[1] Woodwell G D, Mackenzie F T, Houghton R A,et al. Biotic feedbacks in the warming of the earth [J]. Climatic Change,1998,40: 495-518. [2] Schimel D S. The carbon equation [J]. Nature,1998,393:208-209. [3] Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2budget [J]. Science, 1990,247:1 431-1 438. [4] Cao Mingkui, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change [J]. Nature, 1998,393:249-252. [5] Grace J, Lloyd J, Mclntyre J,et al. Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia [J].Science, 1995,270:778-780. [6] Prentice I C, Lloyd J. C-quest in the Amazon Basin [J]. Nature, 1998,396:619-620. [7] Phillips O L, Malhi Y, Higchi N,et al. Changes in the carbon balance of tropical forests: evidence from long-term plots [J].Science, 1998,282: 439-441. [8] Tans P P, White J W C. In balance, with a little help from the plants [J]. Science, 1998,281:183-184. [9] Sarmieto J L, Hughes T M C, Stouffer R J,et al. Simulated response of the ocean carbon cycle to anthropogenic climate warming [J]. Nature, 1998,393: 245-249. [10] Tian H, Melillo J M, Kicklighter D W,et al. Effect of interannual climate variability on carbon storage in Amazonian ecosystems [J]. Nature, 1998,396: 664-667. [11] Rayner P J, Law R M. The relationship between tropical CO2 fluxes and the El Niño-Southern Oscillation [J]. Geophys Res Lett, 1999,26: 493-496. [12] Battle M, Bender M L, Tans P P,et al. Global carbon sinks and their variability inferred from atmospheric O2and δ13C[J]. Science, 2000,287: 2 467-2 470. [13] Yang Xin, Wang Mingxing. Monsoon ecosystems control on atmospheric CO2 interannual variability: inferred from a significant positive correlation between year-to-year changes in land precipitation and atmospheric CO2 growth rate [J]. Geophys Res Lett, 2000,27:1 671-1 674. [14] Keeling C D, Whorf T P, Wahlen M,et al. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980 [J]. Nature, 1995, 375: 666-670. [15] Bacastow R B. Modulation of atmospheric carbon dioxide by the Southern Oscillation [J]. Nature, 1976, 116: 116-118. [16] Liski J, Westman C J. Carbon storage in forest soil of Finland, 1: effect of thermoclimate [J]. Biogeochemistry,1997,36:239-260. [17] Giardian C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000,404: 858-861. [18] Grace G, Rayment M. Respiration in the balance [J]. Nature, 2000,404: 819-820. [19] Goreau T J. Balancing atmospheric carbon dioxide [J]. Ambio, 1990,19: 230-236. [20] Batjes N H, Brides E M, eds. A Review of Soil Factors and Processes that Control Fluxes of Heat, Moisture and Greenhouse Gases[R]. International Soil Reference and Information Center, Wageningen, 1994.97-148. [21] Schlesinger W H, Melack J M. Transport of organic carbon in the world' s rivers [J]. Tellus, 1981,33B: 172-187. [22] Sarmiento J L, Sundquist E T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide [J]. Nature,1992,356: 589-593. [23] Van Breemen N, Feijtel T C J. Soil processes and properties involved in the production of greenhouse gases, with special relevance to soil taxonomic systems[A]. In: Bouwman A F,ed. Soil and the Greenhouse Effect[C]. Chichester: John Wiley and Sons, 1990. 195-223. [24] Bohn H L. Considerations for modeling carbon interaction between soil can atmosphere[A]. In: Bouwman A F, ed. Soil and the Greenhouse Effect[C]. Chichester: John Wiley and Sons, 1990. 391-394. [25] Melillo J M, Mcguire A D, Kicklighter D W,et al. Global climate change and terrestrial net primary production [J].Nature, 1993,363: 234-240. [26] Dai A, Fung I Y. Can climate variability contribute to the “missing” CO2 sink? [J]. Global Biogeochem Cycles, 1993,7: 599-609. [27] Lieth H, Whittaker R H. Primary Productivity of the Biosphere [M]. New York: Spring-Verlag, 1975. [28] Ajtay G, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass [A]. In: Bolin B, Degens E T,Kempe S,et al, eds. The Global Carbon Cycle, SCOPE 13[C]. New York: John Wiley, 1979. 129-181. [29] Matthews E. Global vegetation and land use: new high-resolution data bases for climate studies [J]. J Climate and App Meteorol, 1983,22: 474-487. [30] Esser G. Sensitivity of global carbon pools and fluxes to human and potential climatic impacts [J]. Tellus, 1987,39B:245-260. [31] Box E O. Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere [J]. J Appl Meteorol, 1988,27:1 109-1 127. [32] Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming [J].Nature, 1991,351: 304-306. [33] Friedlingstein P, Delire C, Müller C,et al. The climate induced variation of the continental biosphere: a model simulation of the Last Glacial Maximum [J]. Geophy Res Lett,1992,19: 897-900. [34] Potter C S, Randerson J T, Field C B,et al. Terrestrial ecosystem production: A process model based on global satellite and surface data [J]. Global Biogeochem Cycles, 1993,7: 811-841. [35] Rotmans J, Van den Elzen M G J. Modeling feedback mechanisms in the carbon cycle: Balancing the carbon budget [J].Tellus, 1993,45B: 301-320. [36]Goldewijk K K, Van Minner J J, Kreileman G J J,et al.Simulating the carbon flux between the terrestrial environment and the atmosphere [J]. Water, Air and Soil Pollution, 1994,76: 199-230. [37] Foley J A. An equilibrium model of the terrestrial carbon budget [J], Tellus, 1995,47B: 310-319. [38] Hudson R J M, Gherini S A, Goldstein R A. Modeling the global carbon cycle: Nitrogen fertilization of the terrestrial biosphere and the“missing”CO2 sink [J]. Global Biogeochem Cycles, 1994,8: 307-333. [39] Warnant P, Francois L, Strivay D,et al. CARAIB: A global model of terrestrial biological productivity [J], Global Biogeochem Cycles, 1994,8: 255-270. [40] Bonan G B. Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model [J]. J Geophys Res, 1995,100: 2 817-2 831. [41] Matthews E. Global litter production, pools, and turnover times: Estimates from measurement data and regression models [J]. J Geophys Res, 1997,102: 18 771-18 800. [42] Uchijima Z, Seino H. Agroclimatic evalution of net primary productivity of natural vegetatio [J]. J Agr Met, 1985,40:343-352. [43] Zhu Zhihui. Estimated model of NPP in natural vegetation[J]. Chinese Science Bulletin, 1993, 38:1 422-1 426.[朱志辉.自然植被净第一生产力估计模型[J].科学通报,1993,38:1 422-1 426.] [44] Zhou Guangsheng, Zhang Xinshi. Study on NPP of natural vegetation in China under global climate change [J]. Acta Phytoecologia Sinica, 1996, 20:11-19. [周广胜,张新时.全球气候变化的中国自然植被的净第一生产力研究[J].植物生态学报,1996,20:11-19.] [45] Peterjohn W T, Melillo J M, Bowles F P,et al. Soil warming and trace gas fluxes: experimental design and preliminary results [J]. Oecologia, 1993,93: 18-24. [46] Raich J W, Schlesinger W H. The Global carbon dioxide flux in soil respiration and its relationship to vegetation [J]. Tellus, 1992,44B: 81-99. [47] Harvey L D D. Effect of model structure on the response terrestrial biosphere models to CO2 and temperature increases[J]. Global Biogeochemical Cycles, 1989,3: 137-153. [48] Kohlmaier G H, Janecek A, Kindermann J. Positive and negative feedback loops within the vegetation/soil system in response to a CO2greenhouse warming[A]. In: Bouwman A F, ed. Soils and the Greenhouse Effect [C], Chichester:John Wiley and Sons, 1990. 415-422. [49] Townsed A R, Vitousek P M, Holland E A. Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures [J]. Climatic Change, 1992,22:293-303. [50] Liu Shaohui, Fang Jingyun. Effect factors of soil respiration and the temperature' s effects on soil respiration in the global scale [J]. Acta Ecologica Sinica, 1997, 17:469~476.[刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17:469-476.] [51] Fung I Y, Tucker C Y, Prentice K C. Application of advanced very high resolution radimeter vegetation index to study of atmosphere-biosphere exchange of CO2[J]. J Geophys Res, 1987,92: 2 999-3 015. [52] Berger A, Loutre M-F.古气候对二氧化碳和太阳辐射的敏感性[J].王普才,等译,朱志辉校. AMBIO(人类环境杂志),1997,26(1): 32-37. [53] Cowling J E, MacLean Jr S F. Forest floor respiration in a black spruce taiga forests ecosystem in Alaska [J]. Holarct Ecol, 1982,4: 229-237. [54] Gordon A M, Schlenter R E, Van Cleve K. Seasonal patterns of soil respiration and CO2 evolution following harvesting in the white spruce forests of interior Alaska[J]. Can J For Res, 1987,17: 304-310. [55] Schlentner R E, Van Cleve K. Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four forest types in interior Alaska[J]. Can J For Res, 1985,15: 97-106. [56] Stewart J M, Wheatley R E. Estimates of CO2 production from eroding peat surface[J]. Soil Bio Biochem, 1990,22:65-68. [57] Svenson B H. Carbon dioxide and methane fluxes from the ombrotophic parts of a subarctic mire[J]. Ecol Bull, 1980,30: 235-250. [58] Jenkinson DS, Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments [J]. Soil Science, 1977,123: 298-305. [59] Valentini, R, Matteucci G, Dolman A J,et al. Respiration as the main determinant of carbon balance in European forests [J]. Nature, 2000,404: 861-865. [60] Dorr H, Munnich K O. Annual variation in soil respiration in selected areas of temperate zone [J]. Tellus, 1987, 39B:114-121. [61] Sharkey T D.Photosynthesis in inact leaves of C3 plants:physics, physiology and rate limitations[J]. Bot Rev, 1985, 51: 507. [62] Gunderson C A, Wullschleger S D. Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective [J]. Photosyth Res, 1994,39: 369-388. [63] DeLucia E H, Hamilton J G, Naidu S L,et al. Net primary production of a forest ecosystem with experimental CO2 enrichment [J]. Science, 1999,284: 1 177-1 179. [64] LinWeihong, Zhang Fusuo, Bai Kezhi. Effects of rising atmospheric CO2 concentration on the microecosystem of vegetation roots [J]. Chinese Science Bulletin, 1999, 44:1 690-1696.[林伟宏,张福锁,白克智.大气CO2浓度升高对植物根际微生态系统的影响[J].科学通报,1999,44:1 690-1 696.] [65] Bazzaz F A. The response of natural ecosystems to the rising global CO2 levels [J]. Annu Rev Ecol Syst, 1990,21: 167-196. [66] Amthor J S. Terrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycle [J].Global Change Biol. 1995,1: 243-274. [67] Jones T H, Thompson J H,Lawton T M,et al. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystem [J]. Science, 1998,280: 441-443. [68] Siegenthaler U, Sarmiento J L. Atmospheric carbon dioxide and the ocean [J]. Nature, 1993,365: 119-125. [69] Siegenthaler U, Oeschger H. Biospheric CO2 emission during the past 200 years reconstructed by deconvolution of ice core data [J]. Tellus, 1987,39B: 140-154. [70] Houghton R A. Changes in terrestrial carbon over the last 135 years [A], In: Heiman M, ed. NATO ASI Series, Vol I 15: The Global Carbon Cycle [C]. Berlin Heidelberg:Springer-Verlag, 1993. 139-156. [71] Fan S, Gloor M, Mahlman J,et al. A large terrestrial carbon sink in North America implied by Atmospheric and oceanic carbon dioxide data and models [J]. Science, 1998,282: 442-446. [72] Ciais P, Tans P P, Troiler M,et al. A large northern hemisphere CO2 sink indicated by the13C/12C ratio of atmospheric CO2[J]. Science, 1995,269: 1 098-1 102. [73] Buringh P. Organic carbon in soils of the world [A]. In:Woodwell G M, ed. The Role of Terrestrial Vegetation in the Global Carbon Cycle, Measurement by Remote Sensing SCOPE 23[M]. New York: Wiley and Sons, 1984. 91-109. [74] Bouwman A F, ed. Soils and the Greenhouse Effect[M].Chichester: John Wiley and Sons, 1990. [75] Harrison A F, Harkness D D, Bacon P J. The use of bombon-14C for studying organic matter and N and P dynamics in a woodland soil [A]. In: Harrison A F, Ineson P, Heal O W, eds. Nutrient Cycling in Terrestrial Ecosystems: Field Methods, Application and Interpretation[C]. Barking: Elsevier Applied Sci, 1990. [76] Trumbore S E, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change [J]. Science, 1996,272: 393-396. [77] Adams J M, Faure H, Faure-Denard L,et al. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present [J]. Nature, 1990,348: 711-714. [78] Goudriaan J, Ketner P. A simulation study for the global carbon cycle, including man' s impact on the biosphere [J].Climate Change, 1984,6: 167-192. [79] Goldewijk K K, Van Minner J J, Kreileman G J J,et al.Simulating the carbon flux between the terrestrial environment and the atmosphere [J]. Water, Air and Soil Pollution, 1994,76: 199-230. [80] Saine G R.Organic metter as a measure of bulk density of soil[J]. Nature, 1966,210: 1 295-1 296. [81] Bolin B. The carbon cycle[J]. Am Sci, 1970,223: 136-146. [82] Baes C F, Goeller HE, Olson J S,et al. Carbon dioxide and climate: the uncontrolled experiment [J]. Am Sci, 1977,65:310-320. [83] Schlesinger W H. Carbon balance in terrestrial detritus [J].Annual Review of Ecology and Systematics, 1977.8: 51-81. [84] Post W P, Emanual W R, Zinke P J,et al. Soil carbon pools and world life zones [J]. Nature, 1982,298: 156-159. [85] Post W P, Pastor J, Zinke P J,et al. Global patterns of soil nitrogen storage[J]. Nature, 1985,317: 613-616. [86] Bohn H. Estimate of organic carbon in world soil [J]. Soil Sci Soc Am J, 1976,40: 468-470. [87] Bohn H. Estimate of organic carbon in world soil: II [J].Soil Sci Soc Am J, 1982,46: 1 118-1 119. [88] Matthews E. Global litter production, pools, and turnover times: Estimates from measurement data and regression models [J]. J Geophys Res, 1997,102: 18 771-18 800. [89] Prentice K C, Fung I Y. The sensitivity of terrestrial carbon storage to climate change [J]. Nature, 1990,346: 48-51. [90] Bird M I, Lloyd J, Farquhar G D. Terrestrial carbon storage at the LGM [J]. Nature, 1994,371: 566. [ 91] CrowleyT J. Ice age terrestrial carbon change revised [J].Global Biogeochemical Cycles, 1995,9: 377-389. [92] Adams J M, Faure H. A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction [J]. Global and Planetary Change, 1998,16-17: 3-24. [93] Esser G, Lautenschlager M. Estimating the change of carbon in the terrestrial biosphere from 18 000 BP to present using a carbon cycle model [J]. Environ Pollut, 1994,83: 45-53. [94] Francois L M, Delire C, Warnant P,et al. Modelling the glacial-interglacial changes in the continental biosphere [J].Global and Planetary Change, 1998,16-17: 37-52. |