地球科学进展 ›› 2005, Vol. 20 ›› Issue (3): 345 -349. doi: 10.11867/j.issn.1001-8166.2005.03.0345

生态学研究 上一篇    下一篇

基于AVIM的中国陆地生态系统净初级生产力模拟
何勇 1,董文杰 1,2,季劲均 1,3,丹 利 1   
  1. 1.中国科学院大气物理研究所东亚区域气候—环境重点实验室,北京 100029;
    2.中国气象局国家气候中心,北京 100081;
    3.中国科学院地理科学与自然资源研究所,北京 100101
  • 收稿日期:2004-04-15 修回日期:2004-08-13 出版日期:2005-03-25
  • 通讯作者: 何勇 E-mail:heyong@cma.gov.cn
  • 基金资助:

    国家自然科学基金重点项目“植被大气双向耦合的区域集成环境模式系统的研制和应用”(编号:40231006);国家重点基础研究发展规划项目“北方干旱半干旱地区有序人类活动的环境效应的综合分析和对策建议”(编号:G1999043408)资助.

THE NET PRIMARY PRODUCTION SIMULATION OF TERRESTRIAL ECOSYSTEMS IN CHINA BY AVIM

HE Yong 1; DONG Wenjie 1,2; JI Jinjun 1;3; DAN Li 1   

  1. 1.Key Laboratory of Regional Climate-Environment Research for Template East Asia, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029,China;
    2.National Climate Center,CMA,Beijing 100081, China;
    3. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • Received:2004-04-15 Revised:2004-08-13 Online:2005-03-25 Published:2005-03-25

利用AVIM(植被与大气相互作用模式)模拟了现代中国陆地生态系统NPP的分布并计算了全国NPP的碳总量。研究结果表明我国现代陆地生态系统的年NPP变化范围在0~1 389 gC/m2之间,年平均值为355 gC/m2,年吸收3.33 Pg的大气碳。中国陆地植被NPP呈现自东向西逐渐减小的趋势,NPP的最大值出现在云南西双版纳地区,最小值分布于青藏高原以及新疆地区。中国现代陆地植被NPP主要分布于小于100 gC/(m2·a)、300~500 gC/(m2·a)以及500~700 gC/(m2·a)3个区间,其占总计算值的比例都超过了20%以上;大于1 000 gC/(m2·a)的NPP最少,只占总数的2.15%。对中国陆地植被NPP与气候的相关性分析表明,降水是影响我国陆地生态系统NPP的主要原因。

In this paper we used an Atmosphere-Vegetation Interaction Model (AVIM) that has been validated at regional and global scales to estimate the NPP (net primary production) variation of modern Chinese terrestrial ecosystems and its responses to the climate change. AVIM consists of two inter-coupled components: physical process and eco-physiological process, involving the mater and energy balance between the atmosphere, vegetation and soil. Chinese vegetation is classified 9 types and soil texture is classified into 6 types. The parameters of eco-physiological processes for each vegetation type for AVIM are collected. Daily weather data for 0.5×0.5 grid cells as the forcing of the model are generated from the monthly climate data, coming from the climate research unit, University of East Anglia, UK. The estimated NPP of chinese vegetation changes from 0 to 1 389 gC/(cm2·a), averaging 355 gC/(cm2·a). Vegetation from the rain forest has the high NPP value, and the low NPP corresponding to the shrub with no cover. The NPP decreases from east to west in China, with the highest NPP occuring at the south area of Yunnan Province, and the lowest appearing at Tibet and Xinjiang areas. Total NPP of the terrestrial ecosystems is 3.33 Pg C, suggesting that such amount of carbon is absorbed from the atmosphere by the vegetation in China. Our work also shows that precipitation is the main factor affecting the NPP of terrestrial ecosystems in China.

中图分类号: 

 [1] Petit J R, Jouzel J, Raynaud D N, et al. Climate and atmospheric history of the past 420,000 years from the  Vostok ice core, Antarctica [J]. Nature, 1999, 399: 429-436. 
 [2] Richars J G, Evan H D, Paul G F, et al. Primary productivity of planet Earth: Biological determinants and physical constrains in terrestrial and aquatic habits [J]. Global Change Biology, 2001,7: 849-882. 
 [3] Wittaker R H, Likens G E. The biosphere and man [A]. In: Wittaker R H,Likens G E,eds. Primary Productivity of the Biosphere [C]. Berlin:Springer,1977.305-328. 
 [4] Lieth H. Primary production: Terrestrial ecosystem [J]. Human Ecology, 1973, 1: 303-332.
 [5] Cramer W, Kicklighter D Q, Bondeau A, et al. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results [J]. Global Change Biology, 1999, 5 (suppl.):1-15.  
[6] Zhou Guangsheng, Zhang Xinshi. Study on npp of natural vegetation in China under global climate change [J]. Acta Phytoecologica Sinica, 1996, 20(1): 11-19. 
 [7] Sun Rui, Zhu Qijiang. Effect of climate change of terrestrial net primary productivity in China [J]. Journal of Remote Sensing, 2001, 5(1): 58-61. 
 [8] Piao Shilong, Fang Jingyun, Guo Qinghua. Terrestrial net primary production and its spatio-temporal patterns in China during 1982-1999 [J]. Acta Scientiarum Naturilium Universitatis Pekinensis, 2001,37(4): 563-569. 
 [9] Tao Bo, Li Kerang, Shao Xuemei, et al. Temporal and spatial patterns of net primary production of terrestrial ecosystems in China [J]. Acta Geographica Sinaca, 2003, 58(3): 372-380. 
 [10] Ji J J. A climate-vegetation interaction model: Simulating physical and biological processes at the surface [J]. Journal of Biogeography, 1995,22:445-451. 
 [11] Ji J J, Hu Y C. A simple land surface process model for use in the climate study [J]. Acta Meterologia Sinica, 1989, 3: 344-353. 
 [12] Lu Jianghua. The Interaction Simulation between Atmosphere and Vegetation under the Regional and Annual Scales [D]. Beijing: Institute of Atmospheric Physics of CAS, 1999. 
 [13] Li Yinpeng, Ji Jinjun. Simulations of carbon exchange between global terrestrial ecosystems and the atmosphere [J]. Acta Geographica Sinaca, 2001, 56(4): 379-389.  
 [14] Liu Mingliang. Land-use/Cover change and Terrestrial Ecosystem Phytomass Carbon Pool and Production in China [D]. Beijing: Institute of Remote Sensing Applications of CAS, 2001. 
 [15] Liu Shirong, Xu Deying, Wang Bin,et al. The impacts of climate change on productivity of the forests in China [A]. In: Xu Deying eds. A Study on the Impacts of Climate Change on Forests in China [C]. Beijing: China Science and Technology Press, 1997.75-93.

[1] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[2] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
[3] 王训明, 周娜, 郎丽丽, 花婷, 焦琳琳, 马文勇. 风沙活动对陆地生态系统影响研究进展[J]. 地球科学进展, 2015, 30(6): 627-635.
[4] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[5] 何洪林,张黎, 黎建辉, 周园春,任小丽,于贵瑞. 中国陆地生态系统碳收支集成研究的e-Science 系统构建[J]. 地球科学进展, 2012, 27(2): 246-254.
[6] 鱼腾飞,冯起,司建华,席海洋,陈丽娟. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12): 1260-1268.
[7] 陈木宏. 国际综合大洋钻探计划IODP323白令海航次介绍[J]. 地球科学进展, 2009, 24(12): 1352-1356.
[8] 彭琴,董云社,齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874-883.
[9] 季劲钧,黄玫. 青藏高原地表能量通量的估计[J]. 地球科学进展, 2006, 21(12): 1268-1272.
[10] 牛栋,李正泉,于贵瑞. 陆地生态系统与全球变化的联网观测研究进展[J]. 地球科学进展, 2006, 21(11): 1199-1206.
[11] 孙秉强;张强;董安祥;陈少勇. 甘肃黄土高原土壤水分气候特征[J]. 地球科学进展, 2005, 20(9): 1041-1046.
[12] 傅伯杰;牛栋;赵士洞. 全球变化与陆地生态系统研究:回顾与展望[J]. 地球科学进展, 2005, 20(5): 556-560.
[13] 汪卫国;冯兆东;P.Khosbayar;T.Narantsetseg. 蒙古全新世气候变化研究进展[J]. 地球科学进展, 2005, 20(2): 240-247.
[14] 于贵瑞;王秋凤;于振良. 陆地生态系统水—碳耦合循环与过程管理研究[J]. 地球科学进展, 2004, 19(5): 831-839.
[15] 李晓兵,陈云浩,张云霞,范一大,周涛,谢锋. 气候变化对中国北方荒漠草原植被的影响[J]. 地球科学进展, 2002, 17(2): 254-261.
阅读次数
全文


摘要