1 |
KWOK R. Deformation of the Arctic Ocean sea ice cover between November 1996 and April 1997: a qualitative survey [C]// DEMPSEY J P, SHEN H H. IUTAM symposium on scaling laws in ice mechanics and ice dynamics. Dordrecht: Springer, 2001: 315-322.
|
2 |
World Meteorology Organization. Sea ice nomenclature, summary and purpose of Document WMO No. 259 [R]. Geneva: WMO, 2014.
|
3 |
SHOKR M, SINHA N K. Sea ice: physics and remote sensing[M]. Hoboken, United States: John Wiley & Sons, 2015: 68-76.
|
4 |
ANDREAS E L, PAULSON C A, WILLIAM R M, et al. The turbulent heat flux from Arctic leads [J]. Boundary-Layer Meteorology, 1979, 17(1): 57-91.
|
5 |
OVERLAND J E, MCNUTT S L, GROVES J, et al. Regional sensible and radiative heat flux estimates for the winter Arctic during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment [J]. Journal of Geophysical Research: Oceans, 2000, 105(C6): 14 093-14 102.
|
6 |
BADGLEY F I. Heat balance at the surface of the Arctic Ocean [C]// Proceedings of the symposium on the Arctic heat budget and atmospheric circulation. Santa Monica, California: Rand Corporation, 1966: 215-246.
|
7 |
MAYKUT G A. Energy exchange over young sea ice in the central Arctic [J]. Journal of Geophysical Research: Oceans, 1978, 83(C7): 3 646-3 658.
|
8 |
LÜPKES C, VIHMA T, BIRNBAUM G, et al. Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night [J]. Geophysical Research Letters, 2008, 35(3): L03805.
|
9 |
TETZLAFF A, LÜPKES C, HARTMANN J. Aircraft‐based observations of atmospheric boundary-layer modification over Arctic leads [J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(692): 2 839-2 856.
|
10 |
ASSMY P, FERNÁNDEZ-MÉNDEZ M, DUARTE P, et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice [J]. Scientific Reports, 2017, 7: 40850.
|
11 |
SMITH S D, MUENCH R D, PEASE C H. Polynyas and leads: an overview of physical processes and environment [J]. Journal of Geophysical Research: Oceans, 1990, 95(C6): 9 461-9 479.
|
12 |
TASKJELLE T, GRANSKOG M A, PAVLOV A K, et al. Effects of an Arctic under‐ice bloom on solar radiant heating of the water column [J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 126-138.
|
13 |
CHEN Zhihua, ZHAO Jinping. The thermodynamics of subsurface warm water in the Arctic Ocean [J]. Oceanologia et Limnologia Sinica, 2010, 41(2): 167-174.
|
|
陈志华, 赵进平. 北冰洋次表层暖水形成机制的研究 [J]. 海洋与湖沼, 2010, 41(2): 167-174.
|
14 |
ZHANG Y Y, CHENG X, LIU J P, et al. The potential of sea ice leads as a predictor for summer Arctic sea ice extent [J]. The Cryosphere, 2018, 12(12): 3 747-3 757.
|
15 |
ZHANG Yuanyuan, CHENG Xiao, LIU Jiping, et al. Remote sensing of sea ice leads in the Arctic [M] // CHENG Xiao, HUI Fengming, PANG Xiaoping, et al. Arctic sea ice remote sensing: method and application. Beijing: China Ocean Press, 2020: 195-213. [
|
|
张媛媛, 程晓, 刘骥平, 等. 北极冰间水道遥感反演研究 [M] // 程晓,惠凤鸣,庞小平, 等. 北极海冰遥感反演方法及应用. 北京: 海洋出版社, 2020: 195-213.]
|
16 |
YUAN Lexian, LI Fei, ZHANG Shengkai, et al. A study of Arctic sea ice freeboard heights from ICESat/GLAS [J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1 176-1 182.
|
|
袁乐先, 李斐, 张胜凯, 等. 利用ICESat/GLAS 数据研究北极海冰干舷高度 [J]. 武汉大学学报(信息科学版), 2016, 41(9): 1 176-1 182.
|
17 |
JI Qing, PANG Xiaoping, ZHAO Xi, et al. Comparison of sea ice thickness retrieval algorithms from CryoSat-2 satellite altimeter data [J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1 467-1 472.
|
|
季青, 庞小平, 赵羲, 等. 基于CryoSat-2数据的海冰厚度估算算法比较[J]. 武汉大学学报(信息科学版), 2015, 40(11): 1 467-1 472.
|
18 |
LI M M, KE C Q, SHEN X Y, et al. Investigation of the Arctic sea ice volume from 2002 to 2018 using multi‐source data [J]. International Journal of Climatology, 2021, 41(4): 2 509-2 527.
|
19 |
SU Jie, XU Dong, ZHAO Jinping, et al. Features of northwest passage sea ice's distribution and variation under Arctic rapidly warming condition [J]. Chinese Journal of Polar Research, 2010, 22(2): 104-124.
|
|
苏洁, 徐栋, 赵进平, 等. 北极加速变暖条件下西北航道的海冰分布变化特征 [J]. 极地研究, 2010, 22(2): 104-124.
|
20 |
CAO Yunfeng, YU Meng, HUI Fengming, et al. Review of navigability changes in trans-Arctic routes [J]. Chinese Science Bulletin, 2021, 66(1): 21-33.
|
|
曹云锋, 于萌, 惠凤鸣,等. 北极冰区通航能力变化研究进展 [J]. 科学通报, 2021, 66(1): 21-33.
|
21 |
YANG Qinghua, ZHANG Zhanhai, LIU Jiping, et al. Review of sea ice albedo parameterizations [J]. Advances in Earth Science, 2010, 25(1): 14-21.
|
|
杨清华, 张占海, 刘骥平, 等. 海冰反照率参数化方案的研究回顾 [J]. 地球科学进展, 2010, 25(1): 14-21.
|
22 |
JUNG T, GORDON N D, BAUER P, et al. Advancing polar prediction capabilities on daily to seasonal time scales [J]. Bulletin of the American Meteorological Society, 2016, 97(9): 1 631-1 647.
|
23 |
WANG Q, DANILOV S, JUNG T, et al. Sea ice leads in the Arctic Ocean: model assessment, interannual variability and trends [J]. Geophysical Research Letters, 2016, 43(13): 7 019-7 027.
|
24 |
PAULSON C, SMITH J. The AIDJEX lead experiment [J]. AIDJEX Bulletin, 1974, 23: 1-8.
|
25 |
The LeadEx Group. The LEADEX experiment [J]. Eos, Transactions American Geophysical Union, 1993, 74(35): 393-397.
|
26 |
TSCHUDI M A, CURRY J A, MASLANIK J A. Characterization of springtime leads in the Beaufort/Chukchi Seas from airborne and satellite observations during FIRE/SHEBA [J]. Journal of Geophysical Research: Oceans, 2002, 107(C10): SHE9-1.
|
27 |
BARBER D G, ASPLIN M G, GRATTON Y, et al. The International Polar Year (IPY) Circumpolar Flaw Lead (CFL) system study: overview and the physical system [J]. Atmosphere-Ocean, 2010, 48(4): 225-243.
|
28 |
GRANSKOG M A, ASSMY P, GERLAND S, et al. Arctic research on thin ice: consequences of Arctic sea ice loss [J]. Eos, Transactions American Geophysical Union, 2016, 97(5): 22-26.
|
29 |
LEI Ruibo. Contributions to the MOSAiC from China[J]. Chinese Journal of Polar Research, 2020, 32(4): 596-600.
|
|
雷瑞波. 我国参与 MOSAiC 气候多学科漂流冰站计划的概况 [J]. 极地研究, 2020, 32(4): 596-600.
|
30 |
RENFREW I A, KING J C. A simple model of the convective internal boundary layer and its application to surface heat flux estimates within polynyas [J]. Boundary-Layer Meteorology, 2000, 94(3): 335-356.
|
31 |
ALAM A, CURRY J A. Determination of surface turbulent fluxes over leads in Arctic sea ice [J]. Journal of Geophysical Research: Oceans, 1997, 102(C2): 3 331-3 343.
|
32 |
ANDREAS E L, MURPHY B. Bulk transfer coefficients for heat and momentum over leads and polynyas [J]. Journal of Physical Oceanography, 1986, 16(11): 1 875-1 883.
|
33 |
ANDREAS E L, CASH B A. Convective heat transfer over wintertime leads and polynyas [J]. Journal of Geophysical Research: Oceans, 1999, 104(C11): 25 721-25 734.
|
34 |
MARCQ S, WEISS J. Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere [J]. The Cryosphere, 2012, 6(1): 143-156.
|
35 |
ESAU I N. Amplification of turbulent exchange over wide Arctic leads: large-eddy simulation study [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D8): 109.
|
36 |
SCHNELL R C, BARRY R G, MILES M W, et al. Lidar detection of leads in Arctic sea ice [J]. Nature, 1989, 339(6 225): 530-532.
|
37 |
SERREZE M C, MASLANIK J A, REHDER M C, et al. Theoretical heights of buoyant convection above open leads in the winter Arctic pack ice cover [J]. Journal of Geophysical Research: Oceans, 1992, 97(C6): 9 411-9 422.
|
38 |
MAYKUT G A. The surface heat and mass balance [M]// UNTERSTEINER N. The geophysics of sea ice. New York, United States: Springer, 1986: 395-463.
|
39 |
BATES N, MATHIS J. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks [J]. Biogeosciences, 2009, 6(11): 2 433-2 459.
|
40 |
KORT E A, WOFSY S C, DAUBE B C, et al. Atmospheric observations of Arctic Ocean methane emissions up to 82 north [J]. Nature Geoscience, 2012, 5(5): 318-321.
|