地球科学进展 ›› 2014, Vol. 29 ›› Issue (11): 1212 -1225. doi: 10.11867/j.issn.1001-8166.2014.11.1212

上一篇    下一篇

海洋可预报性和集合预报研究综述
王辉( ), 刘娜 *( ), 李本霞, 李响   
  1. 国家海洋环境预报中心国家海洋局海洋灾害预报技术研究重点实验室, 北京 100081
  • 出版日期:2014-11-27
  • 通讯作者: 刘娜 E-mail:wangh@nmefc.gov.cn;liuna@nmefc.gov.cn
  • 基金资助:
    国家科技支撑计划项目“全球海洋环境数值预报关键技术系统集成研究及应用”(编号:2011BAC03B00);国家自然科学基金青年基金项目“东中国海热收支年代际变化及其影响因素研究”(编号: 41106023)资助

An Overview of Ocean Predictability and Ocean Ensemble Forecast

Hui Wang( ), Na Liu( ), Benxia Li, Xiang Li   

  1. Key Laboratory of Research on Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Beijing 100081, China
  • Online:2014-11-27 Published:2014-11-20

海洋是高度复杂的非线性动力系统, 由于海洋初值和数值模式本身存在无法避免的误差, 海洋数值预报具有不确定性。通过理解和认识海洋不同时空尺度运动的特征和规律, 定量估计和预测海洋动力系统的可预报性, 研究预报误差产生的原因及其增长和传播机制, 探讨减小预报误差的方法和延长可预报时限的途径, 对于改进海洋预报系统、提高预报技巧, 具有重要意义。系统回顾了海洋可预报性及其应用的研究进展, 论述了海洋可预报性的概念、分类以及国内外的研究现状, 其中重点介绍了常用的奇异向量法、李亚普诺夫指数法和繁殖向量法等3种动力学方法以及海洋集合预报研究现状, 最后对海洋可预报性的未来发展方向和应用前景给以展望。

Ocean is a highly complex and nonlinear dynamical system. The inevitable errors in both data and numerical models lead to uncertainties in ocean numerical prediction. By understanding features and properties in the ocean on multiple scales, it is important to quantify and estimate the predictability of the ocean, and analyze the reasons and mechanism of error growth. The efforts focus on investigating the method to reduce the uncertainties and errors in forecasting and increase the time limit of ocean predictability. The advances will result in improved marine forecasting models and forecasting skill. Understanding limitations and identifying the research needed to increase accuracy will lead to fundamental progress in ocean forecast, which is of great significance. The present study described and illustrated the mechanics and computations involved in modeling and predicting uncertainties for ocean prediction and its modern applications. Firstly, it discussed the fundamental concept and classification of the ocean predictability. The research status of ocean predictability is introduced including the dynamics methodologies and the ocean ensemble prediction. Three of the dynamical computational methodologies including the singular vector, Lyapunov exponent and bred vector method were introduced. Three ocean ensemble prediction methods including initial condition ensemble, multi-model ensemble and atmospheric forcing ensemble were described and illustrated. Finally, this paper gave a future prospective of ocean predictability and its application.

中图分类号: 

图1 模式具有初始误差和参数误差时黑潮路径的预报结果 [ 60 ] 黑色实线表示CNOP-I误差, 黄线表示CNOPRI-P误差, 红线表示CNOPTAU-P误差, 蓝线表示CNOPAH-P误差, 灰线表示CNOPALL-P, 黑色虚线表示参考态黑潮大弯曲路径。图中黑潮流轴由海洋上层厚度520m等值线表征
Fig.1 Prediction of Kuroshio path under initial condition errors and model parameter errors [ 60 ] Black solid line represents CNOP-I case; yellow line represents CNOPRI-P case; red line represents CNOPTAU-P case; blue line represents CNOPAH-P case; gray line represents CNOPALL-P case; black dashed line represents reference state of the Kuroshio large meander. The Kuroshio axis is represented as 520m contour of the upper-layer thickness
图2 月平均海表面温度的年平均预报时限(月)的空间分布 [ 88 ]
Fig.2 Spatial distribution of the annual mean predictability limit (in month) of monthly SST [ 88 ]
图3 东澳大利亚海流区域海表面高度 [ 92 ] (a)~(d)分析场;(e)~(h)7天控制预报场;(i)~(l)集合平均繁殖向量(等值线)和第7天预报误差(填色);(m)~(p)4个不同的繁殖向量等值线。第1-4列分别表示2008年3月4, 11, 18, 25日
Fig.3 Surface height in the region of East Australian Current [ 92 ] (a)~(d) Analysis fields;(e)~(h) 7 days control forecasts;(i)~(l) Comparison of ensemble averaged bred vectors (contours) and day 7 forecast error (shaded);(m)~(p)Contours for each of the 4 individual bred vectors. Columns 1~4 depict results valid for the 4th, 11th, 18th and 25th March 2008 respectively
[1] The Regulations on the Administration of Marine ObservationForecasting[S]. 2012.
[海洋观测预报管理条例[S]. 2012.]
[2] Schiller A, Brassington G B. Operational Oceanography in the 21st Century[M]. Netherland: Springer, 2011.
[3] Smedstad O M, Hurlburt H E, Metzger E J, et al. An operational eddy resolving 1/16 global ocean nowcast/forecast system[J]. Journal of Marine Systems, 2003, 40: 341-361.
[4] Zhang Binjian. Chinese Global Operational Oceanography Forecasting System is Officially Issued[N]. China Ocean News, 2013-10-18.
[张斌键. 全球业务化海洋学预报系统正式运行[N]. 中国海洋报, 2013-10-18.]
[5] Wang Hui. Operational Oceanography Forecasting System in Developing Countries[R]. GODAE Ocean View Symposium 2013, Baltimore, Maryland, 2013.
[6] Ferry N, Parent L, Garric G, et al. Mercator global eddy permitting ocean reanalysis GLORYS1V1: Description and results[J]. Mercator Quarterly Newsletter, 2010, 36: 15-27.
[7] Barnett T P, Graham N, Pazan S, et al. ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean-atmosphere model[J]. Journal of Climate, 1993, 6: 1545-1566.
[8] Behringer D W, Ji M, Leetmaa A. An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system[J]. Monthly Weather Review, 1998, 126: 1013-1021.
[9] Meehl G A, Goddard L, Murphy J, et al. Decadal prediction: Can it be skillful?[J]. Bulletin of the American Meteorological Society, 2009, 90: 1467-1485.
[10] Mehta V, Meehl G A, Goddard L, et al. Decadal climate predictability and prediction: Where are we?[J]. Bulletin of the American Meteorological Society, 2011, 92: 141-156.
[11] Lorenz E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20: 130-141.
[12] Duan Wansuo, Mu Mu. Applications of nonlinear optimization method to the numerical studies of atmospheric and oceanic sciences[J]. Applied Mathematics and Mechanics, 2005, 26: 585-594.
[段晚锁, 穆穆. 非线性优化方法在大气和海洋科学数值研究中的若干应用[J]. 应用数学和力学, 2005, 26: 585-594.]
[13] Mooers C N. Coastal Ocean Prediction[M]. Washington DC: American Geophysical Union, 1999: 523.
[14] Pinardi N, Woods J. Ocean Forecasting: Conceptual Basis and Applications[M]. New York: Springer Verlag, 2002: 472.
[15] Mu M, Duan W, Chou J. Recent advances in predictability studies in China (1999-2002)[J]. Advances in Atmospheric Sciences, 2004, 21(3): 437-443.
[16] Lermusiaux P F J, Chiu C-S, Gawarkiewicz G G, et al. Quantifying uncertainties in ocean predictions[J]. Oceanography, 2006, 19: 92-105.
[17] Mu M, Duan W, Wang J. The predictability problems in numerical weather and climate prediction[J]. Advances in Atmospheric Sciences, 2002, 19: 191-204.
[18] Lorenz E N. Climate Predictability: The Physical Basis of Climate Modelling[M]. Geneva: World Meteorological Organisation, 1975: 132-136.
[19] Ding Ruiqiang, Li Jianping. Comparison of the influences of initial error and model parameter error on the predictability of numerical forecast[J]. Chinese Journal of Geophysics, 2008, 51: 1007-1012.
[丁瑞强, 李建平. 初始误差和参数误差对混沌系统可预报性影响的比较[J]. 地球物理学报, 2008, 51: 1007-1012.]
[20] Mu Mu, Chen Boyu, Zhou Feifan, et al. Methods and uncertainties of meteorological forecast[J]. Meteorological Monthly, 2011, 37: 1-13.
[穆穆, 陈博宇, 周菲凡, 等. 气象预报的方法与不确定性[J]. 气象, 2011, 37: 1-13.]
[21] Lermusiaux P F J. Uncertainty estimation and prediction for interdisciplinary ocean dynamics[J]. Journal of Computational Physics, 2006, 217: 176-199.
[22] He Wenping, Feng Guolin, Dong Wenjie, et al. On the predictability of the Lorenz system[J]. Acta Physica Sinica, 2006, 55: 969-977.
[何文平, 封国林, 董文杰, 等. Lorenz系统的可预报性[J]. 物理学报, 2006, 55: 969-977.]
[23] Palmer T N. Predicting uncertainty in forecasts of weather and climate[J]. Reports on Progress in Physics, 2000, 63: 71-116.
[24] Du J. Uncertainty and Ensemble Forecast[J]. NOAA/NWS Science and Technology Infusion Lecture Series, 2007, http://www.nws.noaa.gov/ost/climate/STIP/Collections.htm.
[25] Du J, Tracton M S. Impact of lateral boundary conditions on regional-model ensemble prediction[R]∥Research Activities in Atmospheric and Oceanic Modeling, Report 28. CAS/JSC Working Group Numerical Experimentation (WGNE), 1999.
[26] Tracton M S, Du J. Short-Range Ensemble Forecasting (SREF) at the National Centers for Environmental Prediction[R]. WMO Ensemble Expert Meeting, 2001.
[27] Kamenkovich I V, Sarachik E S. On reducing errors in temperature and salinity in an ocean model forced by restoring boundary conditions[J]. Journal of Physical Oceanography, 2004, 34: 1856-1869.
[28] Large W G, Danabasoglu G, Doney S C, et al. Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology[J]. Journal of Physical Oceanography, 1997, 27: 2418-2447.
[29] Wang Qiuliang, Zhang Lifeng, Guan Jiping. Impact of initial and SST forcing on temporal and spatial distribution of extended-range predictability[J]. Chinese Journal of Geophysics, 2013, 56: 3988-3998.
[王秋良, 张立凤, 关吉平. 初值和海温强迫对延伸期可预报性时空分布的影响[J]. 地球物理学报, 2013, 56: 3988-3998.]
[30] Mu Mu. Methods, current status, and prospect of targeted observation[J]. Science in China(Series D), 2013, 43: 1717-1725.
[穆穆. 目标观测的方法、现状与发展展望[J]. 中国科学: D辑, 2013, 43: 1717-1725.]
[31] Yu Y, Mu M, Duan W, et al. Contribution of the location and spatial pattern of initial error to uncertainties in El Nio predictions[J]. Journal of Geophysical Research-Ocean, 2012, 117: C06018, doi: 10.1029/2011JC007758.
[32] Yu Y, Mu M, Duan W. Does model parameter error cause a significant spring predictability barrier for El Nio events in the Zebiak-Cane model?[J]. Journal of Climate, 2012, 25: 1263-1277.
[33] Moore A M, Kleeman R. The dynamics of error growth and predictability in a coupled model of ENSO[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 122(534): 1405-1446.
[34] Duan W, Mu M, Wang B. Conditional nonlinear optimal penturbation as the optimal precursors for ENSO events[J]. Journal of Geophysical Research, 2004, 109(D23): 4756-4768.
[35] Robinson A R, Haley P J, Lermusiaux P F J, et al. Predictive skill, predictive capability and predictability in ocean forecasting[C]\\ Proceedings of "The OCEANS 2002 MTS/IEEE" Conference. Holland Publications, 2002.
[36] Li Jianping, Ding Ruiqiang, Chen Baohua. Review and Prospect on the Predictability Study of the Atmosphere[C]. Beijing: China Meteorological Press, 2006: 96-103.
[李建平, 丁瑞强, 陈宝花. 大气可预报性研究的回顾与展望[C]. 北京: 气象出版社, 2006: 96-103.]
[37] Shi Zhen. Some Applications of the Nonlinear Local Lyapunov Exponent Approach[D].Beijing: Institute of Atmospheric Physics, Chinese Academy of Sciences, 2012.
[史珍. 非线性局部Lyapunov指数方法的若干应用[D]. 北京: 中国科学院大气物理研究所, 2012.]
[38] Leith C. The standard error of time-average estimates of climatic means[J]. Journal of Applied Meteorology, 1973, 12: 1066-1069.
[39] Stern W F, Miyakoda K. Feasibility of seasonal forecasts inferred from multiple[J]. Tellus, 1995, 21: 289-307.
[40] Trenberth K E. Potential predictability of geopotential heights over the southern hemisphere[J]. Monthly Weather Review, 1984, 113: 54-64.
[41] Yang X Q, Anderson J L, Stern W F. Reproducible forced modes in AGCM ensemble integrations and potential predictability of atmospheric seasonal variations in the extratropics[J]. Journal of Climate, 1998, 11: 2942-2959.
[42] Lorenz E N. The predictability of a flow which possesses many scales of motion[J]. Tellus, 1969, 21: 289-307.
[43] Mu Mu, Li Jianping, Chou Jifan, et al. Theoretical research on the predictability of climate system[J]. Climatic and Environmental Research, 2002, 7: 227-235.
[穆穆, 李建平, 丑纪范, 等. 气候系统可预报性理论研究[J]. 气候与环境研究, 2002, 7: 227-235.]
[44] Liu Yongzhu, Shen Xueshun, Li Xiaoli. Research on the singular vector perturbation of the GRAPES global model based on the total energy norm[J]. Acta Meteorologica Sinica, 2013, 71: 517-526.
[刘永柱, 沈学顺, 李晓莉. 基于总能量模的GRAPES全球模式奇异向量扰动研究[J]. 气象学报, 2013, 71: 517-526.]
[45] Ehrendorfer M. Predicting the uncertainty of numefical weather forecasts: A review[J]. Meteorologische Zeitschrift, 1997, 6: 147-183.
[46] Buizza R, Gelaro R, Molteni F, et al. The impact of increased resolution on predictability studies with singular vectors[J]. Quarterly Journal of the Royal Meteorological Society, 1997, 123(543): 1007-1033.
[47] Buizza R, Miller M, Palmer T N. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125: 2887-2908.
[48] Zheng Feng. Advances in researches and applications of ensemble prediction with initial perturbation[J]. Science and Technology Review, 2008, 26: 90-95.
[郑峰. 集合预报初值扰动在天气预报中的应用研究进展[J]. 科技导报, 2008, 26: 90-95.]
[49] Chen Y Q, Battisti D S, Palmer T N, et al. A study of the predictability of Tropical Pacific SST in a coupled atmosphere-ocean model using singular vector analysis: The role of the annual cycle and the ENSO cycle[J]. Monthly Weather Review, 1997, 125: 831-845.
[50] Xue Y, Cane M A, Zebiak S E, et al. Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles[J]. Monthly Weather Review, 1997, 125: 2043-2056.
[51] Xue Y, Cane M, Zebiak S, et al. Predictability of a coupled model of ENSO using singular vector analysis. Part II: Optimal growth and forecast skill[J]. Monthly Weather Review, 1997, 125: 2057-2073.
[52] Thompson C J. Initial conditions for optimal growth in a coupled ocean-atmosphere model of ENSO[J]. Journal of the Atmospheric Sciences, 1998, 55: 537-557.
[53] Samelson R M, Tziperman E. Instability of the chaotic ENSO: The growth-phase predictability barrier[J]. Journal of the Atmospheric Sciences, 2001, 58: 3613-3625.
[54] Wunsch C. Covariances and linear predictability of the Atlantic Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2013, 85: 228-243.
[55] Zanna L, Heimbach P, Moore A, et al. Upper-ocean singular vectors of the North Atlantic climate with implications for linear predictability and variability[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138: 500-513.
[56] Mu M, Duan W, Wang B. Conditional nonlinear optimal perturbation and its application[J]. Nonlinear Processes in Geophysics, 2003, 10: 493-501.
[57] Duan W, Mu M. Conditional nonlinear optimal perturbation: Applications to stability, sensitivity, and predictability[J]. Science in China (Series D), 2009, 52(7): 884-906.
[58] Mu M, Duan W, Wang B. Season-dependent dynamics of nolinear optimal error growth and El Nio-Southern Oscillation predictability in a theoretical model[J]. Journal of Geophysical Research, 2007, 112: D10113, doi: 10.1029/2005JD006981.
[59] Mu M, Xu H, Duan W. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model[J]. Journal of Geophysical Research, 2007, 234: L03709, doi: 10.1029/2006GL027412.
[60] Wang Q, Mu M, Dijkstra H A. Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander[J]. Advances in Atmospheric Sciences, 2012, 29(1): 118-134.
[61] Mu M, Sun L, Henk D A. The sensitivity and stability of the ocean’s thermocline circulation to finite amplitude freshwater perturbations[J]. Journal of Physical Oceanography, 2004, 34: 2305-2315.
[62] Wu X G, Mu M. Impact of horizontal diffusion on the nonlinear stability of thermohaline circulation in a modified box model[J]. Journal of Physical Oceanography, 2009, 29: 798-805.
[63] Zu Ziqing. On the Physics of Multidecadal Variability of North Atlantic Meridional Overturning Circulation[D].Beijing: Institute of Atmospheric Physics, Chinese Academy of Sciences, 2013.
[祖子清. 北大西洋经圈翻转环流的多年代际变化研究[D].北京: 中国科学院大气物理研究所, 2013.]
[64] Zu Z, Mu M, Dijkstra H A. Optimal nonlinear excitation of decadal variability of the North Atlantic thermohaline circulation[J]. Chinese Journal of Oceanology and Limnology, 2013, 31: 1356-1362.
[65] Zu Z, Mu M, Dijkstra H A. Three-dimensional structure of optimal nonlinear excitation for decadal variability of the thermohaline circulation[J]. Atmospheric and Oceanic Science Letters, 2013, 6: 410-416.
[66] Qin X H, Mu M. A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction[J]. Monthly Weather Review, 2011, 139: 2218-2232.
[67] Qin X H, Mu M. Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 138: 185-197.
[68] Wang B, Tan X. A fast algorithm for solving CNOP and associated target observation tests[J]. Acta Meteorologica Sinica, 2009, 23: 387-402.
[69] Zhou F, Mu M. The impact of verification area design on tropical cyclone targeted observations based on the CNOP method[J]. Advances in Atmospheric Sciences, 2011, 28: 997-1010.
[70] Mu M, Duan W, Wang Q, et al. An extension of conditional nonlinear optimal perturbation approach and its applications[J]. Nonlinear Processes in Geophysics, 2010, 17: 211-220.
[71] Fraedrieh K. Estimating the dimensions of weather and climate attractors[J]. Journal of the Atmospheric Sciences, 1986, 43: 419-432.
[72] Fraedrich K. Estimating weather and climate predictability on attractors[J]. Journal of the Atmospheric Sciences, 1987, 44: 722-728.
[73] Kazantsev E. Local Lyapunov exponents of the quasi-geostrophic ocean dynamics[J]. Applied Mathematics and Computation, 1999, 104: 217-257.
[74] Yoden S, Nomura M. Finite-time Lyapunov stability analysis and its application to atmospheric predictability[J]. Journal of the Atmospheric Sciences, 1993, 50: 1531-1543.
[75] Ziemann C, Smith L A, Kurths J. Localized Lyapunov exponents and the prediction of predictability[J]. Physics Letters A, 2000, 271: 237-251.
[76] Ding Ruiqiang, Li Jianping. Nonlinear error dynamics and predictability study[J]. Chinese Journal of Atmospheric Science, 2007, 31: 571-576.
[丁瑞强, 李建平. 误差非线性的增长理论及可预报性研究[J]. 大气科学, 2007, 31: 571-576.]
[77] Monahan A H. Lyapunov exponents of a simple stochastic model of the thermally and wind-driven ocean circulation[J]. Dynamics of Atmospheres and Oceans, 2002, 35: 363-388.
[78] d’Ovidio F, Isern-Fontanet J, López C, et al. Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56: 15-31.
[79] Keppenne C L, Nicolis C. Global properties and local structure of the weather attractor over western Europe[J]. Journal of the Atmospheric Sciences, 1989, 46: 2356-2370.
[80] Zheng Zuguang, Liu Shida. Estimating weather predictability from the time series of weather variables[J]. Acta Meteorologica Sinica, 1992, 50: 72-80.
[郑祖光, 刘式达. 用天气变量时间序列估计天气的可预报性[J]. 气象学报, 1992, 50: 72-80.]
[81] Lacarra J F, TalagrO.Short-range evolution of small perturbations in a baratropic model[J]. Tellus, 1988, 40A: 81-95.
[82] Mu M. Nonlinear singular vectors and nonlinear singular values[J]. Science in China(Series D), 2000, 43: 375-385.
[83] Li J, Wang S. Some mathematical and numerical issues in geophysical fluid dynamics and climate dynamics[J]. Communications in Computational Physics, 2008, 3: 759-793.
[84] Ding Ruiqiang, Li Jianping. Study on the regularity of predictability limit of chaotic systems with diferent initial errors[J]. Acta Physica Sinica, 2008, 57: 7494-7499.
[丁瑞强, 李建平. 混沌系统可预报期限随初始误差变化规律研究[J]. 物理学报, 2008, 57: 7494-7499.]
[85] Ding R, Li J. Nonlinear finite-time Lyapunov exponent and predictability[J]. Physics Letters A, 2007, 364: 396-400.
[86] Ding Ruiqiang, Li Jianping. Application of nonlinear error growth dynamics in studies of atmospheric predictability[J]. Acta Meteorologica Sinica, 2009, 67: 241-249.
[丁瑞强, 李建平. 非线性误差增长理论在大气可预报性中的应用[J]. 气象学报, 2009, 67: 241-249.]
[87] Li J, Ding R. Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogues[J]. Monthly Weather Review, 2011, 139: 3265-3283.
[88] Li J, Ding R. Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans[J]. International Journal of Climatology, 2013, 33: 1936-1947.
[89] Toth Z, Kalnay E. Ensemble forecasting at NMC: The generation of perturbations[J]. Bulletin of the American Meteorological Society, 1993, 74: 2317-2330.
[90] Toth Z, Kalney E. Ensemble forecasting at NCEP and the breed method[J]. Monthly Weather Review, 1997, 125: 3297-3319.
[91] Yang S C, Keppenne C, Rienecker M, et al. Application of coupled bred vectors to seasonal-to-interannual forecasting and ocean data assimilation[J]. Journal of Climate, 2009, 22: 2850-2870.
[92] O’Kane T J, Oke P R, Sandery P A. Predicting the East Australian current[J]. Ocean Modelling, 2011, 38: 251-266.
[93] Yin X Q, Oey L Y. Bred-ensemble ocean forecast of Loop Current and rings[J]. Ocean Modelling, 2007, 17: 300-326.
[94] Cai M, Kalnay E, Toth Z. Bred vectors of the Zebiak-Cane model and their potential application to ENSO predictions[J]. Journal of Climate, 2003, 16: 40-55.
[95] Vikhliaev Y, Kirtman B, Schopf P. Decadal North Pacific bred vectors in a coupled GCM[J]. Journal of Climate, 2007, 20: 5744-5764.
[96] Yang S-C, Cai M, Kalnay E, et al. ENSO bred vectors in coupled ocean-atmosphere general circulation models[J]. Journal of Climate, 2006, 19: 1422-1436.
[97] Duan Wansuo, Ding Ruiqiang, Zhou Feifan. Several dynamical methods used in predictability studies for numerical weather forecasts and climate prediction[J]. Climatic and Environmental Research, 2013, 18(4): 524-538.
[段晚锁, 丁瑞强, 周菲凡. 数值天气预报和气候预测可预报性研究的若干动力学方法[J]. 气候与环境研究, 2013, 18(4): 524-538.]
[98] Epstein E S. Stochastic dynamic prediction[J]. Tellus, 1969, 21(6): 739-759.
[99] Leith C. Theoretical skill of monte carlo forecasts(stochastic atmospheric processes)[J]. Monthly Weather Review, 1974, 102(6): 409-418.
[100] Kalnay E. Atmospheric Modeling, Data Assimilation, and Predictability[M]. New York: Cambridge University Press, 2003.
[101] Yang Xuesheng, Chen Dehui, Leng Tingbo, et al. The comparison experiments of SV and LAF initial pertubation techniques used at the NMC ensemble prediction system[J]. Journal of Applied Meteorological Science, 2002, 13: 62-66.
[杨学胜, 陈德辉, 冷亭波, 等. 时间滞后与奇异向量初值生成方法的比较试验[J]. 应用气象学报, 2002, 13: 62-66.]
[102] Buizza R, Palmer T N. Impact of ensemble size on ensemble prediction[J]. Monthly Weather Review, 1998, 126(9): 2503-2518.
[103] Milliff R F, Bonazzi A, Wikle C K, et al. Ocean ensemble forecasting. Part I: Ensemble Mediterranean winds from a Bayesian hierarchical model[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137: 858-878.
[104] Pinardi N, Bonazzi A, Dobricic S, et al. Ocean ensemble forecasting. Part II: Mediterranean forecast system response[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137: 879-893.
[105] Weisheimer A, Doblas-Reyes F J, Palmer T N, et al. ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs[J]. Geophysical Research Letters, 2009, 36: L21711, doi: 10.1029/2009GL040896.
[106] Mullen S L, Du J, Sanders F. The dependence of ensemble dispersion on analysis forecast system implications to shortrange ensemble forecasting of precipitation[J]. Monthly Weather Review, 1999, 127: 1674-1686.
[107] Stensrud D J, Bao J-W, Warner T T. Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems[J]. Monthly Weather Review, 2000, 128(7): 2077-2107.
[108] Buizza R. Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF ensemble prediction system[J]. Monthly Weather Review, 1997, 125: 99-119.
[109] Andreu-Burillo I, Caniaux G, Gavart M, et al. Assessing ocean-model sensitivity to wind forcing uncertainties[J]. Geophysical Research Letters, 2002, 29(18): 1858-1862.
[110] Auclair F, Marsaleix P, De Mey P. Space-time structure and dynamics of the forecast error in a coastal circulation model of the Gulf of Lions[J]. Dynamics of Atmospheres and Oceans, 2003, 36: 309-346.
[111] Palmer T N. Extended-range atmospheric prediction and the Lorenz model[J]. Bulletin of the American Meteorological Society, 1993, 74(1): 49-65.
[112] Mylne K R, Evans R E, Clark R T. Multi-model multi-analysis ensembles in quasi-operational medium-range forecasting[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(579): 361-384.
[113] Houtekamer P, Derome J. Methods for ensemble prediction[J]. Monthly Weather Review, 1995, 123(7): 2181-2196.
[114] Molteni F, Buizza R, Palmer T N, et al. The new ECMWF ensemble prediction system: Methodology and validation[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 122: 73-119.
[115] Li Zechun, Chen Dehui. The development and application of the operational ensemble prediction system at national meteorological center[J]. Journal of Applied Meteorological Science, 2002, 13: 1-15.
[李泽椿, 陈德辉. 国家气象中心集合预报数值业务系统的发展及应用[J]. 应用气象学报, 2002, 13: 1-15.]
[116] Mao Hengqing, Chen Yi, Chen Dehui. The development of ensemble products based on the Shenwei medium-range ensemble prediction system[J]. Journal of Applied Meteorological Science, 2002, 13: 47-55.
[毛恒青, 陈谊, 陈德辉. 基于神威中期集合数值预报系统的产品开发[J]. 应用气象学报, 2002, 13: 47-55.]
[117] Pinardi N, Robinson A R. Dynamics of deep thermocline jets in the polymode region[J]. Journal of Physical Oceanography, 1987, 17: 1163-1188.
[118] Miyazawa Y, Yamane S, Guo X, et al. Ensemble forecast of the Kuroshio meandering[J]. Journal of Geophysical Research, 2005, 110: C10026, doi: 10.1029/2004JC002426.
[119] Pinardi N, Bonazzi A, Scoccimarro E, et al. Very large ensemble ocean forecasting experiment using the grid computing infrastructure[J]. Bulletin of the American Meteorological Society, 2008, 89: 799-804.
[120] Counillon F, Bertino L. High-resolution ensemble forecasting for the Gulf of Mexico eddies and fronts[J]. Ocean Dynamics, 2009, 59: 83-95.
[121] Zheng Fei, Wang Hui, Zhu Jiang. ENSO ensemble prediction: Initial error perturbations vs. model error perturbations[J]. Chinese Science Bulletin, 2009, 54: 2395-2401.
[郑飞, 王慧, 朱江. 初始误差和模式误差对ENSO集合预报的影响[J]. 科学通报, 2009, 54: 2395-2401.]
[122] Zheng Fei, Zhu Jiang, Wang Hui. The verifications for ENSO ensemble prediction system[J]. Climatic and Environmental Research, 2007, 12: 587-594.
[郑飞, 朱江, 王慧. ENSO 集合预报系统的检验评价[J]. 气候与环境研究, 2007, 12: 587-594.]
[123] Milliff R F, Freilich M H, Liu W T, et al. Global Ocean Surface Wind Vector Observations from Space: In Observing the Oceans in the 21st Century[M]. Melbourne: GODAE Project Office and Bureau of Meteorology, 2001.
[124] Milliff R F, Large W G, Morzel J, et al. Ocean general circulation model sensitivity to forcing from scatterometer winds[J]. Journal of Geophysical Research, 1999, 104: 11 337-11 358.
[125] Kersalé M, Doglioli A M, Petrenko A A. Sensitivity study of wind forcing in a numerical model of mesoscale eddies in the lee of Hawaii Islands[J]. Ocean Science Discussion, 2010, 7: 477-500.
[126] Lucas M, Ayoub N, Penduff T, et al. Stochastic study of the temperature response of the upper ocean to uncertainties in the atmospheric forcing in an Atlantic OGCM[J]. Ocean Modelling, 2008, 20: 90-113.
[127] Melsom A, Counillon F, LaCasce J H, et al. Forecasting search areas using ensemble ocean circulation modeling[J]. Ocean Dynamics, 2012, 62: 1245-1257.
[128] Fu Xiang, Dong Jianxi, Ma Jingguang, et al. Analysis and numerical simulation of the storm surge caused by Typhoon “Hagupit”[J]. Marine Forecasts, 2009, 26: 68-75.
[付翔, 董剑希, 马经广, 等. 0814号强台风“黑格比”风暴潮分析与数值模拟[J]. 海洋预报, 2009, 26: 68-75.]
[129] Johnson C, Swinbank R. Medium-range multimodel ensemble combination and calibration[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135: 777-794.
[130] Krishnamurti T N, Kishtawal C M, LaRow T, et al. Improved weather and seasonal climate forecasts from multimodel superensemble[J]. Science, 1999, 285: 1548-1550.
[131] Kumar T V, Krishnamurti T N, Fiorino M, et al. Multimodel superensemble forecasting of tropical cyclones in the Pacific[J]. Monthly Weather Review, 2003, 131: 574-583.
[132] Zhi Xiefei, Lin Chunze, Bai Yongqing, et al. Superensemble forecasts of the surface temperature in Northern Hemispheremiddle latitudes[J]. Scientia Meteorologica Sinica, 2009, 29: 569-574.
[智协飞, 林春泽, 白永清, 等. 北半球中纬度地区地面气温的超级集合预报[J]. 气象科学, 2009, 29: 569-574.]
[133] Chen Chaohui, Li Chongyin, Tan Yanke, et al. Research of the multi-model super-ensemble prediction based on crossvalidation[J]. Acta Meteorologica Sinica, 2010, 68: 464-476.
[陈超辉, 李崇银, 谭言科, 等. 基于交叉验证的多模式超级集合预报方法研究[J]. 气象学报, 2010, 68: 464-476.]
[134] Duan Mingkeng, Wang Panxing. A new weighted average method on ensemble mean forecasting[J]. Journal of Applied Meteorological Science, 2006, 17: 488-493.
[段明铿, 王盘兴. 一种新的集合预报权重平均方法[J]. 应用气象学报, 2006, 17: 488-493.]
[135] Houtekamer P L, Lefaivre L, Derome J, et al. A system simulation approach to ensemble prediction[J]. Monthly Weather Review, 1996, 124: 1225-1242.
[1] 金荣花,马杰,任宏昌,尹姗,蔡芗宁,黄威. 我国 1030天延伸期预报技术进展与发展对策[J]. 地球科学进展, 2019, 34(8): 814-825.
[2] 刘娜, 王辉, 凌铁军, 祖子清. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
[3] 张丽霞, 张文霞, 周天军, 吴波. ENSEMBLES耦合模式对全球陆地季风区夏季降水的年代际预测能力评估[J]. 地球科学进展, 2017, 32(4): 409-419.
[4] 李建平, 赵森, 李艳杰, 汪雷, 孙诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[5] 王辉, 万莉颖, 秦英豪, 王毅, 杨学联, 刘洋, 邢建勇, 陈莉, 王彰贵, 仉天宇, 刘桂梅, 杨清华, 吴湘玉, 刘钦燕, 王东晓. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090-1104.
[6] 杨秋明. 10~30 d延伸期天气预报方法研究进展与展望[J]. 地球科学进展, 2015, 30(9): 970-984.
[7] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
[8] 任宏利,封国林,张培群. 论动力相似预报的物理基础问题[J]. 地球科学进展, 2007, 22(10): 1027-1035.
[9] 王绍武. 短期气候预测的可预报性与不确定性[J]. 地球科学进展, 1998, 13(1): 8-14.
[10] 王绍武. 气候学研究进展[J]. 地球科学进展, 1996, 11(2): 169-177.
阅读次数
全文


摘要