地球科学进展 ›› 2021, Vol. 36 ›› Issue (12): 1215 -1223. doi: 10.11867/j.issn.1001-8166.2022.003

发展战略研究    下一篇

建设中国陆表遥感产品真实性检验基准台站网络的思考
方红亮 1 , 12( ), 车涛 2 , 12, 晋锐 2 , 12, 李爱农 3 , 4, 李新 5 , 12, 李增元 6 , 7, 刘绍民 8, 马明国 9 , 10, 肖青 11 , 12, 张永光 13   
  1. 1.中国科学院地理科学与资源研究所,资源与环境信息系统国家重点实验室,北京 100101
    2.中国科学院西北生态环境资源研究院,甘肃省遥感重点实验室黑河遥感试验研究站,甘肃 兰州 730000
    3.中国科学院、水利部成都山地灾害与环境研究所,数字山地与遥感应用中心,四川 成都 610041
    4.王朗山地遥感 四川省野外观测研究站,四川 绵阳 621000
    5.中国科学院青藏高原研究所,北京 100101
    6.中国林业 科学研究院资源信息研究所,北京 100091
    7.国家林业和草原局林业遥感与信息技术重点实验室,北京 100091
    8.北京师范大学,地表过程与资源生态国家重点实验室,北京 100875
    9.西南大学,地理科学学院重庆金佛山喀斯特生态系统国家野外科学观测研究站,重庆 400715
    10.西南大学,地理科学学院遥感大数据应用重庆市工程研究中心,重庆 400715
    11.中国科学院空天信息 创新研究院,遥感科学国家重点实验室,北京 100101
    12.中国科学院大学,北京 100049
    13.南京大学国际地球系统科学研究所,江苏 南京 210023
  • 收稿日期:2021-06-18 修回日期:2021-11-17 出版日期:2021-12-10

On the Construction of China's Fiducial Reference Measurement Network for Land Surface Remote Sensing Product Validation

Hongliang FANG 1 , 12( ), Tao CHE 2 , 12, Rui JIN 2 , 12, Ainong LI 3 , 4, Xin LI 5 , 12, Zengyuan LI 6 , 7, Shaomin LIU 8, Mingguo MA 9 , 10, Qing XIAO 11 , 12, Yongguang ZHANG 13   

  1. 1.State Key Laboratory of Resources and Environment Information System,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China
    2.Heihe Remote Sensing Experimental Research Station,Key Laboratory of Remote Sensing of Gansu Province,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    3.Research Center for Digital Mountain and Remote Sensing Application,Institude of Mountain Hazard and Environment,Chinese Academy of Sciences,Chengdu 610041,China
    4.Wanglang Mountain Remote Sensing Observation and Research Station of Sichuan Province,Mianyang Sichuan 621000,China
    5.Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China
    6.Institute of Forest Resource Information Techniques,Chinese Academy of Forestry,Beijing 100091,China
    7.Key Laboratory of Forestry Remote Sensing and Information System,National Forestry and Grassland Administration,Beijing 100091,China
    8.State Key Laboratory of Earth Surface Processes and Resource Ecology,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China
    9.Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station,School of Geographical Sciences,Southwest University,Chongqing 400715,China
    10.Chongqing Engineering Research Center for Remote Sensing Big Data Application,School of Geographical Sciences,Southwest University,Chongqing 400715,China
    11.State Key Laboratory of Remote Sensing Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China
    12.University of Chinese Academy of Sciences,Beijing 100049,China
    13.International Institute for Earth System Science,Nanjing University,Nanjing 210023,China
  • Received:2021-06-18 Revised:2021-11-17 Online:2021-12-10 Published:2022-01-20
  • About author:FANG Hongliang (1971-), male, Chun'an County, Zhejiang Province, Professor. Research areas include land surface biophysical parameter estimation, radiative transfer modellings, calibration and validation studies, and in situ measurements. E-mail: fanghl@lreis.ac.cn

全球卫星遥感生产了系列陆表参数产品,在地球系统科学研究和服务国家决策支持等方面发挥了巨大效用。为了更好地发挥这些产品的功能,人们亟需了解相关产品的质量和精度信息,这就需要利用地面参考数据对这些产品进行真实性检验。陆表基准参考测量提供独立、标准、常态化的监测数据,是陆表遥感产品验证必不可少的基础条件,对深刻理解陆表地球系统的历史、现状和未来变化具有深远意义。首先总结了国内外在基准参考网络建设方面的经验,分析了我国现有遥感真实性检验网络的建设工作。在此基础上,提出了建设我国陆表遥感产品真实性检验基准参考站网的思路,探讨了建设我国基准观测网络的设计方案、站点遴选、仪器选择、组织和管理方式。同时,综合陆表基准站网与大气、海洋、测高、地球重力测量等基准站网,提出了构建中国陆表遥感验证超级站和国家级遥感产品真实性检验网络系统的框架。国家级验证网络体系的建设将有助于实现全国定量遥感产品的真实性检验,助力地球系统科学综合研究,提升遥感产品服务国家决策支持的水平。

A series of land surface parameter products have been generated by various satellite remote sensing data over the globe. These products have been widely applied in Earth system science research and national decision-making support. In order to make better use of these products, it is necessary to understand the quality and accuracy information of the products. The purpose of land surface validation is to provide an independent assessment of the accuracy of the remote sensing products with land surface reference measurements. Fiducial Reference Measurement (FRM) provides independent, standard and regular field measurements, which are indispensable for the validation of land surface remote sensing products. FRM data are of profound significance for understanding the history, present conditions and future changes of the land surface system. This paper started with a brief overview of recent advancement in the construction of surface reference networks over the globe and analyzed the construction of the validation networks for land surface remote sensing products in China. Based on the overview, the paper put forward the basic ideas on building a FRM for the validation of land surface remote sensing products in China. The design scheme, station selection, instrument selection, organization and management of the FRM were described. Combining the land surface FRM with atmospheric, oceanic, altimetry and earth gravity FRMs, a national FRM framework can be constructed. In addition, a national land surface supersite network, with multiple observed variables at each site, can be built out of existing core sites and FRM sites. Construction of the national land surface FRM will greatly help the validation of remote sensing products, facilitate Earth system science studies, and improve serving the decision support with remote sensing products.

中图分类号: 

1 LIANG Shunlin, ZHANG Xiaotong, XIAO Zhiqiang, et al. Global Land Surface Satellite (GLASS) products: algorithms, verification and analysis [M]. Beijing: Higher Education Press, 2014.
梁顺林, 张晓通, 肖志强, 等. 全球陆表特征参量(GLASS)产品:算法、验证与分析[M].北京: 高等教育出版社, 2014.
2 GCOS.Systematic observation requirements for satellite-based products for climate, 2011 update, supplemental details to the satellite-based component of the implementation plan for the global observing system for climate in support of the UNFCCC (2010 Update) [C]. Switzerland:World Meteorological Organization, 2011.
3 State Administration of Market Supervision and Administration, China National Standardization Administration Committee. National standards of the People's Republic of China: guide for the validation of remote sensing products: [S]. (2018-06-07) [2021-06-17]. http://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D82ABAD3A7E05397BE0A0AB82A. [国家市场监督管理总局, 中国国家标准化管理委员会. 中华人民共和国国家标准遥:感产品真实性检验导则: [S]. (2018-06-07)[2021-06-17]. ]
4 LI Xiaowen. Review of the project of quantitative remote sensing of major factors for spatial-temporal heterogeneity on the land surface [J]. Advances in Earth Science, 2006,21(8): 771-780.
李小文. 地球表面时空多变要素的定量遥感项目综述[J]. 地球科学进展, 2006, 21(8): 771-780.
5 LI Xin, MA Mingguo, WANG Jian, et al. Simultaneous remote sensing and ground-based experiment in the Heihe River Basin: scientific objective and experiment design [J]. Advances in Earth Science, 2008, 23(9): 897-914.
李新, 马明国, 王建, 等. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J]. 地球科学进展, 2008,23(9): 897-914.
6 WIDLOWSKI J L. Conformity testing of satellite-derived quantitative surface variables [J]. Environmental Science & Policy, 2015, 51: 149-169.
7 THORNE P W, DIAMOND H J, GOODISON B, et al. Towards a global land surface climate fiducial reference measurements network [J]. International Journal of Climatology, 2018, 38(6): 2 760-2 774.
8 JIANG Weiping. Challenge and opportunities of GNSS reference station network [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1 379-1 388.
姜卫平. 卫星导航定位基准站网的发展现状、机遇与挑战[J]. 测绘学报, 2017,46(10): 1 379-1 388.
9 DIAMOND H J, KARL T R, PALECKI M A, et al. U.S. Climate Reference Network after one decade of operations: status and assessment [J]. Bulletin of the American Meteorological Society,2013,94(4): 485-498.
10 MILEWSKA E J, VINCENT L A. Preserving continuity of long-term daily maximum and minimum temperature observations with automation of reference climate stations using overlapping data and meteorological conditions [J]. Atmosphere-Ocean, 2016, 54(1): 32-47.
11 FOX N. Principles of metrology, FRM and their applicability to earth observation [C]// ESA Workshop on Land Validation Strategy Programme. Vortual Meeting, 2020.
12 SONG Lianchun, LI Wei. The development of integrated meteorological observation system [J]. Journal of the Meteorological Sciences, 2008, 34(3): 3-9.
宋连春, 李伟. 综合气象观测系统的发展[J]. 气象科学, 2008, 34(3): 3-9.
13 WEN Kangmin, REN Guoyu, LI Jiao, et al. Adjustment of urbanization bias in surface air temperature over the mainland of China [J]. Progress in Geography,2019,38(4): 600-611.
温康民, 任国玉, 李娇, 等. 国家基本/基准站地面气温资料城市化偏差订正[J]. 地理科学进展, 2019,38(4): 600-611.
14 QU Yubo, YUE Dingli, ZHONG Liuju, et al. Establishment and operational management mechanism of Guangdong atmospheric supersite of China [J]. Journal of the Environmental Science and Management,2013,38(11): 63-67.
区宇波, 岳玎利, 钟流举, 等. 中国广东大气超级监测站的规划建设与运行机制研究[J]. 环境科学与管理, 2013,38(11): 63-67.
15 BAYAT B, CAMACHO F, NICKESON J, et al. Toward operational validation systems for global satellite-based terrestrial essential climate variables [J]. International Journal of Applied Earth Observation and Geoinformation,2021, 95: 102240.
16 MA M, CHE T, LI X, et al. A prototype network for remote sensing validation in China [J]. Remote Sensing, 2015, 7(5): 5187.
17 YANG Ping. Thoughts on future development of field observation and research network of Chinese Academy of Sciences [J]. Bulletin of Chinese Academy of Sciences, 2021, 36(1): 104-112.
杨萍. 中国科学院野外科学观测研究网络未来发展的思考[J]. 中国科学院院刊, 2021, 36(1): 104-112.
18 GU Xingfa, TIAN Guoliang, LI Xiaowen, et al. Quantification of remote sensing information [J]. Science in China Series E: Information Sciences, 2005():1-10.
顾行发, 田国良, 李小文, 等. 遥感信息的定量化[J]. 中国科学E辑:信息科学, 2005():1-10.
[1] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[2] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[3] 晋 锐,李 新,阎保平,罗万明,李秀红,郭建文,马明国,亢 健,张艳林. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9): 993-1005.
[4] 李新,刘绍民,马明国,肖青,柳钦火,晋锐,车涛,王维真,祁元,李弘毅,朱高峰,郭建文,冉有华. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.
阅读次数
全文


摘要