1 |
YUAN M, MARK D M, EGENHOFER M J, et al. Extensions to geographic representation: a research agenda for geographic information science[M]. Boca Raton: CRC Press, 2004: 129-156.
|
2 |
YU M, YANG C, JIN B. A framework for natural phenomena movement tracking-using 4D dust simulation as an example[J]. Computers & Geosciences, 2018, 121: 53-66.
|
3 |
XUE C, WU C, LIU J, et al. A novel process-oriented graph storage for dynamic geographic phenomena[J]. International Journal of Geo-Information, 2019, 8: 100.
|
4 |
ZHOU C, SU F, PEI T, et al. COVID-19: challenges to GIS with big data[J]. Geography and Sustainability, 2020, 1(1): 77-87.
|
5 |
GONG Jianya. Object-oriented spatio-temporal data model in GIS[J]. Acta Geodaetica et Cartographica Sinica, 1997, 26(4): 10-19.
|
|
龚健雅. GIS中面向对象时空数据模型[J].测绘学报,1997,26(4):10-19.
|
6 |
KJENSTAD K. On the integration of object-based models and field-based models in GIS[J]. International Journal of Geographical Information Science, 2006, 20(5): 491-509.
|
7 |
DODGE S, ROBERT W B, SEAN C A, et al. Analysis of movement data[J]. International Journal of Geographical Information Science, 2016, 30(5): 825-834.
|
8 |
DODGE S. A data science framework for movement[J]. Geographical Analysis, 2019. DOI: 10.m/gean.12212.
|
9 |
YU M, BAMBACUS M, CERVONE G, et al. Spatiotemporal event detection: a review[J]. International Journal of Digital Earth, 2020, 1: 1-27.
|
10 |
WU Qunyong, SUN Mei, CUI Lei. Overview of research on spatio-temporal data model[J]. Advances in Earth Science, 2016, 31(10): 1 001-1 011.
|
|
邬群勇,孙梅,崔磊.时空数据模型研究综述[J].地球科学进展,2016,31(10):1 001-1 011.
|
11 |
YANG J, GONG P, FU R, et al. The role of satellite remote sensing in climate change studies[J]. Nature Climate Change, 2013, 3(11): 875-883.
|
12 |
FERREIRA K R, CAMARA G, MIGUEL A, et al. An algebra for spatiotemporal data: from observations to events[J]. Transactions in GIS, 2014, 18(2): 253-269.
|
13 |
FERREIRA L N, VEGA-OLIVEROS D A, COTACALLPA M, et al. Spatiotemporal data analysis with chronological networks[J]. Nature Communications, 2020, 11(1): 4036.
|
14 |
CHENG Changxiu, SHI Peijun, SONG Changqing, et al. Geographic big data provides new opportunities for geographic complexity research[J]. Acta Geographica Sinica, 2018, 73(8): 1 397-1 406.
|
|
程昌秀,史培军,宋长青,等.地理大数据为地理复杂性研究提供新机遇[J].地理学报,2018, 73(8): 1 397-1 406.
|
15 |
XUE C, DONG Q, XIE J. Marine spatio-temporal process semantics and its applications-taking the El Niño southern oscilation process and chinese rainfall anomaly as an example[J]. Acta Oceanologica Sinica, 2012,31(2): 16-24.
|
16 |
YI J, DU Y, LIANG F, et al. A representation framework for studying spatiotemporal changes and interactions of dynamic geographic phenomena[J]. International Journal of Geographical Information Science, 2014, 28(5): 1 010-1 027.
|
17 |
SU Fenzhen, ZHOU Chenghu. Framework foundation and prototype construction of process geographic information system[J]. Geographical Research, 2006, 3(3): 477-484.
|
|
苏奋振,周成虎.过程地理信息系统框架基础与原型构建[J].地理研究,2006,3(3):477-484.
|
18 |
ZHU R, ERIC G, WONG M. Object-oriented tracking of the dynamic behavior of urban heat islands[J]. International Journal of Geographical Information Science, 2017, 31(2): 405-424.
|
19 |
Gong J, Ge J, Chen Z. Real-time GIS data model and sensor web service platform for environmental data management[J]. International Journal of Health Geographics, 2015, 14: 2.
|
20 |
ZHU Jie, ZHANG Hongjun. Modeling of the temporal and spatial process of battlefield geographical environment oriented to simulation events[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1 367-1 377.
|
|
朱杰,张宏军.面向仿真事件的战场地理环境时空过程建模[J].武汉大学学报:信息科学版,2020,45(9):1 367-1 377.
|
21 |
MENG Lingkui, ZHAO Chunyu, LIN Zhiyong, et al. Research and implementation of spatio-temporal data model based on time-varying sequence of geographical events[J]. Geomatics and Information Science of Wuhan University, 2003, 28(2): 202-207.
|
|
孟令奎,赵春宇,林志勇,等.基于地理事件时变序列的时空数据模型研究与实现[J]. 武汉大学学报:信息科学版,2003,28(2):202-207.
|
22 |
WORBOYS M F. Event-oriented approaches to geographic phenomena[J]. International Journal of Geographical Information Science, 2005, 19(1): 1-28.
|
23 |
MCHLNTOSH J, YUAN M. Assessing similarity of geographic processes and events[J]. Transaction in GIS,2005, 9(2): 223-245.
|
24 |
PEUQUET D J, DUAN N. An Event-based Spatio-Temporal Data Model (ESTDM) for temporal analysis of geographical data [J]. International Journal of Geographical Information Systems, 1995, 9(1): 7-24.
|
25 |
LIN Guangfa, FENG Xuezhi, WANG Lei, et al. Event-oriented object-oriented spatio-temporal data model[J]. Acta Geodaetica et Cartographica Sinica, 2002(1): 71-76
|
|
林广发,冯学智,王雷,等.以事件为核心的面向对象时空数据模型[J].测绘学报,2002, 31(1):71-76.
|
26 |
DU Yunyan, YI Jiawei, XUE Cunjin, et al. Geographic event modeling and analysis supported by multi-source geographic big data[J]. Acta Geographica Sinica, 2021,76(11):2 853- 2 866.
|
|
杜云艳,易嘉伟,薛存金,等.多源地理大数据支撑下的地理事件建模与分析[J].地理学报, 2021,76(11):2 853- 2 866.
|
27 |
REITSMA F, ALBRECHT J. Implementing a new data model for simulating processes[J]. International Journal of Geographical Information Science, 2005, 19(10): 1 073-1 090.
|
28 |
XUE Cunjin, ZHOU Chenghu, SU Fenzhen, et al. Research on process-oriented spatio-temporal data model[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1): 95-101.
|
|
薛存金,周成虎,苏奋振,等.面向过程的时空数据模型研究[J].测绘学报,2010,39(1): 95-101.
|
29 |
YUAN M. Representing complex geographic phenomena in GIS[J]. Cartography & Geographic Information Science, 2001, 28(2): 83-96.
|
30 |
YUAN M, MCINTOSH J. GIS representation for visualizing and mining geographic dynamics[J]. Transaction in GIS, 2003, 2(3): 3-10.
|
31 |
SIABATO W, CLARAMUNT C, ILARRI S, et al. A survey of modelling trends in temporal GIS[J]. ACM Computing Surveys, 2018, 51(2): 1-41.
|
32 |
RAHIMI S, MOORE A B, WHIGHAM P A. Beyond objects in space-time: towards a movement analysis framework with 'How' and 'Why' elements[J]. International Journal of Geo-Information, 2021, 10(3): 190.
|
33 |
MONDO G D, RODRIGUEZ M A, CLARAMUNT C, et al. Modelling consistency of spatio-temporal graphs[J]. Data & Knowledge Engineering, 2013, 84(1): 59-80.
|
34 |
POKORNY J. Graph Databases: their power and limitations[C]// Springer International Publishing. Germany: Springer International Publishing, 2015.
|
35 |
ROBINSIN I, WEBBER J, EIFREM E. Graph Database[M]. 2nd, edition. Sebastopol, CA, USA: O'Reilly Media, 2015.
|
36 |
Thibaud RÉMY,GÉRALDINE del Mondo,THIERRY Garlan,et al. A spatio-temporalgraph model for marine dune dynamics analysis and representation[J]. Transactions in GIS,2013,17(5):742-762.
|
37 |
YI J, DU Y, WANG D, et al. Tracking the evolution processes and behaviors of mesoscale eddies in the South China Sea: a global nearest neighbor filter approach[J]. Acta Oceanologica Sinica, 2017, 36(11): 27-37.
|
38 |
WANG H, DU Y, YI J, et al. Mining evolution patterns from complex trajectory structures—a case study of mesoscale eddies in the South China Sea[J]. International Journal of Geo-Information, 2020, 9(7): 441.
|
39 |
BALAGUER A, RUIZ L A, HERMOSILLA T, et al. Definition of a comprehensive set of texture semivariogram features and their evaluation for object-oriented image classification[J]. Computers & Geosciences, 2010, 36(2): 231-240.
|
40 |
XUE C, DONG Q, QIN L. A cluster-based method for marine sensitive object extraction and representation[J]. Journal of Ocean University of China, 2015, 14(4): 612-620.
|
41 |
LIU J, XUE C, HE Y, et al. Dual-constraint spatiotemporal clustering approach for exploring marine anomaly patterns using remote sensing products[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 3 963-3 976.
|
42 |
LI L, XU Y, XUE C, et al. A process-oriented approach to identify evolutions of sea surface temperature anomalies with a time-series of a raster dataset[J]. International Journal of Geo-Information, 2021, 10: 500.
|
43 |
XUE C, LIU J, YANG G, et al. A process-oriented method for tracking process-objects with a time-series of raster datasets[J]. Applied Sciences, 2019, 9(12): 2 468.
|
44 |
DIXON M, WIENER G. TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—a radar-based methodology[J]. Journal of Atmospheric and Oceanic Technology, 1993, 10(6): 785-797.
|
45 |
FIOLLEAU T, RÉMY R. An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(7): 4 302-4 315.
|
46 |
LIU W, LI X, RAHN D A. Storm event representation and analysis based on a directed spatiotemporal graph model[J]. International Journal of Geographical Information Science, 2016,30(5): 948-969.
|
47 |
MUÑOZ C, WANG L, WILLEMS P. Enhanced object-based tracking algorithm for convective rainstorms and cells[J]. Atmospheric Research, 2018, 201: 144-158.
|
48 |
WANG H, DU Y, YI J, et al. A new method for measuring topological structure similarity between complex trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31: 1 836-1 848.
|
49 |
YU M, YANG C. A 3D multi-threshold, region-growing algorithm for identifying dust storm features from model simulations[J]. International Journal of Geographical Information Science, 2017, 31(5): 939-961.
|
50 |
KHIALI L, IENCO D, TEISSEIRE M. Object-oriented satellite image time series analysis using a graph-based representation[J]. Ecological Informatics, 2018, 43: 52-64.
|
51 |
KHIALI L, NDIATH M, ALLEAUME S, et al. Detection of spatio-temporal evolutions on multi-annual satellite image time series: a clustering-based approach[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 74: 103-119.
|
52 |
HUSSAIN M, CHEN D, CHENG A, et al. Change detection from remotely sensed images: from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 91-106.
|
53 |
XU T, MA T, ZHOU C, et al. Characterizing spatio-temporal dynamics of urbanization in China using time series of DMSP/OLS night light data[J]. Remote Sensing, 2014, 6(8): 7 708-7 731.
|
54 |
LIU J, XUE C, QING D, et al. A process-oriented spatiotemporal clustering method for complex trajectories of dynamic geographic phenomena[J]. IEEE Access, 2019, 7: 155 951-155 964.
|
55 |
XUE C, SONG W, QIN L, et al. A spatiotemporal mining framework for abnormal association patterns in marine environments with a time series of remote sensing images[J]. International Journal of Applied Earth Observations & Geoinformation, 2015, 38: 105-114.
|
56 |
HE Z, DENG M, CAI J, et al. Mining spatiotemporal association patterns from complex geographic phenomena[J]. International Journal of Geographical Information Science, 2020, 34(6): 1 162-1 187.
|
57 |
DODGE S, SONG G, MARTIN T, et al. Progress in computational movement analysis-towards movement data science[J]. International Journal of Geographical Information Science, 2020, 34(12): 2 395-2 400.
|
58 |
PEI Tao, LIU Yaxi, GUO Sihui, et al. The essence of geographic big data mining[J]. Acta Geographica Sinica, 2019, 74(3): 586-598.
|
|
裴韬,刘亚溪,郭思慧,等.地理大数据挖掘的本质[J].地理学报, 2019,74(3):586-598.
|
59 |
MAKROGIANNIS S, ECONOMOU G, FOTOPOULOS S. A region dissimilarity relation that combines feature-space and spatial information for color image segmentation[J]. IEEE Transaction on Systems, Man, and Cybernetics, 2005, 35(1): 44-53.
|
60 |
ESAIAS W E, IVERSON R L, TURPLE K. Ocean province classification using ocean colour data: observing biological signatures of variations in physical dynamics[J]. Global Change Biology, 2000, 6: 39-55.
|
61 |
LI Deren, ZHANG Liangpei, XIA Guisong. Remote sensing big data automatic analysis and data mining[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1 211-1 216.
|
|
李德仁,张良培,夏桂松.遥感大数据自动分析与数据挖掘[J].测绘学报, 2014,43(12):1 211-1 216.
|
62 |
DENG Min, LIU Qiliang, WANG Jiaqiu, et al. A universal method of spatio-temporal cluster analysis[J]. Scientia Sinica Informationis, 2012, 42 (1): 111-124.
|
|
邓敏,刘启亮,王佳璆,等.时空聚类分析的普适性方法[J].中国科学:信息科学,2012,42 (1):111-124.
|
63 |
JI Genlin, ZHAO Bin. Overview of big data-oriented spatio-temporal mining[J]. Journal of Nanjing Normal University(Natural Science Edition), 2014, 37(1): 1-7.
|
|
吉根林, 赵斌. 面向大数据的时空挖掘综述[J]. 南京师大学报:自然科学版,2014,37(1):1-7.
|
64 |
ESTER M, KRIEGEL H P, JIIRG S, et al. A density based algorithm for discovering clusters in large spatial databases[C]// Proceedings of international conference on knowledge discovery & data mining. Germany: Institute for Computer Science of University of Munich, 1996.
|
65 |
PEI T, ZHOU C, ZHU A, et al. Windowed nearest neighbor method for mining spatio-temporal clusters in the presence of noise[J]. International Journal of Geographical Information Science, 2010, 24(6): 925-948.
|
66 |
MCGUIRE M P, JANEIA V P, GANGOPADHVAY A. Mining trajectories of moving dynamic spatio-temporal regions in sensor datasets[J]. Data Mining and Knowledge Discovery, 2014, 28(4): 961-1 003.
|
67 |
LIU Q, DENG M, BI J, et al. A novel method for discovering spatio-temporal clusters of different sizes, shapes, and densities in the presence of noise[J]. International Journal of Digital Earth, 2014, 7(2): 138-157.
|
68 |
LEE J, LEE Y. A knowledge discovery framework for spatiotemporal data mining[J]. International Journal of Information Processing Systems, 2006, 2(2): 124-129.
|
69 |
BERTOLOTTO M, DIMARTINO S, FERRUCCI F, et al. Towards a framework for mining and analysing spatio-temporal datasets[J]. International Journal of Geographical Information Science, 2007, 21(8): 895-906.
|
70 |
KUMAR V. Discovery of patterns in global Earth science data using data mining[J]. Lecture Notes in Computer Science, 2010, 2: 6118.
|
71 |
RAO K V, GOVARDHAN A, RAO K V. An object-oriented modeling and implementation of spatio-temporal knowledge discovery system[J]. International Journal of Computer Science & Information Technology, 2011, 3(2): 61-76.
|
72 |
AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[C]// Proceeding of the 20th international conference on very large databases. Santiago de Chile: Morgan Kaufmann, 1994.
|
73 |
HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation[C]//Proceedings of the 2000 ACM SIGMOD international conference on management of data. Dallas, Texas, USA: ACM, 2000.
|
74 |
KE Y P, CHEN G J, Ng W. An information-theoretic approach to quantitative association rule mining[J]. Knowledge Information Systeml, 2008, 16(2): 213-244.
|
75 |
XUE C, SONG W, QIN L, et al. A mutual-information-based mining method for marine abnormal association rules[J]. Computers & Geosciences, 2015, 76: 121-129.
|
76 |
MCPHADEN M J, ZEBIAK S E, GLANTZ M H. ENSO as an integrating concept in Earth science[J]. Science, 2006, 314 (5 806): 1 740-1 745.
|
77 |
SONG W, DONG Q, XUE C. A classified El Niño index using AVHRR remote-sensing SST data[J]. International Journal of Remote Sensing, 2016, 37(2): 403-417.
|
78 |
WANG M, GUAN Z, JIN D. Two new sea surface temperature anomalies indices for capturing the eastern and central equatorial Pacific type El Niño-Southern Oscillation events during boreal summer[J]. International Journal of Climatology, 2018, 38: 4 066-4 076.
|
79 |
ZHANG Z, REN B, ZHENG J. A unified complex index to characterize two types of ENSO simultaneously[J]. Scientific Reports, 2019, 9(1): 8373.
|
80 |
LEE T, MCPHADEN M J. Increasing intensity of El Niño in the central-equatorial Pacific[J]. Geophysical Research Letters, 2010, 37(14). DOI 10.1024/20106L044007.
|
81 |
ISHII M, SHOUJI A, SUGIMOTO S, et al. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection[J]. International Journal of Climatology, 2005, 25(7): 865-879.
|
82 |
WOLTER K, TIMLIN M S. El Niño/Southern Oscillation behavior since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext) [J]. International Journal of Climatology, 2011, 31(7): 1 074-1 087.
|
83 |
KAO H Y, YU J. Contrasting eastern-Pacific and central-Pacific types of ENSO[J]. Journal of Climate, 2009, 22 (3): 615-632.
|
84 |
XIANG B, WANG B, LI T. A new paradigm for the predominance of standing central pacific warming after the late 1990s[J]. Climate Dynamics, 2013, 41(2): 327-340.
|