地球科学进展 ›› 2021, Vol. 36 ›› Issue (12): 1235 -1246. doi: 10.11867/j.issn.1001-8166.2021.115

综述与评述 上一篇    下一篇

近海海水养殖海域海底地下水排放的研究进展
刘建安( ), 于雪晴, 彭彤, 杜金洲( )   
  1. 河口海岸学国家重点实验室,华东师范大学,上海 200241
  • 收稿日期:2021-09-27 修回日期:2021-11-04 出版日期:2021-12-10
  • 通讯作者: 杜金洲 E-mail:jaliu@sklec.ecnu.edu.cn;jzdu@sklec.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“海洋牧场生态环境对海底地下水输送营养盐通量的响应——以象山港为例”(41976040);中国博士后科学基金项目“崇明东滩盐沼湿地海底地下水碳排放溯源及其对蓝碳调控作用”(2021T140208)

Research Progress of Submarine Groundwater Discharge in Marine Aquaculture

Jianan LIU( ), Xueqing YU, Tong PENG, Jinzhou DU( )   

  1. State Key Laboratory of Estuarine and Coastal Research,East China Normal University,Shanghai 200241,China
  • Received:2021-09-27 Revised:2021-11-04 Online:2021-12-10 Published:2022-01-20
  • Contact: Jinzhou DU E-mail:jaliu@sklec.ecnu.edu.cn;jzdu@sklec.ecnu.edu.cn
  • About author:LIU Jianan (1990-), male, Ji'an City, Jiangxi Province, Post doctor. Research area include radioisotope biogeochemistry. E-mail: jaliu@sklec.ecnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Eco-environmental responses of marine ranching to submarine groundwater discharge-derived nutrient fluxes—a case study in Xiangshan Bay"(41976040);The China Postdoctoral Science Foundation "Tracing the source of submarine groundwater discharge associated carbon and its regulation on blue carbon in Chongming Dongtan saltmarsh"(2021T140208)

海底地下水排放作为河口海岸与近海的自然现象,是陆源物质重要的入海通道,在近海物质循环和生态环境效应中有时起着决定性作用。针对近年来迅速发展的近海海水养殖,综述了海底地下水排放影响近海养殖物种等相关研究,阐明了海底地下水排放对不同养殖生态系统的重要控制作用。首先,近25年文献计量分析的结果表明,关于海底地下水排放与海水养殖之间关系的研究呈明显上升趋势,且在全球范围内具有广阔的地域分布和研究远景。其次,总结相关研究案例发现,一方面海底地下水排放及其输送的营养物质能够提高初级生产力,进而促进近海藻类、鱼类和贝类等海水养殖物种的生长,对其产量产生积极的影响;另一方面,通过海底地下水排放输送的过量物质也会给海水养殖物种带来负面影响,导致它们减产甚至死亡。与此同时,养殖海水进入沿岸含水层也会反过来影响海底地下水排放及其携带入海物质的种类和通量。因此,相对于河流等输入,在海水养殖的可持续发展中如何高效利用相对“隐蔽”的海底地下水排放过程中携带的营养物质,提高海水养殖生物生产,减少负面效应,是值得关注的,也是将来海水养殖相关研究工作中值得关注的重点工作之一,其研究成果可为我国近海养殖合理管理和渔业资源的可持续利用提供基础数据参考。

Submarine Groundwater Discharge (SGD), a natural phenomenon in estuarine, coastal and offshore regions, is an important conduit for terrestrial materials input to the sea, and plays a dominant role in coastal biogeochemical cycles and environmental effects. With the rapid development of marine aquaculture in recent years, the relevant studies of the impacts of SGD on mariculture species are described, and the importance of SGD on different marine aquaculture ecosystems is illustrated. Firstly, the results of the bibliometric analysis show that the published literatures on the relationships between SGD and mariculture have significantly increased in the last 25 years, and it has been distributed with broad space and prospect worldwide. Through the summarized study cases, it was found that SGD and the associated nutrient substance can modify hydrological condition and can enhance the primary productivity in coastal waters, and then promote the growth of mariculture species such as macroalgae, fish and shellfish, showing positive impacts of SGD on mariculture. However, SGD was also suggested to have negative impact on mariculture species by reducing the production and even driving them to death. Meanwhile, the coastal mariculture was thought to affect SGD process and the associated materials from land to the sea. Therefore, with respect to the riverine input, although SGD is generally hidden, its-derived nutrient substances have been shown to play an increasingly important role in mariculture regions. More attention and robust research should be given to SGD and the associated materials in mariculture ecosystems, in order to make better use of SGD for sustainable development of marine aquaculture, which can provide scientific support for fishery rational arrangements and ecosystem managements of marine aquaculture in China.

中图分类号: 

图1 海底地下水排放过程示意图(据参考文献[ 7 ]修改)
Fig. 1 Schematic diagram of SGD processesmodified after reference 7 ])
图2 基于“Web of Science”搜索关于SGD对海水养殖潜在影响报道文献的发表数量与被引频次
Fig. 2 The number of publications and citations on global SGD studies related to mariculture based on "Web of Science"
图3 关于SGD对海水养殖潜在影响报道论文的发表国家地区及合作关系图谱
绿色节点大小代表国家地区的发文量,节点间连线代表国家间的合作,粉色圆边界代表国家间的合作强度
Fig. 3 Map of literatures and cooperation between countries and regions of global SGD studies related to mariculture
The green node size represents the countries' published volume; the connection lines between nodes indicate cooperation; and the pink circular boundaries represent the strength of cooperation between countries
图4 关于SGD对海水养殖潜在影响报道的高共被引文献的时区演进图
Fig. 4 Co-citation evolution map of literatures of global SGD studies related to mariculture
图5 美国乔治亚州一处牡蛎养殖区不同区域点位牡蛎密度和每个样方数量分布与SGD的通量关系 63
黑色实线表示拟合线,黑色虚线表示95%置信区间
Fig. 5 The relationships between SGD flux and oyster density and oyster recruitment across the local sample sites in GeorgiaUSA 63
The black solid lines are fit lines and black dashed lines represent the 95% confidence intervals
图6 SGD及其输送的营养物质对近海海水养殖物种影响的概念图(据参考文献[ 16 ]修改)
加号代表积极影响,减号代表负面影响
Fig. 6 Schematic diagram of the impacts of SGD and associated nutrient substance on mariculture species in coastal ecosystemsmodified after reference 16 ])
The plus (+) symbols represent positive impacts, and the minus (-) symbols represent negative impacts
1 YANG Hongsheng. Construction of marine ranching in China: reviews and prospects [J]. Journal of Fisheries of China, 2016, 40(7): 1 133-1 140.
杨红生. 我国海洋牧场建设回顾与展望 [J]. 水产学报, 2016, 40(7): 1 133-1 140.
2 WANG Aixiang, WANG Jinhuan. Developing marine ranching to construct Blue Granary [J]. Chinese Fisheries Economics, 2013, 31(3): 69-74.
王爱香, 王金环. 发展海洋牧场构建”蓝色粮仓“ [J]. 中国渔业经济, 2013, 31(3): 69-74.
3 LI Hailong, WANG Xuejing. Submarine groundwater discharge: a review [J]. Advances in Earth Science, 2015, 30(6): 636-646.
李海龙, 王学静. 海底地下水排泄研究回顾与进展 [J]. 地球科学进展, 2015, 30(6): 636-646.
4 GUO Jun, GUO Guanchao. Strategic thinking on accelerating the development of marine economy [J]. Ocean Development and Management, 2010, 27(12): 64-69.
郭军, 郭冠超. 对加快发展海洋经济的战略思考 [J]. 海洋开发与管理, 2010, 27(12): 64-69.
5 BURNETT W C, BOKUNIEWICZ H, HUETTEL M, et al. Groundwater and pore water inputs to the coastal zone [J]. Biogeochemistry, 2003, 66(1/2): 3-33.
6 MOORE W S. The effect of submarine groundwater discharge on the ocean [J]. Annual Review of Marine Science, 2010, 2: 59-88.
7 SWARZENSKI P W. U/Th series radionuclides as coastal groundwater tracers [J]. Chemical Reviews, 2007, 107(2): 663-674.
8 SANTOS I R, EYRE B D, HUETTEL M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review [J]. Estuarine, Coastal and Shelf Science, 2012, 98: 1-15.
9 SANTOS I R, CHEN Xiaogang, LECHER A L, et al. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry [J]. Nature Reviews Earth & Environment, 2021, 2(5): 307-323.
10 LUIJENDIJK E, GLEESON T, MOOSDORF N. Fresh groundwater discharge insignificant for the world's oceans but important for coastal ecosystems [J]. Nature Communications, 2020, 11(1): 1260.
11 JOHANNES R. The ecological significance of the submarine discharge of groundwater [J]. Marine Ecology Progress Series, 1980, 3: 365-373.
12 LIU Jianan, SU Ni, WANG Xilong, et al. Submarine groundwater discharge and associated nutrient fluxes into the Southern Yellow Sea: a case study for semi-enclosed and oligotrophic seas-implication for green tide bloom [J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 139-152.
13 HWANG D W, LEE Y W, KIM G. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea [J]. Limnology and Oceanography, 2005, 50(5): 1 393-1 403.
14 LIU Jianan, DU Jinzhou, YU Xueqing. Submarine groundwater discharge enhances primary productivity in the Yellow Sea, China: insight from the separation of fresh and recirculated components [J]. Geoscience Frontiers, 2021, 12(6): 101204.
15 ALORDA-KLEINGLASS A, RUIZ-MALLÉN I, DIEGO-FELIU M, et al. The social implications of submarine groundwater discharge from an ecosystem services perspective: a systematic review [J]. Earth-Science Reviews, 2021, 221: 103742.
16 TANIGUCHI M, DULAI H, BURNETT K M, et al. Submarine groundwater discharge: updates on its measurement techniques, geophysical drivers, magnitudes, and effects [J]. Frontiers in Environmental Science, 2019, 7: 1-26.
17 FU Yongyong, DENG Jinsong, WANG Hongquan, et al. A new satellite-derived dataset for marine aquaculture areas in China's coastal region [J]. Earth System Science Data, 2021, 13(5): 1 829-1 842.
18 CAO Tianzheng, HAN Dongmei, SONG Xianfang, et al. Bibliometric analysis of research progress on coastal surface water and groundwater interaction [J]. Advances in Earth Science, 2020, 35(2): 154-166.
曹天正, 韩冬梅, 宋献方, 等. 滨海地区地表水—地下水相互作用研究进展的文献计量分析 [J]. 地球科学进展, 2020, 35(2): 154-166.
19 KIKUCHI W K. Prehistoric hawaiian fishponds [J]. Science, 1976, 193(4 250): 295-299.
20 KOHOUT F A, KOLIPINSKI M C. Biological zonation related to groundwater discharge along the shore of Bicsayne Bay, Miami, Florida[C]// Estuaries. Washington DC: American Association for the Advancement of Science Publication, 1967.
21 LECHER A L, MACKEY K R M. Synthesizing the effects of submarine groundwater discharge on marine biota [J]. Hydrology, 2018, 5(4): 60.
22 AMATO D W, BISHOP J M, GLENN C R, et al. Impact of submarine groundwater discharge on marine water quality and reef biota of Maui [J]. PLoS ONE, 2016, 11(11): e0165825.
23 SLOMP C P, van CAPPELLEN P. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact [J]. Journal of Hydrology, 2004, 295(1/4): 64-86.
24 GRZELAK K, TAMBORSKI J, KOTWICKI L, et al. Ecostructuring of marine nematode communities by submarine groundwater discharge [J]. Marine Environmental Research, 2018, 136: 106-119.
25 YAMAMOTO T, NAKANISHI N, TAKEDA K, et al. Material load from submarine groundwater discharge around Ohkurokami Island and Suo-ohshima Island [J]. Nippon Suisan Gakkaishi, 2017, 83(3): 385-391.
26 CYRONAK T, SANTOS I R, ERLER D V, et al. Drivers of pCO2 variability in two contrasting coral reef lagoons: the influence of submarine groundwater discharge [J]. Global Biogeochemical Cycles, 2014, 28(4): 398-414.
27 WANG Guizhi, JING Wenping, WANG Shuling, et al. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system [J]. Environmental Science & Technology, 2014, 48(22): 13 069-13 075.
28 MOOSDORF N, OEHLER T. Societal use of fresh submarine groundwater discharge: an overlooked water resource [J]. Earth-Science Reviews, 2017, 171: 338-348.
29 POST V, EICHHOLZ M, BRENTFÜHRER R. Groundwater management in coastal zones[M]. Hannover, Germany: Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), 2018.
30 LAPOINTE B E. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida [J]. Limnology and Oceanography, 1997, 42(5): 1 119-1 131.
31 DERSE E, KNEE K L, WANKEL S D, et al. Identifying sources of nitrogen to Hanalei Bay, Kauai, utilizing the nitrogen isotope signature of macroalgae [J]. Environmental Science & Technology, 2007, 41(15): 5 217-5 223.
32 ZHAO Shibin, XU Bochao, YAO Qinzhen, et al. Nutrient-rich submarine groundwater discharge fuels the largest green tide in the world [J]. Science of the Total Environment, 2021, 770: 144845.
33 PENG Tong, ZHU Zhuoyi, DU Jinzhou, et al. Effects of nutrient-rich submarine groundwater discharge on marine aquaculture: a case in Lianjiang, East China Sea [J]. Science of the Total Environment, 2021, 786: 147388.
34 HOU Jing, ZHANG Guiling, SUN Mingshuang, et al. Methane distribution, sources, and sinks in an aquaculture bay (Sanggou Bay, China) [J]. Aquaculture Environment Interactions, 2016, 8: 481-495.
35 ZHU Xunchi, ZHANG Ruifeng, LIU Sumei, et al. Seasonal distribution of dissolved iron in the surface water of Sanggou Bay, a typical aquaculture area in China [J]. Marine Chemistry, 2017, 189: 1-9.
36 WANG Xilong, DU Jinzhou, JI Tao, et al. An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay—a typical multi-species culture ecosystem in China [J]. Marine Chemistry, 2014, 167: 113-122.
37 KWON H K, KANG H, OH Y H, et al. Green tide development associated with submarine groundwater discharge in a coastal harbor, Jeju, Korea [J]. Scientific Reports, 2017, 7(1): 6325.
38 ROSADO-TORRES A A, MARINO-TAPIA I, ACEVEDO-RAMIREZ C. Decreased roughness and macroalgae dominance in a coral reef environment with strong influence of submarine groundwater discharges [J]. Journal of Coastal Research, 2019(): 13-21.
39 CARRUTHERS T, TUSSENBROEK B VAN, DENNISON W. Influence of submarine springs and wastewater on nutrient dynamics of Caribbean seagrass meadows [J]. Estuarine, Coastal and Shelf Science, 2005, 64(2/3): 191-199.
40 KAMERMANS P, HEMMINGA M A, TACK J F, et al. Groundwater effects on diversity and abundance of lagoonal seagrasses in Kenya and on Zanzibar Island (East Africa) [J]. Marine Ecology Progress Series, 2002, 231: 75-83.
41 SHORT F T, BURDICK D M. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts [J]. Estuaries, 1996, 19(3): 730-739.
42 MCCLELLAND J W, VALIELA I, MICHENER R H. Nitrogen‐stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds [J]. Limnology and Oceanography, 1997, 42(5): 930-937.
43 VALIELA I, FOREMAN K, LAMONTAGNE M, et al. Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts [J]. Estuaries, 1992, 15(4): 443-457.
44 MILLER D C, ULLMAN W J. Ecological consequences of ground water discharge to Delaware Bay, United States [J]. Groundwater, 2004, 42(7): 959-970.
45 LILKENDEY J, PISTERNICK T, NEUMANN S I, et al. Fresh submarine groundwater discharge augments growth in a reef fish [J]. Frontiers in Marine Science, 2019, 6: 613.
46 PISTERNICK T, LILKENDEY J, AUDIT‐MANNA A, et al. Submarine groundwater springs are characterized by distinct fish communities [J]. Marine Ecology, 2020, 41(5): e12610.
47 PIRONET F, JONES J. Treatments for ectoparasites and diseases in captive western Australian dhufish [J]. Aquaculture International, 2000, 8(4): 349-361.
48 UTSUNOMIYA T, HATA M, SUGIMOTO R, et al. Higher species richness and abundance of fish and benthic invertebrates around submarine groundwater discharge in Obama Bay, Japan [J]. Journal of Hydrology: Regional Studies, 2017, 11: 139-146.
49 BURNETT K M, WADA C A, TANIGUCHI M, et al. Evaluating the tradeoffs between groundwater pumping for snow-melting and nearshore fishery productivity in Obama City, Japan [J]. Water, 2018, 10(11): 1556.
50 HATA M, SUGIMOTO R, HORI M, et al. Occurrence, distribution and prey items of juvenile marbled sole Pseudopleuronectes yokohamae around a submarine groundwater seepage on a tidal flat in southwestern Japan [J]. Journal of Sea Research, 2016, 111: 47-53.
51 FUJITA K, SHOJI J, SUGIMOTO R, et al. Increase in fish production through bottom-up trophic linkage in coastal waters induced by nutrients supplied via submarine groundwater [J]. Frontiers in Environmental Science, 2019, 7: 82.
52 STARKE C, EKAU W, MOOSDORF N. Enhanced productivity and fish abundance at a submarine spring in a coastal lagoon on Tahiti, French Polynesia [J]. Frontiers in Marine Science, 2020, 6: 809.
53 MONTIEL D, LAMORE A, STEWART J, et al. Is Submarine Groundwater Discharge (SGD) important for the historical fish kills and harmful algal bloom events of Mobile Bay?[J]. Estuaries and Coasts, 2019, 42(2): 470-493.
54 MCCOY C, VISO R, PETERSON R N, et al. Radon as an indicator of limited cross-shelf mixing of submarine groundwater discharge along an open ocean beach in the South Atlantic Bight during observed hypoxia [J]. Continental Shelf Research, 2011, 31(12): 1 306-1 317.
55 PETERSON R N, MOORE W S, CHAPPEL S L, et al. A new perspective on coastal hypoxia: the role of saline groundwater [J]. Marine Chemistry, 2016, 179: 1-11.
56 PILÓ D, BARBOSA A B, TEODÓSIO M, et al. Are submarine groundwater discharges affecting the structure and physiological status of rocky intertidal communities? [J]. Marine Environmental Research, 2018, 136: 158-173.
57 ANDRISOA A, LARTAUD F, RODELLAS V, et al. Enhanced growth rates of the Mediterranean mussel in a coastal lagoon driven by groundwater inflow [J]. Frontiers in Marine Science, 2019, 6: 753.
58 HOSONO T, ONO M, BURNETT W C, et al. Spatial distribution of submarine groundwater discharge and associated nutrients within a local coastal area [J]. Environmental Science & Technology, 2012, 46(10): 5 319-5 326.
59 SPALT N, MURGULET D, ABDULLA H. Spatial variation and availability of nutrients at an oyster reef in relation to submarine groundwater discharge [J]. Science of the Total Environment, 2020, 710: 136283.
60 SPALT N, MURGULET D, HU Xinping. Relating estuarine geology to groundwater discharge at an oyster reef in Copano Bay, TX [J]. Journal of Hydrology, 2018, 564: 785-801.
61 CHEN Xiaogang, LAO Yanling, WANG Jinlong, et al. Submarine Groundwater-Borne Nutrients in a Tropical Bay (Maowei Sea, China) and their impacts on the oyster aquaculture [J]. Geochemistry Geophysics Geosystems, 2018, 19(3): 932-951.
62 WANG Xilong, SU Kaijun, CHEN Xiaogang, et al. Submarine groundwater discharge-driven nutrient fluxes in a typical mangrove and aquaculture bay of the Beibu Gulf, China [J]. Marine Pollution Bulletin, 2021, 168: 112500.
63 CARROLL J M, KELLY J L, TREIBLE L, et al. Submarine groundwater discharge as a potential driver of eastern oyster, Crassostrea virginica, populations in Georgia [J]. Marine Environmental Research, 2021, 170: 105440.
64 RAUSCH R, DIRKS H, KALLIORAS A, et al. The Riddle of the springs of dilmun-does the Gilgamesh Epic tell the truth [J]. Groundwater, 2014, 52(4): 640-644.
65 WASKA H, KIM G. Differences in microphytobenthos and macrofaunal abundances associated with groundwater discharge in the intertidal zone [J]. Marine Ecology Progress Series, 2010, 407: 159-172.
66 WASKA H, KIM G. Submarine Groundwater Discharge (SGD) as a main nutrient source for benthic and water-column primary production in a large intertidal environment of the Yellow Sea [J]. Journal of Sea Research, 2011, 65(1): 103-113.
67 KANG Pingping, LIU Peng, WANG Fuqiang. Use of multiple isotopes to evaluate the impact of mariculture on nutrient dynamics in coastal groundwater [J]. Environmental Science and Pollution Research, 2019, 26(12): 12 399-12 411.
68 KANG Pingping, XU Shiguo. The impact of mariculture on nutrient dynamics and identification of the nitrate sources in coastal waters [J]. Environmental Science and Pollution Research, 2016, 23(2): 1 300-1 311.
69 TAL A, WEINSTEIN Y, YECHIELI Y, et al. The influence of fish ponds and salinization on groundwater quality in the multi-layer coastal aquifer system in Israel [J]. Journal of Hydrology, 2017, 551: 768-783.
70 LI Qinghua, ZHANG Yanpeng, CHEN Wen, et al. The integrated impacts of natural processes and human activities on groundwater salinization in the coastal aquifers of Beihai, southern China [J]. Hydrogeology Journal, 2018, 26(5): 1 513-1 526.
71 CHANG Yane, LI Guangzhao. The characteristics of seawater intrusion at Nanliu River Delta in Beihai City and its effect on groundwater [J]. Journal of Anhui Agricultural Sciences, 2011, 39(18): 11 057-11 060.
常艳娥, 黎广钊. 北海市海水养殖区海水入侵特征及对地下水的影响——以南流江三角洲平原为例 [J]. 安徽农业科学, 2011, 39(18): 11 057-11 060.
72 LEE Y-W, KIM G. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer [J]. Estuarine, Coastal and Shelf Science, 2007, 71(1/2): 309-317.
73 MAYFIELD K, DULAIOVA H, GLENN C R, et al. Submarine groundwater discharge in a stream-dominated embayment: Kahana Bay, Oahu, Hawaii[M]//American society of limnology and oceanography ocean sciences meeting. Honolulu, Hawaii, 2014.
[1] 范小杉. 国际社会对生态系统服务研究误区的研讨综述[J]. 地球科学进展, 2021, 36(6): 616-624.
[2] 李强, 蒲俊兵, 黄妮, 杜红梅, 祁向坤, 王力, 杨慧. 断陷盆地生态环境地质分异及石漠化演变机理的研究途径[J]. 地球科学进展, 2017, 32(9): 899-907.
[3] 张虎才. 滇池构造漏水隐患及水安全[J]. 地球科学进展, 2016, 31(8): 849-857.
[4] 张洪瑞, 刘传联, 梁丹. 热带海洋生产力:现代过程与地质记录[J]. 地球科学进展, 2016, 31(3): 277-285.
[5] 黄小平, 张景平, 江志坚. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理[J]. 地球科学进展, 2015, 30(9): 961-969.
[6] 刘诚刚,宁修仁,郝锵,乐凤凤. 海洋浮游植物溶解有机碳释放研究进展[J]. 地球科学进展, 2010, 25(2): 123-132.
[7] 符娟林,乔标. 基于模糊物元的城市化生态预警模型及应用[J]. 地球科学进展, 2008, 23(9): 990-995.
[8] 周俊,邓伟,刘伟龙. 沟渠湿地的水文和生态环境效应研究进展[J]. 地球科学进展, 2008, 23(10): 1079-1083.
[9] 马乐宽,李天宏,刘国彬. 基于水土保持的流域生态环境需水研究[J]. 地球科学进展, 2008, 23(10): 1102-1110.
[10] 王宝鉴,宋连春,张强,黄玉霞,杨选雄,韩兰英. 石羊河流域水资源对气候变暖的响应及对生态环境的影响[J]. 地球科学进展, 2007, 22(7): 730-737.
[11] 史培军,王静爱,冯文利,叶涛,葛怡,陈婧,刘婧. 中国土地利用/覆盖变化的生态环境安全响应与调控[J]. 地球科学进展, 2006, 21(2): 111-119.
[12] 孙军;宁修仁. 海洋浮游植物群落的比生长率[J]. 地球科学进展, 2005, 20(9): 939-945.
[13] 檀赛春;石广玉. 海洋初级生产力的卫星遥感[J]. 地球科学进展, 2005, 20(8): 863-870.
[14] 何勇;董文杰;季劲均;丹利. 基于AVIM的中国陆地生态系统净初级生产力模拟[J]. 地球科学进展, 2005, 20(3): 345-349.
[15] 龙爱华;张志强;苏志勇. 生态足迹评介及国际研究前沿[J]. 地球科学进展, 2004, 19(6): 971-981.
阅读次数
全文


摘要