地球科学进展 ›› 2001, Vol. 16 ›› Issue (3): 427 -435. doi: 10.11867/j.issn.1001-8166.2001.03.0427

全球变化研究 上一篇    下一篇

陆面碳循环研究中若干问题的评述
杨昕,王明星   
  1. 中国科学院大气物理研究所,北京  100029
  • 收稿日期:2000-08-09 修回日期:2000-10-11 出版日期:2001-06-01
  • 通讯作者: 杨昕(1967-),男,山东临沂人,博士,助研,主要从事陆面碳循环和大气化学研究。 E-mail:yx@dq.cern.ac.cn
  • 基金资助:

    中国科学院“百人计划”“陆地生态系统碳、氮循环的实验与计算机模拟研究”;中科院大气物理所创新面上基金“微量气体生物源排放的预测模式与控制研究”(编号:8-2302)联合资助。

REVIEWS OF SEVERAL ASPECTS OF TERRESTRIAL CARBON CYCLING

YANG Xin,WANG Ming-xing   

  1. LAPC,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029,China
  • Received:2000-08-09 Revised:2000-10-11 Online:2001-06-01 Published:2011-06-01

陆面碳循环是全球碳循环研究的重要内容,所涉及的研究领域很广。对碳循环研究中所涉及的有关主要问题——碳元素的源和汇、“漏失汇”(missing sink)、植被净初级生产力(NPP)、土壤呼吸、CO2的“施肥效应”、目前和末次冰期极盛时陆地生态系统的碳储量、“反褶积”(deconvolution)分析方法以及气候变化对净碳通量的影响等方面的研究内容及其进展情况作了简要回顾和介绍。总结了不同研究方法的优缺点及各自存在的问题,并对有关研究结果和未来的发展趋势作了评述。

Terrestrial carbon cycle is an important aspect of global carbon cycles and related to a diverse of research disciplines. In this paper we briefly review several main aspects of carbon cycling focusing on their research contents and advances. These aspects are source and sink of carbon element, “missing sink” problem, net primary production (NPP), soil respiration, CO 2 fertilization effect, carbon stocks in ecosystem at present and at Last Glacial Maximum, “deconvolution” method, and climate effect on net carbon fluxes between land ecosystem and atmosphere. We summarize the merits and shortness of different research methods, and make some comments on the currently researching results and their developing directions.

中图分类号: 

[1]  Woodwell G D, Mackenzie F T, Houghton R A,et al. Biotic feedbacks in the warming of the earth [J]. Climatic Change,1998,40: 495-518.
[2]  Schimel D S. The carbon equation [J]. Nature,1998,393:208-209.
[3]  Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2budget [J]. Science, 1990,247:1 431-1 438.
[4]  Cao Mingkui, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change [J]. Nature, 1998,393:249-252.
[5]  Grace J, Lloyd J, Mclntyre J,et al. Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia [J].Science, 1995,270:778-780.
[6]  Prentice I C, Lloyd J. C-quest in the Amazon Basin [J]. Nature, 1998,396:619-620.
[7]  Phillips O L, Malhi Y, Higchi N,et al. Changes in the carbon balance of tropical forests: evidence from long-term plots [J].Science, 1998,282: 439-441.
[8]  Tans P P, White J W C. In balance, with a little help from the plants [J]. Science, 1998,281:183-184.
[9]  Sarmieto J L, Hughes T M C, Stouffer R J,et al. Simulated response of the ocean carbon cycle to anthropogenic climate warming [J]. Nature, 1998,393: 245-249.
[10]  Tian H, Melillo J M, Kicklighter D W,et al. Effect of interannual climate variability on carbon storage in Amazonian ecosystems [J]. Nature, 1998,396: 664-667.
[11]  Rayner P J, Law R M. The relationship between tropical CO2 fluxes and the El Niño-Southern Oscillation [J]. Geophys Res Lett, 1999,26: 493-496.
[12]  Battle M, Bender M L, Tans P P,et al. Global carbon sinks and their variability inferred from atmospheric O2and δ13C[J]. Science, 2000,287: 2 467-2 470.
[13]  Yang Xin, Wang Mingxing. Monsoon ecosystems control on atmospheric CO2 interannual variability: inferred from a significant positive correlation between year-to-year changes in land precipitation and atmospheric CO2 growth rate [J]. Geophys Res Lett, 2000,27:1 671-1 674.
[14]  Keeling C D, Whorf T P, Wahlen M,et al. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980 [J]. Nature, 1995, 375: 666-670.
[15]  Bacastow R B. Modulation of atmospheric carbon dioxide by the Southern Oscillation [J]. Nature, 1976, 116: 116-118.
[16]  Liski J, Westman C J. Carbon storage in forest soil of Finland, 1: effect of thermoclimate [J]. Biogeochemistry,1997,36:239-260.
[17]  Giardian C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000,404: 858-861.
[18]  Grace G, Rayment M. Respiration in the balance [J]. Nature, 2000,404: 819-820.
[19]  Goreau T J. Balancing atmospheric carbon dioxide [J]. Ambio, 1990,19: 230-236.
[20]  Batjes N H, Brides E M, eds. A Review of Soil Factors and Processes that Control Fluxes of Heat, Moisture and Greenhouse Gases[R]. International Soil Reference and Information Center, Wageningen, 1994.97-148.
[21]  Schlesinger W H, Melack J M. Transport of organic carbon in the world' s rivers [J]. Tellus, 1981,33B: 172-187.
[22]  Sarmiento J L, Sundquist E T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide [J]. Nature,1992,356: 589-593.
[23]  Van Breemen N, Feijtel T C J. Soil processes and properties involved in the production of greenhouse gases, with special relevance to soil taxonomic systems[A]. In: Bouwman A F,ed. Soil and the Greenhouse Effect[C]. Chichester: John Wiley and Sons, 1990. 195-223.
[24]  Bohn H L. Considerations for modeling carbon interaction between soil can atmosphere[A]. In: Bouwman A F, ed. Soil and the Greenhouse Effect[C]. Chichester: John Wiley and Sons, 1990. 391-394.
[25]  Melillo J M, Mcguire A D, Kicklighter D W,et al. Global climate change and terrestrial net primary production [J].Nature, 1993,363: 234-240.
[26]  Dai A, Fung I Y. Can climate variability contribute to the “missing” CO2 sink? [J]. Global Biogeochem Cycles, 1993,7: 599-609.
[27]  Lieth H, Whittaker R H. Primary Productivity of the Biosphere [M]. New York: Spring-Verlag, 1975.
[28]  Ajtay G, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass [A]. In: Bolin B, Degens E T,Kempe S,et al, eds. The Global Carbon Cycle, SCOPE 13[C]. New York: John Wiley, 1979. 129-181.
[29]  Matthews E. Global vegetation and land use: new high-resolution data bases for climate studies [J]. J Climate and App Meteorol, 1983,22: 474-487.
[30]  Esser G. Sensitivity of global carbon pools and fluxes to human and potential climatic impacts [J]. Tellus, 1987,39B:245-260.
[31]  Box E O. Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere [J]. J Appl Meteorol, 1988,27:1 109-1 127.
[32]  Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming [J].Nature, 1991,351: 304-306.
[33]  Friedlingstein P, Delire C, Müller C,et al. The climate induced variation of the continental biosphere: a model simulation of the Last Glacial Maximum [J]. Geophy Res Lett,1992,19: 897-900.
[34]  Potter C S, Randerson J T, Field C B,et al. Terrestrial ecosystem production: A process model based on global satellite and surface data [J]. Global Biogeochem Cycles, 1993,7: 811-841.
[35]  Rotmans J, Van den Elzen M G J. Modeling feedback mechanisms in the carbon cycle: Balancing the carbon budget [J].Tellus, 1993,45B: 301-320.
[36]Goldewijk K K, Van Minner J J, Kreileman G J J,et al.Simulating the carbon flux between the terrestrial environment and the atmosphere [J]. Water, Air and Soil Pollution, 1994,76: 199-230.
[37]  Foley J A. An equilibrium model of the terrestrial carbon budget [J], Tellus, 1995,47B: 310-319.
[38]  Hudson R J M, Gherini S A, Goldstein R A. Modeling the global carbon cycle: Nitrogen fertilization of the terrestrial biosphere and the“missing”CO2 sink [J]. Global Biogeochem Cycles, 1994,8: 307-333.
[39]  Warnant P, Francois L, Strivay D,et al. CARAIB: A global model of terrestrial biological productivity [J], Global Biogeochem Cycles, 1994,8: 255-270.
[40]  Bonan G B. Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model [J]. J Geophys Res, 1995,100: 2 817-2 831.
[41]  Matthews E. Global litter production, pools, and turnover times: Estimates from measurement data and regression models [J]. J Geophys Res, 1997,102: 18 771-18 800.
[42]  Uchijima Z, Seino H. Agroclimatic evalution of net primary productivity of natural vegetatio [J]. J Agr Met, 1985,40:343-352.
[43]  Zhu Zhihui. Estimated model of NPP in natural vegetation[J]. Chinese Science Bulletin, 1993, 38:1 422-1 426.[朱志辉.自然植被净第一生产力估计模型[J].科学通报,1993,38:1 422-1 426.]
[44]  Zhou Guangsheng, Zhang Xinshi. Study on NPP of natural vegetation in China under global climate change [J]. Acta Phytoecologia Sinica, 1996, 20:11-19. [周广胜,张新时.全球气候变化的中国自然植被的净第一生产力研究[J].植物生态学报,1996,20:11-19.]
[45]  Peterjohn W T, Melillo J M, Bowles F P,et al. Soil warming and trace gas fluxes: experimental design and preliminary results [J]. Oecologia, 1993,93: 18-24.
[46]  Raich J W, Schlesinger W H. The Global carbon dioxide flux in soil respiration and its relationship to vegetation [J]. Tellus, 1992,44B: 81-99.
[47]  Harvey L D D. Effect of model structure on the response terrestrial biosphere models to CO2 and temperature increases[J]. Global Biogeochemical Cycles, 1989,3: 137-153.
[48]  Kohlmaier G H, Janecek A, Kindermann J. Positive and negative feedback loops within the vegetation/soil system in response to a CO2greenhouse warming[A]. In: Bouwman A F, ed. Soils and the Greenhouse Effect [C], Chichester:John Wiley and Sons, 1990. 415-422.
[49]  Townsed A R, Vitousek P M, Holland E A. Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures [J]. Climatic Change, 1992,22:293-303.
[50]  Liu Shaohui, Fang Jingyun. Effect factors of soil respiration and the temperature' s effects on soil respiration in the global scale [J]. Acta Ecologica Sinica, 1997, 17:469~476.[刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17:469-476.]
[51]  Fung I Y, Tucker C Y, Prentice K C. Application of advanced very high resolution radimeter vegetation index to study of atmosphere-biosphere exchange of CO2[J]. J Geophys Res, 1987,92: 2 999-3 015.
[52]  Berger A, Loutre M-F.古气候对二氧化碳和太阳辐射的敏感性[J].王普才,等译,朱志辉校. AMBIO(人类环境杂志),1997,26(1): 32-37.
[53]  Cowling J E, MacLean Jr S F. Forest floor respiration in a black spruce taiga forests ecosystem in Alaska [J]. Holarct Ecol, 1982,4: 229-237.
[54]  Gordon A M, Schlenter R E, Van Cleve K. Seasonal patterns of soil respiration and CO2 evolution following harvesting in the white spruce forests of interior Alaska[J]. Can J For Res, 1987,17: 304-310.
[55]  Schlentner R E, Van Cleve K. Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four forest types in interior Alaska[J]. Can J For Res, 1985,15: 97-106.
[56]  Stewart J M, Wheatley R E. Estimates of CO2 production from eroding peat surface[J]. Soil Bio Biochem, 1990,22:65-68.
[57]  Svenson B H. Carbon dioxide and methane fluxes from the ombrotophic parts of a subarctic mire[J]. Ecol Bull, 1980,30: 235-250.
[58]  Jenkinson DS, Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments [J]. Soil Science, 1977,123: 298-305.
[59]  Valentini, R, Matteucci G, Dolman A J,et al. Respiration as the main determinant of carbon balance in European forests [J]. Nature, 2000,404: 861-865.
[60]  Dorr H, Munnich K O. Annual variation in soil respiration in selected areas of temperate zone [J]. Tellus, 1987, 39B:114-121.
[61]  Sharkey T D.Photosynthesis in inact leaves of C3 plants:physics, physiology and rate limitations[J]. Bot Rev, 1985, 51: 507.
[62]  Gunderson C A, Wullschleger S D. Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective [J]. Photosyth Res, 1994,39: 369-388.
[63]  DeLucia E H, Hamilton J G, Naidu S L,et al. Net primary production of a forest ecosystem with experimental CO2 enrichment [J]. Science, 1999,284: 1 177-1 179.
[64]  LinWeihong, Zhang Fusuo, Bai Kezhi. Effects of rising atmospheric CO2 concentration on the microecosystem of vegetation roots [J]. Chinese Science Bulletin, 1999, 44:1 690-1696.[林伟宏,张福锁,白克智.大气CO2浓度升高对植物根际微生态系统的影响[J].科学通报,1999,44:1 690-1 696.]
[65]  Bazzaz F A. The response of natural ecosystems to the rising global CO2 levels [J]. Annu Rev Ecol Syst, 1990,21: 167-196.
[66]  Amthor J S. Terrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycle [J].Global Change Biol. 1995,1: 243-274.
[67]  Jones T H, Thompson J H,Lawton T M,et al. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystem [J]. Science, 1998,280: 441-443.
[68]  Siegenthaler U, Sarmiento J L. Atmospheric carbon dioxide and the ocean [J]. Nature, 1993,365: 119-125.
[69]  Siegenthaler U, Oeschger H. Biospheric CO2 emission during the past 200 years reconstructed by deconvolution of ice core data [J]. Tellus, 1987,39B: 140-154.
[70]  Houghton R A. Changes in terrestrial carbon over the last 135 years [A], In: Heiman M, ed. NATO ASI Series, Vol I 15: The Global Carbon Cycle [C]. Berlin Heidelberg:Springer-Verlag, 1993. 139-156.
[71]  Fan S, Gloor M, Mahlman J,et al. A large terrestrial carbon sink in North America implied by Atmospheric and oceanic carbon dioxide data and models [J]. Science, 1998,282: 442-446.
[72]  Ciais P, Tans P P, Troiler M,et al. A large northern hemisphere CO2 sink indicated by the13C/12C ratio of atmospheric CO2[J]. Science, 1995,269: 1 098-1 102.
[73]  Buringh P. Organic carbon in soils of the world [A]. In:Woodwell G M, ed. The Role of Terrestrial Vegetation in the Global Carbon Cycle, Measurement by Remote Sensing SCOPE 23[M]. New York: Wiley and Sons, 1984. 91-109.
[74]  Bouwman A F, ed. Soils and the Greenhouse Effect[M].Chichester: John Wiley and Sons, 1990.
[75]  Harrison A F, Harkness D D, Bacon P J. The use of bombon-14C for studying organic matter and N and P dynamics in a woodland soil [A]. In: Harrison A F, Ineson P, Heal O W, eds. Nutrient Cycling in Terrestrial Ecosystems: Field Methods, Application and Interpretation[C]. Barking: Elsevier Applied Sci, 1990.
[76]  Trumbore S E, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change [J]. Science, 1996,272: 393-396.
[77]  Adams J M, Faure H, Faure-Denard L,et al. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present [J]. Nature, 1990,348: 711-714.
[78]  Goudriaan J, Ketner P. A simulation study for the global carbon cycle, including man' s impact on the biosphere [J].Climate Change, 1984,6: 167-192.
[79]  Goldewijk K K, Van Minner J J, Kreileman G J J,et al.Simulating the carbon flux between the terrestrial environment and the atmosphere [J]. Water, Air and Soil Pollution, 1994,76: 199-230.
[80]  Saine G R.Organic metter as a measure of bulk density of soil[J]. Nature, 1966,210: 1 295-1 296.
[81]  Bolin B. The carbon cycle[J]. Am Sci, 1970,223: 136-146.
[82]  Baes C F, Goeller HE, Olson J S,et al. Carbon dioxide and climate: the uncontrolled experiment [J]. Am Sci, 1977,65:310-320.
[83]  Schlesinger W H. Carbon balance in terrestrial detritus [J].Annual Review of Ecology and Systematics, 1977.8: 51-81.
[84]  Post W P, Emanual W R, Zinke P J,et al. Soil carbon pools and world life zones [J]. Nature, 1982,298: 156-159.
[85]  Post W P, Pastor J, Zinke P J,et al. Global patterns of soil nitrogen storage[J]. Nature, 1985,317: 613-616.
[86]  Bohn H. Estimate of organic carbon in world soil [J]. Soil Sci Soc Am J, 1976,40: 468-470.
[87]  Bohn H. Estimate of organic carbon in world soil: II [J].Soil Sci Soc Am J, 1982,46: 1 118-1 119.
[88]  Matthews E. Global litter production, pools, and turnover times: Estimates from measurement data and regression models [J]. J Geophys Res, 1997,102: 18 771-18 800.
[89]  Prentice K C, Fung I Y. The sensitivity of terrestrial carbon storage to climate change [J]. Nature, 1990,346: 48-51.
[90]  Bird M I, Lloyd J, Farquhar G D. Terrestrial carbon storage at the LGM [J]. Nature, 1994,371: 566.
[ 91]  CrowleyT J. Ice age terrestrial carbon change revised [J].Global Biogeochemical Cycles, 1995,9: 377-389.
[92]  Adams J M, Faure H. A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction [J]. Global and Planetary Change, 1998,16-17: 3-24.
[93]  Esser G, Lautenschlager M. Estimating the change of carbon in the terrestrial biosphere from 18 000 BP to present using a carbon cycle model [J]. Environ Pollut, 1994,83: 45-53.
[94]  Francois L M, Delire C, Warnant P,et al. Modelling the glacial-interglacial changes in the continental biosphere [J].Global and Planetary Change, 1998,16-17: 37-52.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[3] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[4] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[5] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
[6] 王训明, 周娜, 郎丽丽, 花婷, 焦琳琳, 马文勇. 风沙活动对陆地生态系统影响研究进展[J]. 地球科学进展, 2015, 30(6): 627-635.
[7] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[8] 唐文魁,高全洲. 河口二氧化碳水—气交换研究进展[J]. 地球科学进展, 2013, 28(9): 1007-1014.
[9] 薛亮,于卫东,宁春林,王辉武. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.
[10] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[11] 李琦,刘桂臻,张建,贾莉,刘海丽. 二氧化碳地质封存环境监测现状及建议[J]. 地球科学进展, 2013, 28(6): 718-727.
[12] 段利江,唐书恒,夏朝辉,张铭. 煤吸附气体诱导的基质膨胀研究进展[J]. 地球科学进展, 2012, 27(3): 262-267.
[13] 何洪林,张黎, 黎建辉, 周园春,任小丽,于贵瑞. 中国陆地生态系统碳收支集成研究的e-Science 系统构建[J]. 地球科学进展, 2012, 27(2): 246-254.
[14] 魏小芳,罗一菁,刘可禹,帅燕华. 油气藏埋存二氧化碳生物转化甲烷的机理和应用研究进展[J]. 地球科学进展, 2011, 26(5): 499-506.
[15] 尹飞虎,李晓兰,董云社,谢宗铭,高志建,何帅,刘长勇. 干旱半干旱区CO 2浓度升高对生态系统的影响及碳氮耦合研究进展[J]. 地球科学进展, 2011, 26(2): 235-244.
阅读次数
全文


摘要