33] Schneising O, Bergamaschi P, Bovensmann H, et al.Atmospheric greenhouse gases retrieved from SCIAMACHY: Comparison to ground-based FTS measurements and model results[J]. Atmospheric Chemistry and Physics,2012, 12: 1 527-1 540.
[34] Houweling S, Krol M, Bergamaschi P, et al.A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements[J]. Atmospheric Chemistry and Physics, 2014, 14: 3 991-4 012.
[35] Fraser A, Palmer P I, Feng L, et al.Estimating regional methane surface fluxes: The relative importance of surface and GOSAT mole fraction measurements[J]. Atmospheric Chemistry and Physics, 2013, 13: 5 697-5 713.
[36] Fisher M, Courtier P.Estimating the Covariance Matrices of Analysis and Forecast Error in Variational Data Assimilation[R]. ECMWF, UK, Technical Memorandum No.220, 1995.
[37] Dlugokencky E J, Steele L P, Lang P M, et al.The growth rate and distribution of atmospheric methane[J]. Journal of Geophysical Research, 1994, 99(8): 17 021-17 044.
[38] Dlugokencky E J, Houweling S, Bruhwiler L, et al.Atmospheric methane levels off: Temporary pause or a new steady-state?[J]. Geophysical Research Letters, 2003, 30(19), doi:10.1029/2003GL018126.
[39] Wunch D, Toon G C, Blavier J L, et al.The Total Carbon Column Observing Network (TCCON)[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1 943): 2 087-2 112.
[40] Deutscher N M, Grifith D W T, Bryant G W, et al. Total column CO2 measurements at Darwin, Australia-Site description and calibration against in situ aircraft profiles[J]. Atmospheric Measurement Techniques, 2010, 3(4): 947-958.
[41] Bousquet P, Ringeval B, Pison I, et al.Source attribution of the changes in atmospheric methane for 2006-2008[J]. Atmospheric Chemistry and Physics, 2011, 11: 3 689-3 700.
[42] Frankenberg C, Meirink J F, Bergamaschi P, et al.Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004[J]. Journal of Geophysical Research, 2006, 111: D07303, doi:10.1029/2005JD006235.
[43] Bergamaschi P, Frankenberg C, Meirink J F, et al.Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals[J]. Journal of Geophysical Research, 2009, 114: D22301, doi:10.1029/2009JD012287.
[44] Klaassen G, Amann M, Berglund C, et al.The Extension of the RAINS Model to Greenhouse Gases[R]. International Institute for Applied Systems Analysis, IIASA Interim Report IR-04-015,2004.
[45] Matthews E, Fung I.Methane emissions from natural wetlands: Global distribution, area, and environmental characteristics of sources[J]. Global Biogeochemistry Cycles, 1987, 1: 61-86.
[46] van der Werf G R, Randerson J T, Collatz G J, et al. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period[J]. Science, 2004, 303: 73-76.
[47] Walter B P, Heimann M, Matthews E.Modeling modern methane emissions from natural wetlands: 1. Model description and results[J]. Journal of Geophysical Research, 2001, 106: 34 189-34 206.
[48] Olivier J, Bouwman A, Maas C, et al.Description of EDGAR Version 2.0: A Set of Global Emission Inventories of Greenhouse Gases and Ozone-depleting Substances for All Anthropogenic and Most Natural Sources on a Per Country Basis and on 1°×1° Grid[R].National Institute for Public Health and the Environment (RIVM), Report No.771060 002/TNO-MEP Report No. R96/119, 1996.
[49] Sanderson M G.Biomass of termites and their emissions of methane and carbon dioxide: A global database[J]. Global Biogeochemistry Cycles, 1996, 10: 543-557.
[50] Ridgwell A J, Marshall S J, Gregson K.Consumption of atmospheric methane by soils: A process-based model[J]. Global Biogeochemistry Cycles, 1999, 13(1): 59-70.
[51] Curry C L. Modeling the soil consumption of atmospheric methane at the global scale[J]. Global Biogeochemistry Cycles, 2007, 21(4): GB4012-1-15, doi:10.1029/2006GB002818.
[52] Bergamaschi P, Houweling S, Segers A, et al.Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 7 350-7 369, doi:10.1002/jgrd.50480.
[53] Bousquet P, Hauglustaine D A, Peylin P, et al.Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform[J]. Atmospheric Chemistry and Physics, 2005, 5: 2 635-2 656.
[54] Prinn R G, Huang J, Weiss R F, et al.Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades[J]. Science, 2001, 293(5 532): 1 048-1 048.
[55] Pison I, Ringeval B, Bousquet P, et al.Stable atmospheric methane in the 2000s key-role of emissions from natural wetlands[J]. Atmospheric Chemistry and Physics, 2013, 13: 11 609-11 623.
[56] Kirschke S, Bousquet P, Ciais P, et al.Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6: 813-823.
[57] Ringeval B, Noblet-Ducoudre N, Ciais P, et al. An attempt to quantify the impact of changes in wetland extenton methane emissions at the seasonal and interannual time scales[J]. Global Biogeochemistry Cycles, 2010, 24:GB2003, doi:10.1029/2008GB003354.
[58] Li T T, Huang Y, Zhang W, et al.CH4MODwetland: A biogeophysical model for simulating methane emission from natural wetlands[J]. Ecological Modelling, 2009, 221: 666-680.
[59] Bergamaschi P, Krol M, Meirink J F, et al.Inverse modeling of European CH4 emissions 2001-2006[J]. Journal of Geophysical Research, 2010, 115:D22309, doi:10.1029/2010JD014180.
[60] Zhang D Y, Liao H, Wang Y S.Simulated spatial distribution and seasonal variation of atmospheric methane over China: Contributions from key sources[J]. Advances in Atmospheric Sciences, 2014, 31: 283-292.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[3] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[4] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[5] 于德永,郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8): 804-815.
[6] 王卷乐,石蕾,王玉洁,高孟绪,徐波,王超,王明明,王艳杰,周业智. 科学数据汇聚的模式分析及对我国的发展建议[J]. 地球科学进展, 2020, 35(8): 839-847.
[7] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[8] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[9] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[10] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[11] 康文敏,蔡芫镔,郑慧祯. 福州城市地表温度时空变化与贡献度研究[J]. 地球科学进展, 2020, 35(1): 88-100.
[12] 高丽,陈静,郑嘉雯,陈权亮. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7): 706-716.
[13] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[14] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[15] 龚凌枫, 唐川, 李宁, 陈明, 杨成长, 蔡英桦. 急陡沟道物源起动模式及水土耦合破坏机制分析[J]. 地球科学进展, 2018, 33(8): 842-851.