地球科学进展 ›› 2021, Vol. 36 ›› Issue (12): 1224 -1234.

综述与评述 上一篇    下一篇

亚硝酸盐氮、氧同位素技术及其在海洋氮循环中的应用
陈阳军( ), 陈敏( )   
  1. 厦门大学 海洋与地球学院,福建 厦门 361102
  • 收稿日期:2021-05-06 修回日期:2021-09-26 出版日期:2021-12-10
  • 通讯作者: 陈阳军,陈敏 E-mail:22320170154914@stu.xmu.edu.cn;mchen@xmu.edu.cn
  • 基金资助:
    自然资源部南大洋综合调查专项项目“南极重点海域对气候变化的响应和影响”(IRASCC 01-01-02C);国家自然科学基金创新群体项目“海洋氮循环与全球变化”(41721005)

Dual Isotopes of Nitrite as Indicators of Marine Nitrogen Cycle

Yangjun CHEN( ), Min CHEN( )   

  1. College of Ocean and Earth Sciences,Xiamen University,Xiamen 361102,China
  • Received:2021-05-06 Revised:2021-09-26 Online:2021-12-10 Published:2022-01-20
  • Contact: Yangjun CHEN,Min CHEN E-mail:22320170154914@stu.xmu.edu.cn;mchen@xmu.edu.cn
  • About author:CHEN Yangjun (1992-), male, Shaoxing City, Zhejiang Province, Ph. D student. Research areas include isotope marine chemistry study. E-mail: 22320170154914@stu.xmu.edu.cn
  • Supported by:
    the Special Comprehensive Survey on the Southern Ocean from Ministry of Natural Resources of China "Impact and response of Antarctic Seas to climate change" (Grant No. IRASCC 01-01-02C, IRASCC 02-01-01);The Innovation Group Project from National Natural Science Foundation of China "Marine nitrogen cycle and global change"(41721005)

氮是海洋生物生长必需的营养元素,其循环过程及其与碳、磷等生源要素的循环紧密耦合,共同调控着海洋生态系统的结构和功能。亚硝酸盐是海洋氮循环过程的关键中间体,在硝化、反硝化、厌氧氨氧化和硝酸盐生物吸收等氮转化过程中起着重要的作用。亚硝酸盐氮、氧同位素技术是新近发展起来的新技术,在甄别海洋亚硝酸盐的源汇过程,阐释氮组分的迁移转化,揭示缺氧区的氮循环等方面具有独到价值。近些年来,亚硝酸盐氮和氧同位素技术被应用于阿拉伯海、东热带北太平洋、东热带南太平洋、南海和东海等海域的研究,揭示了真光层和缺氧区亚硝酸盐的累积成因、海洋氧化亚氮的产生机制、缺氧区氮生物地球化学循环以及硝酸盐和亚硝酸盐之间的氮同位素交换动力学特征等,极大地深化了我们对海洋氮循环的认识。就未来发展趋势看,有关真光层和缺氧区亚硝酸盐的生物地球化学循环过程、硝酸盐和亚硝酸盐之间氮、氧同位素交换的动力学研究等仍需加强,以准确描绘海洋氮循环的路径并构建海洋氮收支状况。

Nitrogen is an essential nutrient for the growth of all living organisms in the ocean. Its cycling processes and its close coupling with the cycle of biological elements such as carbon and phosphorus jointly regulate the structure and function of marine ecosystem. Nitrite serves as a key intermediate in oceanic nitrogen cycle, and plays an important role in various nitrogen transformation processes such as nitrification, denitrification, anammox, nitrate bioabsorption. Nitrogen and oxygen isotopes of nitrite are newly developed technologies, which have unique value in identifying the source and sink processes of oceanic nitrite, explaining the transport and transformation of various nitrogen components, as well as revealing the nitrogen cycling in the oxygen-deficient zones. In recent years, nitrogen and oxygen isotopes of nitrite have been widely applied in the oceanic regions such as the Arabian Sea, the eastern tropical North Pacific, the eastern tropical South Pacific, the South China Sea and the East China Sea. These studies revealed the reasons for the accumulation of nitrite in oceanic euphotic zone and oxygen-deficient zones, the production mechanism of nitrous oxide in the ocean, the biogeochemical cycle of nitrogen in the oxygen-deficient zones, as well as the isotope exchange dynamics of nitrogen in an isotopic exchange reaction between nitrate and nitrite, which greatly deepened our understanding of nitrogen cycle in marine environment. In terms of the future development trend of ocean nitrogen cycle research, it is still necessary to strengthen research in several fields, such as the biogeochemical processes of nitrite in the euphotic zone and the oxygen-deficient zones, the dynamics of the nitrogen and oxygen isotope exchange systems in the isotope exchange reaction between nitrate and nitrite. In this way, the path of the ocean nitrogen cycle can be described more accurately, and the nitrogen budget in marine environment can be established quantitatively.

中图分类号: 

1 DORE J E, KARL D M. Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at station ALOHA [J]. Limnology and Oceanography, 1996, 41(8): 1 619-1 628.
2 KIEFER D A, OLSON R J, HOLMHANSEN O. Another look at the nitrite and chlorophyll maxima in the central North Pacific [J]. Deep-Sea Research and Oceanographic Abstracts, 1976, 23(12): 1 199-1 208.
3 LIPSCHULTZ F, ZAFIRIOU O C, BALL L A. Seasonal fluctuations of nitrite concentrations in the deep oligotrophic ocean [J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43: 403-419.
4 BRANDHORST W. Nitrification and denitrification in the eastern tropical North Pacific [J]. ICES Journal of Marine Science, 1959, 25(1): 3-20.
5 CODISPOTI L A, FRIEDERICH G E, PACKARD T T, et al. High nitrite levels off northern Peru: a signal of instability in the marine denitrification rate [J]. Science, 1982, 233(4 769): 1 200-1 202.
6 LOMAS M W, LIPSCHULTZ F. Forming the primary nitrite maximum: nitrifiers or phytoplankton?[J] Limnology and Oceanography, 2006, 51(5): 2 453-2 467.
7 CASCIOTTI K L. Nitrite isotopes as tracers of marine N cycle processes [J]. Philosophical Transactions of the Royal Society A, 2016, 374(2 081): 20150295.
8 HORRIGAN S G, CARLUCCI A F, WILLIAMS P M. Light inhibition of nitrification in sea-surface films [J]. Journal of Marine Research, 1981, 39(3): 557-565.
9 GUERRERO M A, JONES R D. Photoinhibition of marine nitrifying bacteria. I. wavelength-dependent response [J]. Marine Ecology Progress Series, 1996, 141: 183-192.
10 MERBT S N, STAHL D A, CASAMAYOR E O, et al. Differential photoinhibition of bacterial and archaeal ammonia oxidation [J]. FEMS Microbiology Letters, 2012, 327: 41-46.
11 OLSON R J. Differential photoinhibition of marine nitrifying bacteria: a possible mechanism for the formation of the primary nitrite maximum [J]. Journal of Marine Research, 1980, 39(2): 227-238.
12 OLSON R J. 15N tracer studies of the primary nitrite maximum [J]. Journal of Marine Research, 1980, 39(2): 203-226.
13 GUERRERO M A, JONES R D. Photoinhibition of marine nitrifying bacteria. II. dark recovery after monochromatic or polychromatic irradiation [J]. Marine Ecology Progress Series, 1996, 141: 193-198.
14 SMITH J M, CHAVEZ F P, FRANCIS C A. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean [J]. PLoS ONE, 2014, 9(9): e108173.
15 VACCARO R F, RYTHER J H. Marine phytoplankton and the distribution of nitrite in the sea [J]. ICES Journal of Marine Science, 1960, 25(3): 260-271.
16 MILLIGAN A J, HARRISON P J. Effects of non-steady-state iron limitation on nitrogen assimilatory enzymes in the marine diatom Thalassiosira weissflogii (Bacillariophyceae) [J]. Journal of Phycology, 2000, 36: 78-86.
17 PAINTER H A. A review of literature on inorganic nitrogen metabolism in microorganisms [J]. Water Research, 1970, 4(6): 393-450.
18 CASTELLANI A G, NIVEN C F. Factors affecting the bacteriostatic action of sodium nitrite [J]. Applied and Environmental Microbiology, 1955, 3: 154-159.
19 MARTIN T S, CASCIOTTI K L. Paired N and O isotopic analysis of nitrate and nitrite in the Arabian Sea oxygen deficient zone [J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 121: 121-131.
20 BUCHWALD C, SANTORO A E, STANLEY R H, et al. Nitrogen cycling in the secondary nitrite maximum of the eastern tropical North Pacific off Costa Rica [J]. Global Biogeochemical Cycles, 2015, 29(12): 2 061-2 081.
21 PENG Xuefeng, FUCHSMAN C A, JAYAKUMAR A, et al. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific [J]. Global Biogeochemical Cycles, 2015, 29(12): 2 034-2 049.
22 BRISTOW L A, DALSGAARD T, TIANO L, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters [J]. Proceedings of the National Academy of Sciences, 2016, 113 (38): 10 601-10 606.
23 SIGMAN D M, GRANGER J, DIFIORE P J, et al. Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin [J]. Global Biogeochemical Cycles, 2005, 19(4): GB4022.
24 WANG Wentao, YU Zhiming, SONG Xiuxian, et al. The effect of Kuroshio current on nitrate dynamics in the southern East China Sea revealed by nitrate isotopic composition [J]. Journal of Geophysical Research: Oceans, 2016, 121(9): 7 073-7 087.
25 YANG Zhi, CHEN Min. Progress in nitrogen and oxygen isotopic composition of nitrate in seawater [J]. Advances in Earth Science, 2012, 27(3): 268-275.
杨志,陈敏. 海水硝酸盐氮、氧同位素组成研究进展[J]. 地球科学进展,2012,27(3): 268-275.
26 HONG Yiguo. Marine nitrogen cycle recorded by nitrogen and oxygen isotope fractionation of nitrate [J]. Advances in Earth Science, 2013, 28(7): 751-764.
洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展,2013,28(7): 751-764.
27 CASCIOTTI K L. Nitrogen and oxygen isotopic studies of the marine nitrogen cycle [J]. Annual Review of Marine Science, 2016, 8(1): 379-407.
28 CASCIOTTI K L, BOHLKE J K, MCILVIN M R, et al. Oxygen isotopes in nitrite: analysis, calibration, and equilibration [J]. Analytical Chemistry, 2007, 79(6): 2 427-2 436.
29 GRANGER J, SIGMAN D M, NEEDOBA J A, et al. Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton [J]. Limnology and Oceanography, 2004, 49(5): 1 763-1 773.
30 GRANGER J, SIGMAN D M, ROHDE M M, et al. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures [J]. Geochimica et Cosmochimica Acta, 2010, 74: 1 030-1 040.
31 KARSH K, GRANGER J, KRITEE K, et al. Eukaryotic assimilatory nitrate reductase fractionates N and O isotopes with a ratio near unity [J]. Environmental Science & Technology, 2012, 46: 5 727-5 735.
32 GRANGER J, SIGMAN D M, LEHMANN M F, et al. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria [J]. Limnology and Oceanography, 2008, 53: 2 533-2 545.
33 KRITEE K, SIGMAN D M, GRANGER J, et al. Reduced isotope fractionation by denitrification under conditions relevant to the ocean [J]. Geochimica et Cosmochimica Acta, 2012, 92: 243-259.
34 BUCHWALD C, SANTORO A E, MCILVIN M R, et al. Oxygen isotopic compostion of nitrate and nitrite produced by nitrifying cocultures and natural marine assemblages [J]. Limnology and Oceanography, 2012, 57: 1 361-1 375.
35 CASCIOTTI K L, SIGMAN D M, WARD B B. Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria [J]. Geomicrobiology Journal, 2003, 20: 335-353.
36 CASCIOTTI K L, MCILVIN M R, BUCHWALD C. Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation [J]. Limnology and Oceanography, 2010, 55: 753-762.
37 SANTORO A E, CASCIOTTI K L. Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation [J]. The ISME Journal, 2011, 5: 1 796-1 808.
38 WASER N A, HARRISON P J, NIELSEN B, et al. Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom [J]. Limnology and Oceanography, 1998, 43(2): 215-224.
39 BRUNNER B, CONTRERAS S, LEHMANN M F, et al. Nitrogen isotope effects induced by anammox bacteria [J]. Proceedings of the National Academy of Sciences, 2013, 110: 18 994-18 999.
40 MARTIN T S, CASCIOTTI K L. Nitrogen and oxygen isotopic fractionation during microbial nitrite reduction [J]. Limnology and Oceanography, 2016, 61: 1 134-1 143.
41 BUCHWALD C, CASCIOTTI K L. Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation [J]. Limnology and Oceanography, 2010, 55: 1 064-1 074.
42 CASCIOTTI K L. Inverse kinetic isotope fractionation during bacterial nitrite oxidation [J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2 061-2 076.
43 WARD B B, O'MULLAN G D. Community level analysis: genetic and biogeochemical approaches to investigate community composition and function in aerobic ammonia oxidation [J]. Methods in Enzymology, 2005, 397: 395-413.
44 KATOR H, MORRISON L J, WETZEL R L, et al. A rapid chromatographic method for recovery of 15NO 2 - and 15NO 3 - produced by nitrification in aqueous samples [J]. Limnology and Oceanography, 1992, 37: 900-907.
45 MCILVIN M R, ALTABET M A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater [J]. Analytical Chemistry, 2005, 77(17): 5 589-5 595.
46 BUCHWALD C, CASCIOTTI K L. Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite [J]. Nature Geoscience, 2013, 6(4): 308-313.
[1] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[2] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[3] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[4] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[5] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[6] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[7] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[8] 贺娟. 氢氧同位素记录揭示的巽他陆架末次冰期以来古降水量变化[J]. 地球科学进展, 2017, 32(11): 1137-1146.
[9] 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
[10] 刘贤赵, 张勇, 宿庆, 田艳林, 王庆, 全斌. 陆生植物氮同位素组成与气候环境变化研究进展[J]. 地球科学进展, 2014, 29(2): 216-226.
[11] 宋国栋,刘素美. 海洋环境中的厌氧铵氧化研究进展[J]. 地球科学进展, 2012, 27(5): 529-538.
[12] 杨志,陈敏. 海水硝酸盐氮、氧同位素组成研究进展[J]. 地球科学进展, 2012, 27(3): 268-275.
[13] 李琪,李前裕,王汝建. 20万年来南海古海洋研究的主要进展[J]. 地球科学进展, 2012, 27(2): 224-239.
[14] 陈友良,魏 佳,叶永钦,宋 昊, 孙泽轩. 若尔盖铀矿田方解石稀土元素与碳氧同位素地球化学特征及其意义[J]. 地球科学进展, 2012, 27(10): 1061-1067.
[15] 张翠云,张俊霞,马琳娜,张胜,殷密英,李政红. 硝酸盐氮氧同位素反硝化细菌法测试研究[J]. 地球科学进展, 2010, 25(4): 360-364.
阅读次数
全文


摘要