地球科学进展 ›› 2022, Vol. 37 ›› Issue (4): 344 -357. doi: 10.11867/j.issn.1001-8166.2022.014

综述与评述 上一篇    下一篇

全球业务化海洋预报系统进展
张永垂 1( ), 陈诗尧 1, 王宁 1, 汪浩笛 1, 周林 1, 王本洪 2   
  1. 1.国防科技大学气象海洋学院,湖南 长沙 410073
    2.解放军91001部队,北京 100841
  • 收稿日期:2021-10-29 修回日期:2021-12-29 出版日期:2022-04-10
  • 通讯作者: 张永垂 E-mail:zyc@nudt.edu.cn
  • 基金资助:
    国家重点研发计划项目“高分辨率海洋模式关键物理过程参数化方案的研发”(2017YFA0604100);国家自然科学基金项目“北太平洋副热带东西部海平面反相变化趋势和气候模态的相关关系研究”(41406003)

Progress of Global Operational Ocean Forecasting Systems

Yongchui ZHANG 1( ), Shiyao CHEN 1, Ning WANG 1, Haodi WANG 1, Lin ZHOU 1, Benhong WANG 2   

  1. 1.College of Meteorology and Oceanography,National University of Defense Technology,Changsha 410073,China
    2.PLA 91001 Troop,Beijing 100841,China
  • Received:2021-10-29 Revised:2021-12-29 Online:2022-04-10 Published:2022-04-28
  • Contact: Yongchui ZHANG E-mail:zyc@nudt.edu.cn
  • About author:ZHANG Yongchui (1982-), male, Shuyang City, Jiangsu Province, Associate professor. Research areas include ocean circula tion dynamics and mesoscale eddy. E-mail: zyc@nudt.edu.cn
  • Supported by:
    the National Key Research and Development Program of China "The development of parameterization of key physical processes in High-Resolution Ocean Models"(2017YFA0604100);The National Natural Science Foundation of China "Relationship between the reverse trend of sea level change in the western and eastern subtropical North Pacific and climate modes"(41406003)

全球业务化海洋预报系统可为海洋防灾减灾、航行安全、生态系统保护和海上搜救等提供预报服务。海面风是驱动海浪的源,因此提供海浪业务预报服务的国家/机构一般与数值天气预报结合在一起开展。详细介绍了基于WAVEWATCH III?和WAM模式构造的全球海浪业务预报系统的参数配置。重点介绍了基于混合坐标海洋模式、欧洲海洋核心模式和模块化海洋模式开发的全球海洋环流业务预报系统的组成和参数配置。概述了基于社区海冰代码和新鲁汶海冰模式构造以及与海洋环流预报系统耦合在一起的海冰业务预报系统。最后对全球业务化海洋预报系统的发展方向进行了展望。

The global operational ocean forecasting system is a comprehensive application with numerical ocean models as the key, ocean observation as the basis, and supercomputer comprehensive application capabilities as the tool, providing a full range of forecast services for ocean disaster reduction and prevention, navigation safety, ecosystem protection, search and rescue, etc. It briefly introduces the countries/organizations implementing marine operational forecasting services and their atmospheric forecasting systems. Sea surface winds are the source of driving waves; therefore, wave forecasting is generally carried out in conjunction with the atmosphere. The parameter configurations of the global ocean wave forecasting system were constructed based on WW3 (WAVEWATCH III?) and WAM (Wave Model) numerical ocean wave models. It focuses on the composition and parameter configurations of the global ocean circulation forecasting system based on HYCOM (HYbrid Coordinate Ocean Model), NEMO (Nucleus for European Modelling of the Ocean), and MOM(Modular Ocean Model). An overview of the operational sea ice forecasting system based on the CICE(Community Ice CodE) and LIM sea ice models coupled with the ocean circulation forecast system is provided. Finally, the conclusions and development directions of the global operational ocean forecasting system are summarized.

中图分类号: 

1 LIU Na, WANG Hui, LING Tiejun, et al. Review and prospect of global operational ocean forecasting[J]. Advances in Earth Science, 2018, 33(2): 131-140.
刘娜, 王辉, 凌铁军, 等. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
2 FRASER D, AIDA A A, ALEXANDER B, et al. Synergies in operational oceanography: the intrinsic need for sustained ocean observations[J]. Frontiers in Marine Science, 2019. DOI: 10.3389/fmars.2019.00450 .
3 LIU Chunxia, ZHAO Zhongkuo, BI Xueyan, et al. Research and application of ocean circulation and wave models: a review and prospects[J]. Advances in Meteorological Science and Technology, 2017, 7(4): 12-22.
刘春霞, 赵中阔, 毕雪岩, 等. 海洋环流与海浪模式的发展及其应用[J]. 气象科技进展, 2017, 7(4): 12-22.
4 HAN Peng, LI Yuhang, Xiaomeng JIE. The status and prospect of global ocean circulation forecasting system in foreign countries[J]. Marine Forecasts, 2020, 37(3): 98-105.
韩鹏, 李宇航, 揭晓蒙. 国际全球海洋环流预报系统的现状与展望[J]. 海洋预报, 2020, 37(3): 98-105.
5 WANG Hui, WAN Liying, QIN Yinghao, et al. Development and application of the Chinese global operational oceanography forecasting system[J]. Advances in Earth Science, 2016, 31(10): 1 090-1 104.
王辉, 万莉颖, 秦英豪, 等. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1 090-1 104.
6 TONANI M, BALMASEDA M, BERTINO L, et al. Status and future of global and regional ocean prediction systems[J]. Journal of Operational Oceanography, 2015, 8(): s201-s220.
7 WOODHAM R. Defence applications of operational oceanography[M]// Operational oceanography in the 21st century. Dordrecht: Springer Netherlands, 2011: 659-679.
8 ZHU Yaping, CHENG Zhoujie, HE Xiyu. Overview of US NAVY operational ocean forecasting system[J]. Marine Forecasts, 2015, 32(5): 98-105.
朱亚平, 程周杰, 何锡玉. 美国海军海洋业务预报纵览[J]. 海洋预报, 2015, 32(5): 98-105.
9 XU Yang, QI Jiucheng, LI Qing, et al. Overview of US Navy operational ocean prediction system[J]. Ship Science and Technology, 2016, 38(9): 142-146.
徐洋, 齐久成, 李清, 等. 美国海军业务化海洋预报系统综述[J]. 舰船科学技术, 2016, 38(9): 142-146.
10 BAUER P, THORPE A, BRUNET G. The quiet revolution of numerical weather prediction[J]. Nature, 2015, 525(7 567): 47-55.
11 BENJAMIN S G, BROWN J M, GILBERT B, et al. 100 years of progress in forecasting and NWP applications[J]. Advances in Meteorological Science and Technology, 2019, 9(): 193-216.
BENJAMIN S G, BROWN J M, GILBERT B, 等. 第13章 预报和NWP应用100年进步[J]. 气象科技进展, 2019, 9(): 193-216.
12 WANG Yi, ZHOU Qingliang, DAI Kan, et al. Development and outlook of global data-processing and forecasting system[J]. Advances in Meteorological Science and Technology, 2019, 9(2): 6-10.
王毅, 周庆亮, 代刊, 等. 全球数据处理和预报系统发展及展望[J]. 气象科技进展, 2019, 9(2): 6-10.
13 SHEN Xueshun, WANG Jianjie, LI Zechun, et al. China's independent and innovative development of numerical weather prediction[J]. Acta Meteorologica Sinica, 2020, 78(3): 451-476.
沈学顺, 王建捷, 李泽椿, 等. 中国数值天气预报的自主创新发展[J]. 气象学报, 2020, 78(3): 451-476.
14 DURRANT T H, GREENSLADE D J M. Evaluation and implementation of AUSWAVE[R]. CAWCR Technical Report, 2011: 41.
15 BERNIER N B, ALVES J H G M, TOLMAN H, et al. Operational wave prediction system at environment Canada: going global to improve regional forecast skill[J]. Weather and Forecasting, 2016, 31(2): 353-370.
16 SAETRA Ø. MyWave project final report [Z]. 2016.
17 SIDDORN J R, GOOD S A, HARRIS C M, et al. Research priorities in support of ocean monitoring and forecasting at the Met Office[J]. Ocean Science, 2016, 12(1): 217-231.
18 WU Mengmeng, WANG Yi, WAN Liying, et al. Numerical simulation experiments and analysis using WAVEWATCH Ⅲ in the global ocean[J]. Marine Forecasts, 2016, 33(5): 31-40.
吴萌萌, 王毅, 万莉颖, 等. WAVEWATCH Ⅲ模式在全球海域的数值模拟试验及结果分析[J]. 海洋预报, 2016, 33(5): 31-40.
19 CAVALERI L, ABDALLA S, BENETAZZO A, et al. Wave modelling in coastal and inner seas[J]. Progress in Oceanography, 2018, 167: 164-233.
20 BIDLOT J. Twenty-one years of wave forecast verification [Z]. ECMWF Newsletter, 2017, 150: 31-36.
21 WISE GROUP THE, CAVALERI L, ALVES J H G M, et al. Wave modelling-the state of the art[J]. Progress in Oceanography, 2007, 75(4): 603-674.
22 SCHILLER A, BRASSINGTON G B. Operational oceanography in the 21st century[M]. Dordrecht: Springer Netherlands, 2011.
23 CHASSIGNET E F, PASCUAL A, TINTORÉ J, et al. New frontiers in operational oceanography [M]. Charleston, South Carolina: Create Space Independent Publishing Platform, GODAE OceanView, 2018.
24 LIU Hailong, LIN Pengfei, ZHENG Weipeng, et al. A global eddy-resolving ocean forecast system in China—LICOM Forecast System (LFS) [J]. Journal of Operational Oceanography,2021. DOI:10.1080/1755876X.2021.1902680 .
25 SCHILLER A, BRASSINGTON G B, OKE P, et al. Bluelink ocean forecasting Australia: 15 years of operational ocean service delivery with societal, economic and environmental benefits[J]. Journal of Operational Oceanography, 2020, 13(1): 1-18.
26 BRASSINGTON G G, PUGH T, SPILLMAN C, et al. BLUElink> development of operational oceanography and servicing in Australia[J]. Journal of Research and Practice in Information Technology, 2007, 39(2): 151-164.
27 OKE P R, BRASSINGTON G B, GRIFFIN D A, et al. The Bluelink Ocean Data Assimilation System (BODAS)[J]. Ocean Modelling, 2008, 21(1/2): 46-70.
28 SMITH G C, ROY F, RESZKA M, et al. Sea ice forecast verification in the Canadian Global Ice Ocean Prediction System[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(695): 659-671.
29 STORKEY D, BLOCKLEY E W, FURNER R, et al. Forecasting the ocean state using NEMO: the new FOAM system[J]. Journal of Operational Oceanography, 2010, 3(1): 3-15.
30 BLOCKLEY E W, MARTIN M J, MCLAREN A J, et al. Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts[J]. Geoscientific Model Development, 2014, 7(6): 2 613-2 638.
31 LELLOUCHE J M, GREINER E, le GALLOUDEC O, et al. The Mercator Ocean global high-resolution monitoring and forecasting system[M]// New frontiers in operational oceanography, GODAE OceanView, 2018.
32 METZGER E J, SMEDSTAD O M, THOPPIL P, et al. US navy operational global ocean and Arctic ice prediction systems[J]. Oceanography, 2014, 27(3): 32-43.
33 METZGER E, HELBER R W, HOGAN P J, et al. Global ocean forecast system 3.1 validation test [R]. Naval Research Laboratory Stennis Detachment Stennis Space Center MS Stennis Space, 2017.
34 MCDOUGALL T J, BARKER P M. Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox[Z]. 2011.
35 RYAN A G, REGNIER C, DIVAKARAN P, et al. GODAE OceanView Class 4 forecast verification framework: global ocean inter-comparison[J]. Journal of Operational Oceanography, 2015, 8(): s98-s111.
36 HERNANDEZ F, BLOCKLEY E, BRASSINGTON G B, et al. Recent progress in performance evaluations and near real-time assessment of operational ocean products[J]. Journal of Operational Oceanography, 2015, 8(): s221-s238.
37 METZGER E, HOGAN P, SHRIVER J, et al. Validation Test Report for the Global Ocean Forecast System 3.5-1/25 degree HYCOM/CICE with Tides [R]. Washington, D.C., United States: NAVAL Research Laboratory, 2020.
38 SEMTNER A J. A model for the thermodynamic growth of sea ice in numerical investigations of climate[J]. Journal of Physical Oceanography, 1976, 6(3): 379-389.
39 SAKOV P, COUNILLON F, BERTINO L, et al. TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic[J]. Ocean Science, 2012, 8(4): 633-656.
[1] 屈猛, 赵羲, 庞小平, 雷瑞波. 北极冰间水道区域的物理过程和遥感观测研究进展[J]. 地球科学进展, 2022, 37(4): 382-391.
[2] 吴延俊, 赵进平. 欧亚海盆大西洋水输运过程及热释放研究进展[J]. 地球科学进展, 2020, 35(3): 231-245.
[3] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[4] 效存德,陈卓奇,江利明,丁明虎,窦挺峰. 格陵兰冰盖监测、模拟及气候影响研究[J]. 地球科学进展, 2019, 34(8): 781-786.
[5] 刘娜, 王辉, 凌铁军, 祖子清. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
[6] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[7] 刘增宏, 吴晓芬, 许建平, 李宏, 卢少磊, 孙朝辉, 曹敏杰. 中国Argo海洋观测十五年[J]. 地球科学进展, 2016, 31(5): 445-460.
[8] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[9] 王辉, 万莉颖, 秦英豪, 王毅, 杨学联, 刘洋, 邢建勇, 陈莉, 王彰贵, 仉天宇, 刘桂梅, 杨清华, 吴湘玉, 刘钦燕, 王东晓. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090-1104.
[10] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
[11] 王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6): 712-722.
[12] 王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 2014(6): 712-722.
[13] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展 *[J]. 地球科学进展, 2014, 29(5): 569-576.
[14] 刘泽栋, 万修全, 刘福凯. 海底地热通量对海洋深层温度和环流的长期影响[J]. 地球科学进展, 2014, 29(10): 1167-1174.
[15] 李春. “风应力强迫下北太平洋副热带环流与大气环流耦合调整的过程与机理”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1064-1066.
阅读次数
全文


摘要