地球科学进展 ›› 2014, Vol. 29 ›› Issue (11): 1226 -1241. doi: 10.11867/j.issn.1001-8166.2014.11.1226

上一篇    下一篇

地下流体注入诱发地震机理及其对CO 2地下封存工程的启示
魏晓琛 1( ), 李琦 1, *( ), 邢会林 2, 李霞颖 1, 宋然然 1   
  1. 1.中国科学院武汉岩土力学研究所, 岩土力学与工程国家重点实验室, 湖北 武汉 430071
    2. Centre for Geosciences Computing, School of Earth Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
  • 出版日期:2014-11-27
  • 通讯作者: 李琦 E-mail:achencumt@163.com;qli@whrsm.ac.cn
  • 基金资助:
    国家自然科学基金面上项目“酸气—咸水作用下岩石特异性破坏机理研究”(编号:41274111);国土资源部公益性行业科研专项项目“井筒安全注入压力的确定及盖层力学稳定性评价方法研究”(编号:201211063-4-1)资助

Mechanism of Underground Fluid Injection Induced Seismicity and Its Implications for CCS Projects

Xiaochen Wei 1( ), Qi Li 1( ), Huilin Xing 2, Xiaying Li 1, Ranran Song 1   

  1. 1.Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, State Key Laboratory of Geotechnical Mechanics and Engineering, Wuhan 430071, China
    2. Centre for Geosciences Computing, School of Earth Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
  • Online:2014-11-27 Published:2014-11-20

二氧化碳地质封存(CO2 Capture and Storage, CCS)项目应当评估诱发地震的潜在可能性。中强震、强震危及人类生命财产安全, 有感地震甚至微震也对CO2储区的盖层完整性构成威胁, 增加泄漏风险。地热开发、页岩气开发及油气增产等的水压致裂过程中都伴随有地下流体的注入, 且时有地震诱发的案例。诱发地震活动通常在流体注入压力较高时沿已有断层发生, 因此可通过应力分析等对其发生机理进行研究。超临界状态CO2密度比水小, 在地层深部可能会形成密度流或者与构造中先存的水岩发生相互作用, 进而导致渗透率和压力变化并引发地震活动。综述了全球相关的研究进展, 主要从地震成因机理入手, 考虑超临界CO2性质的特殊性, 结合商业尺度和实验尺度的流体注入项目和地震监测分析, 研究其对储区盖层完整性的影响。以期通过适当的选址、注入方法及监测方案的优化来避免破坏性地震的发生。

CO2 capture and storage projects must consider the potential possibility ofinjection induced seismicity. Moderate earthquakes and strong earthquakes may endanger human life and property, and even felt earthquakes and microquakes also pose a threat to seal integrity of CO2 reservoir and increase the risk of leakage. Underground fluid injection induced seismicity usually happens in some geoengineering projects such as waste fluid disposal, EOR and EGS, and it occurs when fluid is injected along the fault. Therefore, it can be studied through stress analysis. The density of supercritical CO2 is smaller than water, which may develop density flow in the deep strata or water-rock interactions in pre-existing structures, and cause the variation in permeability and pressure to induce a seismic activity. In this paper, we reviewed the mechanism of underground fluid injection induced seismicity with the focus of CCS, combined with fluid injection projects and seismic monitoring analysis in both commercial scale and experimental scale, to investigate its impact on the integrity of the cap rock of the reservoir. Finally, we summarized the appropriate site selection, injection methods and monitoring programs to prevent the occurrence of induced seismicity.

中图分类号: 

Fig.1 Conceptual model of the fluid injection induced seismicity process [ 11 ]
Fig.2 Effects of injection pressure on the confining pressure and axial pressure [ 13 ]
Fig.3 Mechanics of the fracturing process expressed by Mohr circles. (a)Mohr circle represents the fluid injection resulted in effective stress reduction (Left); (b)Mohr circle represents the fracturing process (Right).
Table 1 CCS induced seismicity monitoring acquisition parameters and technical requirements.
图4 本文涉及主要地下流体注入诱发地震案例及全球主要CO 2注入案例
Fig. 4 The main injection induced seismicity cases and CO 2 injection sites mentioned in this paper.
图5 RMA流体注入体积, 地震数和流体注入压力间的关系
Fig. 5 Relationships among fluid injection volume, accumulated number of earthquakes and fluid injection pressure in RMA.
图6 1965—2006年间Geyers年均注水量, 产区量和地震活动数关系图 [ 36 ] 红线表示产气量, 蓝线表示注水量, 绿色虚线表示1.5-3.0级地震, 绿色实线标示3.0-4.0级地震发生数, 绿色星号表示4级以上地震发生
Fig.6 Relationship between annual water injection/production volume and seismic activity from 1965 to 2006 in Geyers [ 36 ] The red line indicates gas production, while blue line indicates water injection, green dashed line, solid line and asterisk indicates occurred earthquake magnitude range M 1.5-3.0, M 3.0-4.0, and larger than M 4, respectively.
图7 Basel 2000年6-7月间注水率和地震频次数据 [ 44 ]
Fig. 7 Monthly water injection rate and seismic rate between June to July in Basel, 2000 [ 44 ]
图8 荣昌气田月地震发生次数与月注水量相关性 [ 47 ]
Fig. 8 Relevance of monthly water injection and earthquake frequency in Rongchang gas field [ 47 ].
图9 注水流量注水压力与地震活动的相关性 [ 51 ] (a) 2000—2010年地震活动;(b)(c)2008—2010年注入率和地震活动
Fig.9 Correlation between injection pressure and seismic activity [ 51 ] (a)Seismic activity from 2000 to 2010; (b) (c )Annual injection rate and seismic activity from 2008 to 2010
图10 任丘油田11井区注水和地震的关系 [ 53 ]
Fig. 10 The relationship between water injection and seismicity in Renqiu 11 well area [ 53 ]
图11 Weyburn油田2003年8月-2008年1月间流体注入诱发地震 [ 68 ]
Fig. 11 Injection induced seismicity from Aug/2003 to Jan/2008 in Weyburn [ 68 ]
[1] IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2014.
[2] IEA. Technology Roadmap: Carbon Capture and Storage[R]. Paris, France: IEA, 2013.
[3] Yan Li, Yang Jintian. Discussion on China CO2 emission characteristics of thermal power industry[J]. Environmental Pollution & Control, 2010, 9: 2-4.
[燕丽, 杨金田. 中国火电行业CO2排放特征探讨[J].环境污染与防治, 2010, 9: 2-4.]
[4] Chen Z, Li Q, Zhang X. The Implementation of european energy programme for recovery CCS demonstration projects and inspirations to China[J].China Population, Resources and Environment, 2013, 23(10): 81-86.
[5] Li Q, Chen Z, Li X, et al.Inspiration to a future update of CCUS technology roadmap in China-based a synthetic analysis on global CCS roadmaps[J].Low Carbon World, 2014, (55): 7-8.
[6] Zoback M D, Gorelick S M. Earthquake triggering and large-scale geologic storage of carbon dioxide[J].Proceedings of the National Academy of Sciences, 2012, 109(26): 10 164-10 168.
[7] Zoback M. State of stress in the conterminous United States[J].Journal of Geophysical Research: Solid Earth (1978-2012), 1980, 85(B11): 6113-6156.
[8] Committee on Induced Seismicity Potential in Energy Technologies, Committee on Earth Resources, Committee on GeologicalGeotechnical Engineering, et al. Induced Seismicity Potential in Energy Technologies[M]. Washington DC, USA: The National Academies Press, 2012.
[9] Xia Yang, Zhang Lifei. The advanceof petrologic mechanism of dehydration embrittlement in intermediate-depth earthquakes[J].Advances in Earth Science, 2013, 28(9): 997-1006.
[夏阳, 张立飞. 中源地震脱水脆变机制的岩石学研究进展[J].地球科学进展, 2013, 28(9): 997-1006.]
[10] Ellsworth W L. Injection-induced Earthquakes[J]. Science, 2013, 341: 142-150.
[11] Byrer C, Bengnan P. Issues related to seismic activity induced by the injection of CO2 in deep Saline Aquifers[C]\\ Sminchak J, Gupta N, Byrer C, et al, eds. First National Conference on Carbon Sequestration. Washington DC: National Energy Technology Laboratory, 2001.
[12] Wang Suyun, Yu Yanxiang. Magnitude conversion relationship and its impact on seismic activity parameters[J].Technology for Earthquake Disaster Prevention, 2009, 4(2): 141-149.
[汪素云, 俞言祥.震级转换关系及其对地震活动性参数的影响研究[J].震灾防御技术, 2009, 4(2): 141-149.]
[13] McGarr A, Fletcher J. Mapping apparent stress and energy radiation over fault zones of major earthquakes[J].Bulletin of the Seismological Society of America, 2002, 92(5): 1633-1646.
[14] Nicholson C, Wesson R L. Earthquake Hazard Associated with Deep Well Injection: A Report to the U.S. Environmental Protection Agency[R]. Washington DC: U.S. Government Printing Office, 1990.
[15] Nicholson C, Roeloffs E, Wesson R. The northeastern Ohio earthquake of 31 January 1986: Was it induced?[J].Bulletin of the Seismological Society of America, 1988, 78(1): 188-217.
[16] Grasso J. Mechanics of seismic instabilities induced by the recovery of hydrocarbons[J].Pure and Applied Geophysics, 1992, 137(3/4): 507-534.
[17] Hubbert M, Rubey W. Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluid-filled porous solids and its application to overthrust faulting[J].Geological Society of America Bulletin, 1959, 70(2): 115-166.
[18] Healy J H. The Denver earthquakes[J].Science, 1968, 161(3 848): 1301-1310.
[19] Lei X. How do asperities fracture? An experimental study of unbroken asperities[J].Earth and Planetary Science Letters, 2003, 213(3/4): 347-359.
[20] Cladouhos T, Petty S, Foulger G, et al.Injection induced seismicity and geothermal energy[J].GRC Transactions, 2010, 34: 1213-1220.
[21] Sminchak J, Gupta N. Aspects of induced seismic activity and deep-well sequestration of carbon dioxide[J].Environmental Geosciences, 2003, 10(2): 81-89.
[22] Gupta H, Rao C, Rastogi B, et al.An investigation of earthquakes in Koyna region, Maharashtra, for the period October 1973 through December 1976[J].Bulletin of the Seismological Society of America, 1980, 70(5): 1833-1847.
[23] Hsieh P, Bredehoeft J. A Reservoir Analysis of the Denver Earthquakes: A Case of Induced Seismicity[J].Journal of Geophysical Research, 1981, 86(B2): 903-920.
[24] Raleigh C, Healy J, Bredehoeft J, et al.Faulting and crustal stress at Rangely, Colorado[J].Geophysical Monograph Series, 1972, 16(2): 275-284.
[25] Gan W, Frohlich C. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas[J].Proceedings of the National Academy of Sciences, 2013, 110(47): 18 786-18 791.
[26] Horton S. Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake Swarm in Central Arkansas with potential for damaging earthquake[J].Seismological Research Letters, 2012, 83(2): 250-260.
[27] Cornet F, Helm J, Poitrenaud H, et al.Seismic and aseismic slips induced by large-scale fluid injections[J].Pure and Applied Geophysics, 1997, 150(3/4): 563-583.
[28] Keranen K M, Weingarten M, Abers G A, et al.Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection[J].Science, 2014, 345(6 195): 448-451.
[29] Bell M, Nur A. Strength changes due to reservoir-induced pore pressure and stresses and application to Lake Oroville[J].Journal of Geophysical Research: Solid Earth(1978-2012), 1978, 83(B9): 4469-4483.
[30] Li Qi, Liu Guizhen, Zhang Jian, et al.Status and suggestion of environmental monitoring for CO2 geological storage[J].Advances in Earth Science, 2013, 28(6): 718-727.
[李琦, 刘桂臻, 张建, 等. 二氧化碳地质封存环境监测现状及建议[J]. 地球科学进展, 2013, 28(6): 718-727.]
[31] Davis S, Wayne P. Induced seismic deformation in the Cogdell oil field of west Texas[J].Bulletin of the Seismological Society of America, 1989, 79(5): 1477-1495.
[32] Jenkins C, Cook P, Ennis J. Safe storage and effective monitoring of CO2 in depleted gas fields[J].Proceedings of the National Academy of Sciences, 2012, 109(2): E35-E41.
[33] Liu Jianzhong, Tang Chunhua, Zuo Jianjun. Development and application of microseismic monitoring technology[J].Engineering Sciences, 2013, 10(7): 1054-1058.
[刘建中, 唐春华, 左建军. 微地震监测技术发展方向及应用[J].中国工程科学, 2013, 10(7): 1054-1058.]
[34] Hsieh P, Bredehoeft J. A reservoir analysis of the Denver earthquakes: A case of induced seismicity[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 1981, 86(B2): 903-920.
[35] Baisch S, Harjes H. A model for fluid-injection-induced seismicity at the KTB, Germany[J].Geophysical Journal International, 2003, 152(1): 160-170.
[36] Raleigh C, Healy J, Bredehoeft J. An experiment in earthquake control at Rangely, Colorado[J].Science, 1976, 191(4 233): 1230-1237.
[37] Haimson B. Earthquake Related Stresses At Rangely Colorado[C]\\ The 14th US Symposium on Rock Mechanics (USRMS). Alexandria, Virginia: American Rock Mechanics Association, 1972.
[38] Gibbs J, Healy J, Raleigh C, et al.Seismicity in the Rangely, Colorado, area: 1962-1970[J].Bulletin of the Seismological Society of America, 1973, 63(5): 1557-1570.
[39] Oppenheimer D. Extensional tectonics at the Geysers geothermal area, California[J].Journal of Geophysical Research: Solid Earth (1978-2012), 1986, 91(B11): 11 463-11 476.
[40] Majer E, Baria R, Stark M, et al.Induced seismicity associated with enhanced geothermal systems[J]. Geothermics, 2007, 36(3): 185-222.
[41] Segall P, Fitzgerald S. A note on induced stress changes in hydrocarbon and geothermal reservoirs[J]. Tectonophysics, 1998, 289(1): 117-128.
[42] Boyle K, Jarpe S, Hutchings L, et al.Preliminary investigation of an aseismic ‘doughnut hole’region in the northwest Geysers, California[C]\\ Thirty-Sixth Workshop on Geothermal Reservoir Engineering, 2011, (2): 595-601.
[43] Shapiro D, Langenbruch C. Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations[J].The Leading Edge, 2010, 29(3): 304-309.
[44] Baria R, Michelet S, Baumgärtner J, et al. Creation and Mapping of 5 000 m deep HDR/HFR Reservoir to Produce Electricity[C]\\ Proceedings World Geothermal Congress. Antalya, Turkey: IGA, 2005: 24-29.
[45] Deichmann N, Giardini D. Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland)[J].Seismological Research Letters, 2009, 80(5): 784-798.
[46] Elnashai A, Bommer J, Martinez-Pereira A. Engineering implications of strong-motion records from recent earthquakes[C]\\ Proceedings of 11th European Conference on Earthquake Engineering CD-ROM. Paris, 1998.
[47] Lei X, Yu G, Ma S, et al.Earthquakes induced by water injection at ~3 km depth within the Rongchang gas field, Chongqing, China[J].Journal of Geophysical Research, 2008, 113(B10): 1-12.
[48] Wang Xiaolong, Ma Shengli, Lei Xinglin. Seismology and geology, encryption observation on injection induced seismicity area in rongchang, Chongqing[J].Seismology and Geology, 2011, 33(1): 151-155.
[王小龙, 马胜利, 雷兴林. 重庆荣昌地区注水诱发地震加密观测[J].地震地质, 2011, 33(1): 151-155.]
[49] Tang Rongchang, Han Weibin. Active Faults and Earthquakes in Sichuan [M].Beijing: Earthquake Press, 1993.
[唐荣昌, 韩渭宾. 四川活动断裂与地震[M]. 北京: 地震出版社, 1993.]
[50] Long Feng, Du Fang, Ruan Xiang. Analysis of induced seismicity with ETAS model in Zigong mine[J].Earthquake Research in China, 2010, (2): 164-171.
[龙锋, 杜方, 阮祥. 用 ETAS 模型分析自贡矿井注水触发地震[J].中国地震, 2010, (2): 164-171.]
[51] Lei X, Ma S. A detailed view of the injection-induced seismicity in a natural gas reservoir in Zigong, southwestern Sichuan Basin, China[J].Solid Earth, 2013, 118(8): 4296-4311.
[52] Zhang Deyuan, Zhao Genmo, Wang Youlong. Geological structure and water injection induced seismicity in RenQiu oil field[J].North China Earthquake Sciences, 1985, (Suppl.): 105-110.
[张德元, 赵根模, 王优龙. 任丘油田地质构造与注水诱发地震[J].华北地震科学, 1985, (增刊): 105-110.]
[53] Chen Xiaoling, Fu Lijun. Applications of water injection and its relationship between induced seismicity in RenQiu oil field[J].The Guide of Science & Education, 2011, (19): 243-244.
[陈小玲, 付立俊. 任丘油田注水与诱发地震的关系及应用[J].科教导刊, 2011, (19): 243-244.]
[54] Bachu S, Gunter W E P. Aquifer disposal of CO2: Hydrodynamic and mineral trapping[J].Energy Conversion and Management, 1994, 35(4): 269-279.
[55] Michael K, Golab A, Shulakova V, et al.Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations[J].International Journal of Greenhouse Gas Control, 2010, 4(4): 659-667.
[56] Bachu S, Gunter W. Acid-gas injection in the Alberta basin, Canada: A CO2-storage experience[J].Geological Society, 2004, 233(1): 225-234.
[57] Torp T, Gale J. Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects[J]. Energy, 2004, 29(9): 1361-1369.
[58] Global C. Institute(GCCSI): The Global Status of CCS: 2013[R]. Canberra, Australia, 2013.
[59] Li Q, Liu G, Liu X, et al.Application of a health, safety, and environmental screening and ranking framework to the Shenhua CCS project[J]. International Journal of Greenhouse Gas Control, 2013, 17: 504-514.
[60] Kuang Dongqin, Li Qi, Wang Yongsheng, et al.Numerical investigation of CO2 migration in Shenhua CCS demonstration project[J]. Rock and Soil Mechanics, 2014, 35(9): 2623-2641.
[匡冬琴, 李琦, 王永胜, 等. 神华碳封存示范项目中的CO2注入分布模拟[J].岩土力学, 2014, 35(9): 2623-2641.]
[61] Yang D, Zeng R, Zhang Y, et al.Numerical simulation of multiphase flows of CO2 storage in saline aquifers in Daqingzijing oilfield, China[J].Clean Technologies and Environmental Policy, 2012, 14(4): 609-618.
[62] Qi L. Coupled reactive transport model for heat and density driven flow in CO2 storage in saline aquifers[J].ASCE Journal of Hazardous Toxic and Radioactive Waste, 2011, 15(4): 251-258.
[63] History-matching flow simulations and time-lapse seismic data from the Sleipner CO2 plume[C]\\Chadwick R, Noy D, eds. Petroleum Geology Conference Series. London: Geological Society, 2010, 7: 1171-1782.
[64] Arts R, Eiken O, Chadwick A, et al. Monitoring of CO2 injected at Sleipner using time-lapse seismic data[J].Energy, 2004, 29(9): 1383-1392.
[65] Ringrose P, Atbi M, Mason D. Plume development around well KB-502 at the In Salah CO2 storage site[J].First Break, 2009, 27(1): 85-89.
[66] Daley T, Peterson J, Korneev V. GEO-SEQ Subtask 2.3.4: Microseismic Monitoring and Analysis[R]. Lawrence Berkeley National Laboratory, 2011.
[67] Ma J M I. AVO modeling of pressure-saturation effects in Weyburn CO2 sequestration[J].The Leading Edge, 2010, 29(2): 178-183.
[68] Verdon J, Kendall J, White D, et al.Passive seismic monitoring of carbon dioxide storage at Weyburn[J].The Leading Edge, 2010, 29(2): 200-206.
[69] Shapiro S, Krüger O, Dinske C, et al.. Magnitudes of induced earthquakes and geometric scales of fluid-stimulated rock volumes[J].Geophysics, 2011, 76(6): WC55-WC63.
[70] House L P W, Fehler M. Can hydraulic fracture-induced microearthquakes show where the fluid went?[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 133.e1-133.e15.
[71] De Pater C, Baisch S. Geomechanical study of Bowland Shale seismicity[R]. Lancashire, UK: Synthesis Report, 2011.
[72] Chen Z, Song R, Rahman S. An experimental investigation of hydraulic behaviour of fractures and joints in granitic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(7): 1061-1071.
[73] Bouchard R, Delaytermoz A. Integrated path towards geological storage[J]. Energy, 2004, 29(9): 1339-1346.
[74] Cappa F, Rutqvist J. Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2[J]. International Journal of Greenhouse Gas Control, 2011, 5(2): 336-346.
[75] Li Q, Wu Z S, Li X C. Prediction of CO2 leakage during sequestration into marine sedimentary strata[J].Energy Conversion and Management, 2009, 50(3): 503-509.
[76] Bachu S. Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change[J]. Environmental Geology, 2003, 44(3): 277-289.
[77] Gaus I, Azaroual M, Czernichowski-Lauriol I. Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea)[J].Chemical Geology, 2005, 217(3): 319-337.
[78] Majer E, Nelson J, Robertson A. Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems[R]. US Department of Energy, 2012.
[1] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[2] 杨扬, 马劲风, 李琳. CO 2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1119-1126.
[3] 梁金龙,施泽明,徐进勇,高 英. 金红石榴辉岩——一个可能的超球粒陨石Nb/Ta储库[J]. 地球科学进展, 2012, 27(10): 1094-1099.
阅读次数
全文


摘要