地球科学进展 ›› 2004, Vol. 19 ›› Issue (5): 831 -839. doi: 10.11867/j.issn.1001-8166.2004.05.0831

生态学研究 上一篇    下一篇

陆地生态系统水—碳耦合循环与过程管理研究
于贵瑞 1;王秋凤 1, 2;于振良 3   
  1. 中国科学院地理科学与资源研究所,北京 100101;中国科学院研究生院,北京 100039; 国家自然科学基金委员会,北京 100085
  • 收稿日期:2003-06-16 修回日期:2003-11-25 出版日期:2004-12-20
  • 通讯作者: 于贵瑞(1959-),男,辽宁大连人,研究员,主要从事生态系统管理、陆地生态系统碳循环和水循环研究. E-mail:E-mail: yuguirui@cern.ac.cn
  • 基金资助:

    国家杰出青年科学基金项目“陆地生态系统水—碳耦合循环的生理生态学机制与模型研究”(编号:30225012)资助.

STUDY ON THE COUPLING CYCLE OF WATER-CARBON AND PROCESS MANAGEMENT IN TERRESTRIAL ECOSYSTEM

YU Gui-rui 1, WANG Qiu-feng 1, 2, YU Zhen-liang 3   

  1. 1. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences,Beijing 100101, China; 2. Graduate School of Chinese Academy of Sciences, Beijing 100039, China; 3. National Natural Science Foundation of China, Beijng 100085, China
  • Received:2003-06-16 Revised:2003-11-25 Online:2004-12-20 Published:2004-10-01

陆地生态系统的水循环与碳循环是地球表层系统物质循环与能量交换的核心,也是最基本的耦合的两个生态学过程。区域或全球尺度生态系统的水管理与碳管理是全球变化科学与可持续发展研究的两大主题,是人类维持全球生态系统的物质与能量循环、自然资源循环再生的重要生态学途径。我们在综合评述现代应用生态学研究的发展趋势,陆地生态系统水和碳循环与生态系统管理关系的基础上,提出了陆地生态系统水循环与碳循环过程管理的内容与思路,阐述了生态系统水和碳耦合循环机制与模拟综合研究的新设想。

Water and carbon cycles are not only the cores of material cycle and energy exchange in terrestrial ecosystem, but also two basic coupling ecological processes. Managements of water and carbon of regional or global ecosystem are two key topics of global change science and sustainable development research, simultaneously, an important ecological approach for human to maintain the cycle and renewal of natural resource and the material and energy cycle in global ecosystem. In this paper we reviewed the development trend of modern applied ecology comprehensively, based on the relationship among water and carbon cycles in terrestrial ecosystem and ecosystem management, brought forward the content and framework about the processes management, and illuminated new design on the synthetic research of the mechanism and simulation of water-carbon coupling cycle in terrestrial ecosystem. 

中图分类号: 

[1]Kessler W B, Salwasser H, Cartwright C W, et al. New perspectives for sustainable natural resources management [J]. Ecological Applications, 1992, 2 (3): 221-225.
[2]Ludwig D, Hilborn R, Walters C. Uncertainty, resource exploitation, and conservation: Lessons from history [J]. Science, 1993, 260: 17, 36.
[3]Grumbine R E. What is ecosystem management [J]. Conservation Biology, 1994, 8(1): 27-38.
[4]Christensen N L, Bartuska A M, Brown J H, et al. The report of the Ecological Society of America Committee on the scientific basis for ecosystem management [J]. Ecological Applications, 1996, 6(3): 665-691.
[5]Ren Hai (任海), Qiu Jianguo (邬建国), Peng Shaolin (彭少麟), et al. Concept of ecosystem management and its essential elements [J]. Chinese Journal of Applied Ecology (应用生态学报), 2000, 11(3): 455-458 (in Chinese). 
[6]Yu Guirui (于贵瑞). A conceptual framework and the ecological basis for ecosystem management [J].Chinese Journal of Applied Ecology(应用生态学报), 2001, 12 (5): 787-794 (in Chinese).
[7]Yu Guirui (于贵瑞). Outline of scientific issues and developmental trends of ecosystem management [J]. Resources Science (资源科学), 2001, 23 (6): 1-4 (in Chinese).
[8]Yu Guirui (于贵瑞), Xie Gaodi (谢高地), Yu Zhenliang (于振良), et al. Important ecological topics on regional scale ecosystem management in China [J]. Chinese Journal of Applied Ecology (应用生态学报) , 2002, 13 (7): 885-891 (in Chinese).
[9]Yu Guirui (于贵瑞), Niu Dong (牛栋), He Honglin (何洪林). Ecosystem management, eco-informatics and data resource management [J]. Resources Science (资源科学), 2003, 25 (1): 48-53 (in Chinese). 
[10]Liu Wenxiang (刘文祥), Geng Shigang (耿世刚), Liu Jinjie (刘金洁), et al. Water Resources Crisis[M].Guiyang:Guizhou Science and Technology Press, 2001.1-4(in Chinese). 
[11]Chameides W L, Perdue E M. Biogeochemical Cycles[M]. New York: Oxford University Press, 1997.
[12]Prentice I C, Farquhar G D, Fasham M J R, et al. The carbon cycle and atmosphere CO2[A]. In: Houghton J T, Yihui D,eds. The Intergovernmental Panel on Climate Change (IPCC)-Third Assessment Report [C]. Cambridge: Cambridge University Press, 2001.
[13]IPCC. Climate Change 1994: Radiative Forcing of Climate Change [M]. Cambridge: Cambridge University Press, 1995.
[14]Houghton J T, Meira F, Callander L G, et al. Climate Change 1995: The Science of Climate Change [M]. Cambridge: Cambridge University Press, 1996.
[15]Nakicenovic N, Swart R. Special Report of Emission Scenarios of the Intergovernment Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2000.
[16]Chen Yiyu (陈宜瑜). Global change research: Progress and prospect[J]. Earth Science Frontiers (地学前缘), 2002, 9(1): 11-18 (in Chinese).
[17]Yu Guirui (于贵瑞), Li Haitao(李海涛), Wang Shaoqiang(王绍强), et al. Global Change, Carbon Cycle and Storage in Terrestrial Ecosystem[M].Beijing: China Meteorological Press, 2003(in Chinese). 
[18]Fang Jingyun (方精云), Tang Yanhong (唐艳鸿), Lin Junda (林俊达), et al. Global Ecology-Climate Change and Ecological Responses[M].Beijng: Higher Education Press, Springer Press, 2000 (in Chinese).
[19]Kondo J. Meteorology of Water Environment-Balance of Water and Heat on Land Surface[M].Tokyo: Ashakula press,1994.1-20.
[20]Houghton R A. The annual net flux of carbon to the atmosphere from changes in land use 1850-1990 [J].Tellus,1999,50B:298-313. 
[21]Watson R T, Verardo D J. Land-use Change and Forestry [M]. Cambridge: Cambridge University Press, 2000. 25-51. 
[22]Tans P P, Fung I, Takahashi T. Observational constraints on the global atmospheric carbon budget [J]. Science,1990, 247: 1 431-1 438.
[23]Fan S, Gloor M, Mahlman P S. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and medals [J]. Science, 1998, 282: 442-445.
[24]Martin P. Global CO2monitoring network [J]. Science, 1998, 281:1 085.
[25]Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998 [J]. Science, 2001, 292: 2 320-2 322.
[26]Phillips O L,Malhi Y, Higuchi N, et al. Changes in the carbon balance of tropical forests: Evidence from long-term plots [J]. Science,1998, 282: 439-442.
[27]Parton W J, Schimel D S, Cole D S, et al. Analysis of factors soil organic levels of grasslands in the Great Plains [J]. Soil Science Society of America Journal,1987, 51: 1 173-1 179. 
[28]Parton W J, Mosier A R, Schimel D S. Generalized model for N2 and CO2 production from nitrification and identification [J]. Global Biogeochemical Cycles,1996, 10(3): 401-412. 
[29]Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production [J]. Nature, 1993, 363: 234-340. 
[30]Melillo J M,Borchere J,Chaney J. Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling [J]. Global Biogeochemical Cycle, 1995, 9(4): 407-437.
[31]McGuire A D, Joyce L, Kicklighter D W, et al. Productivity responses of climax temperate forests to elevated temperature and carbon dioxide: A North American comparison between two global models [J]. Climate Change, 1993, 24: 287-310. 
[32]McGuire A D, Melillo J M. The role of nitrogen in the responses of forest net primary production to elevated atmospheric carbon dioxide [J]. Annual Reviews of Ecology and Systematics, 1995, 26: 473-505. 
[33]McGuire A D, Melillo J M, Kicklighter D W, et al. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates [J]. Journal of Biogeography, 1995, 22: 785-795.
[34]McGuire A D, Melillo J M, Kicklighter D W, et al. Equilibrium responses of global primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to change in vegetation nitrogen concentration [J]. Global Biogeochemical Cycle, 1997, 11: 173-189. 
[35]Schimel D J, Melillo J M, Tian H, et al. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States [J]. Science, 2000, 287: 19-21. 
[36]Tian H, Melillo J M, Kicklighter D W, et al. Effect of interannual climate variability on carbon storage in Amazonian ecosystems [J]. Nature, 1998, 396: 664-667. 
[37]Tian H, Melillo J M, Kicklighter D W, et al. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States [J]. Tellus, 1999, 51B: 414-452. 
[38]Running S W,Coughlan J C. A general model of forest ecosystem processes for regional applications I:Hydrologic balance, canopy gas exchange and primary production processes [J]. Ecological Modeling, 1988, 42: 125-154. 
[39]Running S W, Nemani R R, Peterson D L, et al. Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation[J].Ecology, 1989,70: 1 090-1 101.
[40]Running S W, Hunt E R Jr. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models [A].In: Ehleringer J R, Field C,eds. Scaling Processes between Leaf and Landscape Levels [C]. Prlando: Academic Press, 1993. 141-158. 
[41]VEMAP Members. VEMAP: A comparison of biogeography and biogeochemistry models in the context of global climate change[J]. Global Biogeochemical Cycle, 1995, 9: 407-437.
[42]Sellers P J, Mintz Y, Sud Y C, et al. A Simple Biosphere Model (SiB) for use within General Circulation Models [J]. Journal of Atmospheric Science, 1986, 43: 505-523.
[43]Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation [J].Journal of Climate, 1996, 9: 676-705.
[44]Ji J J. A climate-vegetation interaction model: simulating physical and biological processes at the surface [J]. Journal of Biogeography, 1995, 22: 2 063-2 068.
[45]Ball J T, Woodrow I E, Berry J A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions [A]. In: Biggins I ed. Progress in Photosynthesis Research [C]. Netherlands: Martinus Nijhoff Publishers, 1987. 221-224.
[46]Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species [J]. Planta, 1980, 149: 78-90.
[47]von Caemmerer S, Farquhar G D. Some relationships between the biochemistry of photosynthesis and gas exchange of leaves [J]. Planta, 1981, 153: 376-387.
[48]Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3plants [J]. Plant, Cell and Environment, 1995, 18: 339-355.
[49]Yu G R,Zhuang J, Yu Z L. An attempt to establish a synthetic model of photosynthesis-transpiration based on stomatal behavior for maize and soybean plants grown in field [J]. Journal of Plant Physiology, 2001, 158: 861-874.
[50]Yu G R, Kobayashi T, Zhuang J, et al. A coupled model of photosynthesis-transpiration based on the stomatal behavior for maize (Zea mays L.) grown in the field [J]. Plant and Soil, 2003, 249 (2): 401-415.

[1] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[2] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
[3] 孟伟庆, 胡蓓蓓, 刘百桥, 周俊. 基于生态系统的海洋管理:概念、原则、框架与实践途径[J]. 地球科学进展, 2016, 31(5): 461-470.
[4] 王训明, 周娜, 郎丽丽, 花婷, 焦琳琳, 马文勇. 风沙活动对陆地生态系统影响研究进展[J]. 地球科学进展, 2015, 30(6): 627-635.
[5] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[6] 戴尔阜, 王晓莉, 朱建佳, 高江波. 生态系统服务权衡/协同研究进展与趋势展望[J]. 地球科学进展, 2015, 30(11): 1250-1259.
[7] 何洪林,张黎, 黎建辉, 周园春,任小丽,于贵瑞. 中国陆地生态系统碳收支集成研究的e-Science 系统构建[J]. 地球科学进展, 2012, 27(2): 246-254.
[8] 鱼腾飞,冯起,司建华,席海洋,陈丽娟. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12): 1260-1268.
[9] 彭琴,董云社,齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874-883.
[10] 周杨明,于秀波,于贵瑞. 自然资源和生态系统管理的生态系统方法:概念、原则与应用[J]. 地球科学进展, 2007, 22(2): 171-178.
[11] 牛栋,李正泉,于贵瑞. 陆地生态系统与全球变化的联网观测研究进展[J]. 地球科学进展, 2006, 21(11): 1199-1206.
[12] 傅伯杰;牛栋;赵士洞. 全球变化与陆地生态系统研究:回顾与展望[J]. 地球科学进展, 2005, 20(5): 556-560.
[13] 何勇;董文杰;季劲均;丹利. 基于AVIM的中国陆地生态系统净初级生产力模拟[J]. 地球科学进展, 2005, 20(3): 345-349.
[14] 李晓兵,陈云浩,张云霞,范一大,周涛,谢锋. 气候变化对中国北方荒漠草原植被的影响[J]. 地球科学进展, 2002, 17(2): 254-261.
[15] 杨昕,王明星. 陆面碳循环研究中若干问题的评述[J]. 地球科学进展, 2001, 16(3): 427-435.
阅读次数
全文


摘要