地球科学进展 ›› 2022, Vol. 37 ›› Issue (4): 382 -391. doi: 10.11867/j.issn.1001-8166.2021.102

综述与评述 上一篇    下一篇

北极冰间水道区域的物理过程和遥感观测研究进展
屈猛 1( ), 赵羲 2, 庞小平 3, 雷瑞波 1   
  1. 1.中国极地研究中心 自然资源部极地科学重点实验室,上海 200136
    2.中山大学 测绘科学与 技术学院,广东 珠海 519082
    3.武汉大学 中国南极测绘研究中心,湖北 武汉 430079
  • 收稿日期:2021-08-24 修回日期:2021-10-25 出版日期:2022-04-10
  • 基金资助:
    国家自然科学基金项目“北冰洋海冰冰场形变及其热力学效应观测研究”(41976219);“北极波弗特海域冰间水道的精细化识别及其热力学效应研究”(41876223)

Review of Arctic Sea Ice Leads: Physics and Remote Sensing

Meng QU 1( ), Xi ZHAO 2, Xiaoping PANG 3, Ruibo LEI 1   

  1. 1.Key Laboratory of Polar Science of Ministry of Natural Resources,Polar Research Institute of China,Shanghai 200136,China
    2.School of Geospatial Engineering and Science,Sun Yat-Sen University,Zhuhai Guangdong 519082,China
    3.Chinese Antarctic Center of Surveying and Mapping,Wuhan University,Wuhan 430079,China
  • Received:2021-08-24 Revised:2021-10-25 Online:2022-04-10 Published:2022-04-28
  • About author:QU Meng (1991-), male, Fuyang City, Anhui Province, Assistance professor. Research areas include ocean-ice-atmosphere interaction and sea ice remote sensing. E-mail: qumeng@pric.org.cn
  • Supported by:
    the National Natural Science Foundation of China "Observation of sea ice deformation in the Arctic and its thermal dynamic impact"(41976219);"Refined detection of Arctic sea ice leads in the Beaufort Sea and its thermal dynamic effect"(41876223)

冰间水道是海冰区在风力和洋流作用下形成的线状断裂带。总结了冰间水道区域海洋—海冰—大气相互作用的物理机制和水道遥感的研究现状。冰间水道是极区海洋与大气间水热交换的重要窗口,是冬季产冰析盐和夏季融冰产生淡水的重要场所,也是极区动物赖以生存的栖息地和迁徙通道。利用水道与浮冰之间在反照率、表面温度、发射率和粗糙度等性质上的差异,可通过光学、红外和微波等多种遥感手段来识别和提取水道。随着北极海冰厚度的减小和季节性衰退的提前,波弗特海的水道宽度、面积和出现频率均呈现增加的态势。在北极海冰不断减少的态势下,未来需要结合现场和遥感观测重新评估水道表面能量收支及其对区域能量平衡的贡献,更准确地认识其在北极气候变暖放大效应中的作用。

Sea ice leads are linear fracture zones in Arctic pack ice caused by divergent sea ice motion driven by wind and ocean currents. In winter, leads that are the main factories of ice formation and brine rejection, serve as the prime window for heat and material exchange between the Arctic Ocean and atmosphere. Spring onward, solar shortwave radiation transmitted through leads promotes the bloom of ice algae and plankton and subsequently sustains a habitat for wildlife in the Arctic. In summer, meltwater from sea ice floats on the ocean surface and usually converges to a reservoir of leads. In practice, the ocean surface in open leads is a crucial reference for satellite altimetry because it provides pathways for surface vessels and migration corridors for marine animals. Leads can be detected in optical, thermal, and microwave remote sensing images utilizing the contrast in their albedo, surface temperature, emissivity, and roughness from the surrounding pack ice. Various satellite and airborne images with moderate and high ground resolution have been used to evaluate the presence of leads. The products of lead distribution in the Arctic have been generated using different satellite remote sensing techniques. As sea ice in the Arctic becomes thinner and retreats earlier in the melt season, changes in the spatial and temporal distributions of leads can be expected. A recent study using MODIS thermal images has confirmed the continuous rise of spring lead areas in the Beaufort Sea since 2001, although for the entire Arctic, the results are still inconclusive. In the context of declining sea ice, the energy budget in leads must be parameterized based on comprehensive observations. The contribution of both open and refreezing leads to a regional energy and mass balance of sea ice, and its role in the changing Arctic climate and marine system, remains to be recognized.

中图分类号: 

1 KWOK R. Deformation of the Arctic Ocean sea ice cover between November 1996 and April 1997: a qualitative survey [C]// DEMPSEY J P, SHEN H H. IUTAM symposium on scaling laws in ice mechanics and ice dynamics. Dordrecht: Springer, 2001: 315-322.
2 World Meteorology Organization. Sea ice nomenclature, summary and purpose of Document WMO No. 259 [R]. Geneva: WMO, 2014.
3 SHOKR M, SINHA N K. Sea ice: physics and remote sensing[M]. Hoboken, United States: John Wiley & Sons, 2015: 68-76.
4 ANDREAS E L, PAULSON C A, WILLIAM R M, et al. The turbulent heat flux from Arctic leads [J]. Boundary-Layer Meteorology, 1979, 17(1): 57-91.
5 OVERLAND J E, MCNUTT S L, GROVES J, et al. Regional sensible and radiative heat flux estimates for the winter Arctic during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment [J]. Journal of Geophysical Research: Oceans, 2000, 105(C6): 14 093-14 102.
6 BADGLEY F I. Heat balance at the surface of the Arctic Ocean [C]// Proceedings of the symposium on the Arctic heat budget and atmospheric circulation. Santa Monica, California: Rand Corporation, 1966: 215-246.
7 MAYKUT G A. Energy exchange over young sea ice in the central Arctic [J]. Journal of Geophysical Research: Oceans, 1978, 83(C7): 3 646-3 658.
8 LÜPKES C, VIHMA T, BIRNBAUM G, et al. Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night [J]. Geophysical Research Letters, 2008, 35(3): L03805.
9 TETZLAFF A, LÜPKES C, HARTMANN J. Aircraft‐based observations of atmospheric boundary-layer modification over Arctic leads [J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(692): 2 839-2 856.
10 ASSMY P, FERNÁNDEZ-MÉNDEZ M, DUARTE P, et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice [J]. Scientific Reports, 2017, 7: 40850.
11 SMITH S D, MUENCH R D, PEASE C H. Polynyas and leads: an overview of physical processes and environment [J]. Journal of Geophysical Research: Oceans, 1990, 95(C6): 9 461-9 479.
12 TASKJELLE T, GRANSKOG M A, PAVLOV A K, et al. Effects of an Arctic under‐ice bloom on solar radiant heating of the water column [J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 126-138.
13 CHEN Zhihua, ZHAO Jinping. The thermodynamics of subsurface warm water in the Arctic Ocean [J]. Oceanologia et Limnologia Sinica, 2010, 41(2): 167-174.
陈志华, 赵进平. 北冰洋次表层暖水形成机制的研究 [J]. 海洋与湖沼, 2010, 41(2): 167-174.
14 ZHANG Y Y, CHENG X, LIU J P, et al. The potential of sea ice leads as a predictor for summer Arctic sea ice extent [J]. The Cryosphere, 2018, 12(12): 3 747-3 757.
15 ZHANG Yuanyuan, CHENG Xiao, LIU Jiping, et al. Remote sensing of sea ice leads in the Arctic [M] // CHENG Xiao, HUI Fengming, PANG Xiaoping, et al. Arctic sea ice remote sensing: method and application. Beijing: China Ocean Press, 2020: 195-213. [
张媛媛, 程晓, 刘骥平, 等. 北极冰间水道遥感反演研究 [M] // 程晓,惠凤鸣,庞小平, 等. 北极海冰遥感反演方法及应用. 北京: 海洋出版社, 2020: 195-213.]
16 YUAN Lexian, LI Fei, ZHANG Shengkai, et al. A study of Arctic sea ice freeboard heights from ICESat/GLAS [J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1 176-1 182.
袁乐先, 李斐, 张胜凯, 等. 利用ICESat/GLAS 数据研究北极海冰干舷高度 [J]. 武汉大学学报(信息科学版), 2016, 41(9): 1 176-1 182.
17 JI Qing, PANG Xiaoping, ZHAO Xi, et al. Comparison of sea ice thickness retrieval algorithms from CryoSat-2 satellite altimeter data [J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1 467-1 472.
季青, 庞小平, 赵羲, 等. 基于CryoSat-2数据的海冰厚度估算算法比较[J]. 武汉大学学报(信息科学版), 2015, 40(11): 1 467-1 472.
18 LI M M, KE C Q, SHEN X Y, et al. Investigation of the Arctic sea ice volume from 2002 to 2018 using multi‐source data [J]. International Journal of Climatology, 2021, 41(4): 2 509-2 527.
19 SU Jie, XU Dong, ZHAO Jinping, et al. Features of northwest passage sea ice's distribution and variation under Arctic rapidly warming condition [J]. Chinese Journal of Polar Research, 2010, 22(2): 104-124.
苏洁, 徐栋, 赵进平, 等. 北极加速变暖条件下西北航道的海冰分布变化特征 [J]. 极地研究, 2010, 22(2): 104-124.
20 CAO Yunfeng, YU Meng, HUI Fengming, et al. Review of navigability changes in trans-Arctic routes [J]. Chinese Science Bulletin, 2021, 66(1): 21-33.
曹云锋, 于萌, 惠凤鸣,等. 北极冰区通航能力变化研究进展 [J]. 科学通报, 2021, 66(1): 21-33.
21 YANG Qinghua, ZHANG Zhanhai, LIU Jiping, et al. Review of sea ice albedo parameterizations [J]. Advances in Earth Science, 2010, 25(1): 14-21.
杨清华, 张占海, 刘骥平, 等. 海冰反照率参数化方案的研究回顾 [J]. 地球科学进展, 2010, 25(1): 14-21.
22 JUNG T, GORDON N D, BAUER P, et al. Advancing polar prediction capabilities on daily to seasonal time scales [J]. Bulletin of the American Meteorological Society, 2016, 97(9): 1 631-1 647.
23 WANG Q, DANILOV S, JUNG T, et al. Sea ice leads in the Arctic Ocean: model assessment, interannual variability and trends [J]. Geophysical Research Letters, 2016, 43(13): 7 019-7 027.
24 PAULSON C, SMITH J. The AIDJEX lead experiment [J]. AIDJEX Bulletin, 1974, 23: 1-8.
25 The LeadEx Group. The LEADEX experiment [J]. Eos, Transactions American Geophysical Union, 1993, 74(35): 393-397.
26 TSCHUDI M A, CURRY J A, MASLANIK J A. Characterization of springtime leads in the Beaufort/Chukchi Seas from airborne and satellite observations during FIRE/SHEBA [J]. Journal of Geophysical Research: Oceans, 2002, 107(C10): SHE9-1.
27 BARBER D G, ASPLIN M G, GRATTON Y, et al. The International Polar Year (IPY) Circumpolar Flaw Lead (CFL) system study: overview and the physical system [J]. Atmosphere-Ocean, 2010, 48(4): 225-243.
28 GRANSKOG M A, ASSMY P, GERLAND S, et al. Arctic research on thin ice: consequences of Arctic sea ice loss [J]. Eos, Transactions American Geophysical Union, 2016, 97(5): 22-26.
29 LEI Ruibo. Contributions to the MOSAiC from China[J]. Chinese Journal of Polar Research, 2020, 32(4): 596-600.
雷瑞波. 我国参与 MOSAiC 气候多学科漂流冰站计划的概况 [J]. 极地研究, 2020, 32(4): 596-600.
30 RENFREW I A, KING J C. A simple model of the convective internal boundary layer and its application to surface heat flux estimates within polynyas [J]. Boundary-Layer Meteorology, 2000, 94(3): 335-356.
31 ALAM A, CURRY J A. Determination of surface turbulent fluxes over leads in Arctic sea ice [J]. Journal of Geophysical Research: Oceans, 1997, 102(C2): 3 331-3 343.
32 ANDREAS E L, MURPHY B. Bulk transfer coefficients for heat and momentum over leads and polynyas [J]. Journal of Physical Oceanography, 1986, 16(11): 1 875-1 883.
33 ANDREAS E L, CASH B A. Convective heat transfer over wintertime leads and polynyas [J]. Journal of Geophysical Research: Oceans, 1999, 104(C11): 25 721-25 734.
34 MARCQ S, WEISS J. Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere [J]. The Cryosphere, 2012, 6(1): 143-156.
35 ESAU I N. Amplification of turbulent exchange over wide Arctic leads: large-eddy simulation study [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D8): 109.
36 SCHNELL R C, BARRY R G, MILES M W, et al. Lidar detection of leads in Arctic sea ice [J]. Nature, 1989, 339(6 225): 530-532.
37 SERREZE M C, MASLANIK J A, REHDER M C, et al. Theoretical heights of buoyant convection above open leads in the winter Arctic pack ice cover [J]. Journal of Geophysical Research: Oceans, 1992, 97(C6): 9 411-9 422.
38 MAYKUT G A. The surface heat and mass balance [M]// UNTERSTEINER N. The geophysics of sea ice. New York, United States: Springer, 1986: 395-463.
39 BATES N, MATHIS J. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks [J]. Biogeosciences, 2009, 6(11): 2 433-2 459.
40 KORT E A, WOFSY S C, DAUBE B C, et al. Atmospheric observations of Arctic Ocean methane emissions up to 82 north [J]. Nature Geoscience, 2012, 5(5): 318-321.
[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 方红亮, 车涛, 晋锐, 李爱农, 李新, 李增元, 刘绍民, 马明国, 肖青, 张永光. 建设中国陆表遥感产品真实性检验基准台站网络的思考[J]. 地球科学进展, 2021, 36(12): 1215-1223.
[3] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[4] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[5] 董治宝, 吕萍, 李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[6] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[7] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[8] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[9] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[10] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[11] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[12] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[13] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[14] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[15] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
阅读次数
全文


摘要