地球科学进展 ›› 2012, Vol. 27 ›› Issue (3): 262 -267. doi: 10.11867/j.issn.1001-8166.2012.03.0262

综述与评述 上一篇    下一篇

煤吸附气体诱导的基质膨胀研究进展
段利江 1,2,唐书恒 2,夏朝辉 1,张铭 1   
  1. 1. 中国石油勘探开发研究院亚太研究所, 北京100083;2. 中国地质大学(北京)能源学院, 北京100083
  • 收稿日期:2011-11-29 修回日期:2012-01-15 出版日期:2012-03-10
  • 通讯作者: 段利江(1982-),男,河南商丘人,博士,工程师,主要从事煤层气勘探开发研究. E-mail:duanlj@petrochina.com.cn
  • 基金资助:

    国家自然科学基金项目“注气驱替煤层甲烷过程中煤基质差异膨胀效应实验研究”(编号:40772096)资助.

A Review on Gas Sorption-induced Coal Swelling

Duan Lijiang 1,2, Tang Shuheng 2, Xia Zhaohui 1, Zhang Ming 1   

  1. 1. Asia-Pacific Department, PetroChina Research Institute of Petroleum Exploration & Development, Beijing100083, China;2.School of Energy Resources, China University of Geosciences, Beijing100083, China
  • Received:2011-11-29 Revised:2012-01-15 Online:2012-03-10 Published:2010-03-10

煤层渗透率变化是注气提高煤层气采收率过程中最为关注的问题之一,而煤的吸附膨胀是造成渗透率伤害的主控因素。系统总结了国内外有关煤吸附膨胀的研究成果,发现争议较多,认为其主要原因在于对膨胀机理的认识深度不够及研究方法不一。相对于膨胀计法和应力计法,光学法观测煤膨胀效应的精度较高,建议尽量采用大块的煤样,以增强对煤储层的代表性。在煤膨胀机理的研究中,建议重点分析煤大分子结构固有的力学性质,及CO2对煤分子结构可能造成的影响。

The key issue of enhancing coalbed methane recovery by gas injection is reservoir permeability variation, which is controlled by gas-induced coal swelling. The research finding on coal swelling were collected and analyzed, and it was found that there exist disagreements, which is due to the lack of understanding about swelling mechanisms and different experimental methods. Compared with dilatometer and strain gauge, optical method is more accurate when measuring coal swelling. However, in future work, larger block should be adopted to represent coal reservoir more effectively. When conducting research on coal swelling mechanism, more attention should be paid to the original mechanical property of coal macromolecular structure and the impact on coal cross-linked network of CO2.

中图分类号: 

[1]Reeves S. Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Research and Commercial-scale Field Demonstration Project[R].Washington DC, U.S: First National Carbon Sequestration Conference, 2001.
[2]Reeves S, Oudinot A. The Tiffany Unit N2-ECBM Pilot: A Reservoir Modeling Study[R]. US: Topical Report.  Department of Energy, DE-FC26-0NT40924, 2004.
[3]Gunter W D, Mavor M J, Robinson J R. CO2 Storage and Enhanced Methane Production: Field Testing at the Fenn-Big Valley, Alberta, Canada, with Application[R]. Vancouver, Canada:Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies,2004.
[4]Ye Jianping, Feng Sanli, Fan Zhiqiang, et al. Micro-pilot test for enhanced coalbed methane recovery by injecting carbon dioxide in south part of Qinshui Basin[J]. Acta Petrolei Sinica, 2007, 28(4): 77-80. [叶建平,冯三利,范志强,等.沁水盆地南部注二氧化碳提高煤层气采收率微型先导试验研究[J].石油学报,2007, 28(4): 77-80.]
[5]Shi J Q, Durucan S, Fujioka M. A reservoir simulation study of CO2 injection and N2 flooding at the Ishikari coalfield CO2 storage pilot project, Japan[J]. International Journal of Greenhouse Gas Control, 2008, 2: 47-57.
[6]Arri L E, Yee D, Morgan W D, et al. Modelling coalbed methane production with binary gas sorption[J]. Society of Petroleum Engineers,1992, 76: 450-472.
[7]Briggs H, Sinha R P. Expansion and contraction of coal caused respectively by the sorption and discharge of gas[J]. Proceedings of the Royal Society of Edinburgh, 1933, 53: 48-53.
[8]Reucroft P J, Patel H. Gas-induced swelling in coal[J]. Fuel, 1986, 65: 816-820.
[9]Reucroft P J, Sethuraman A R. Effect of pressure on carbon dioxide induced coals swelling[J]. Energy Fuels, 1987, 1: 72-75.
[10]Walker P L, Verma S K, Rivera-Utrilla J, et al. A direct measurement of expansion in coals and macerals induced by carbon dioxide and methanol[J]. Fuel,1988, 67: 719-726.
[11]Moffat D H, Weale K E. Sorption by coal of methane at high pressures[J]. Fuel, 1955, 34: 449-462.
[12]Harpalani S, Schraufnagel R A. Shrinkage of coal matrix with release of gas and its impact on permeability of coal[J]. Fuel, 1990, 69: 551-556.
[13]Levine J R. Model study of influence of matrix shrinkage on absolute permeability of coal bed reservoirs[C]Gayer R, Harris I, eds. Coalbed Methane and Coal Geology. Geological Society Special Publication, 1996:197-212.
[14]St George J D, Barakat M A. The change in effective stress associated with shrinkage from gas desorption in coal[J]. International Journal of Coal Geology, 2001, 45: 105-113. 
[15]Cui X J,Bustin R M, Chikatamarla L. Adsorption-induced coal swelling and stress: Implication for methane production and acid gas sequestration into coal seams[J].Journal of Geophysical Research,2007,112: 1-16.
[16]Majewska S, Zietek J. Change of acoustic emission and strain in hard coal during gas sorption-desorption cycles[J]. International Journal of Coal Geology, 2007, 70: 305-312.
[17]Zarebska K, Celarska-Stefańska G. The change in effective stress associated with swelling during carbon dioxide sequestration on natural gas recovery[J]. International Journal of Coal Geology, 2008, 74: 167-174.
[18]Lin Baiquan, Zhou Shining. Experimental investigation on the deformation law of coal body containing methane[J]. Journal of China College of Mining & Technology, 1986, 3: 9-16.[林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报,1986, 3: 9-16.]
[19]Fu Xuehai, Qin Yong, Jiang Bo, et al. Study on mechanics experiments of multiphase medium coal rocks[J]. Geological Journal of China Universities, 2002, 8(4):446-452.[傅雪海,秦勇,姜波,等. 多相介质煤岩体力学实验研究[J]. 高校地质学报,2002, 8(4): 446-452.]
[20]Chen Jin′gang, Chen Qingfa. Control effect of coal mechanical property on its matrix self-regulating ability[J]. Natural Gas Industry, 2005, 25(2):140-142.[陈金刚,陈庆法. 煤岩力学性质对其基质自调节能力的控制效应[J]. 天然气工业,2005, 25(2): 140-142.]
[21]Zhang Xiaodong, Wang Lili, Zhang Zixu. Gas-adsorption-swelling characteristics after water injection to fat coal from the Malan Mine, the Gujiao coalfield of Shanxi province[J]. Journal of China Coal Society, 2009, 34(10):1 310-1 315. [张小东,王利丽,张子戌. 山西古交矿区马兰煤矿肥煤注水后煤体吸附膨胀行为[J]. 煤炭学报,2009,34(10):1 310-1 315.]
[22]Fang Zhiming, Li Xiaochun, Bai Bing, et al. Study of method for simultaneously measuring adsorption-deformation-permeability of coal[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9):1 828-1 933.[方志明,李小春,白冰,等. 煤岩吸附量—变形—渗透系数同时测量方法研究[J]. 岩石力学与工程学报,2009, 28(9):1 828-1 933.]
[23]Robertson E P, Christiansen R L. Measurement of Sorption-induced Strain[R].Tuscaloosa, Alabama: Proceeding of the 2005 International Coalbed Methane Symposium, 2005.
[24]Day S, Fry R, Sakurovs R. Swelling of Australian coals in supercritical CO2[J]. International Journal of Coal Geology, 2008, 74: 41-52.
[25]Ottiger S, Pini R, Storti G, et al. Competitive adsorption equilibria of CO2 and CH4 on a dry coal[J]. Adsorption, 2008, 14: 539-556.
[26]Pini R, Ottiger S, Burlini L, et al. CO2 storage through ECBM recovery: An experimental and modeling study[J]. Energy Procedia,2009, 1: 1 711-1 717.
[27]Van Bergen F, Spiers C, Floor G, et al. Strain development in unconfined coals exposed to CO2, CH4 and Ar: Effect of moisture[J]. International Journal of Coal Geology, 2009, 77: 43-53.
[28]Durucan S, Ahsan M,Shi J Q. Matrix shrinkage and swelling characteristics of European coals[J]. Energy Procedia, 2009, 1: 3 055-3 062.
[29]Day S, Fry R, Sakurovs R, et al. Swelling of coals by supercritical gases and its relationship to sorption[J]. Energy Fuels, 2010, 24: 2 777-2 783. 
[30]Siemons N, Busch A. Measurement and interpretation of supercritical CO2 sorption on various coals[J]. International Journal of Coal Geology, 2007, 69: 229-242.
[31]Romanov V, Soong Y. Long-term CO2 sorption on Upper Freeport coal powder and lumps[J]. Energy Fuels, 2008, 22: 1 167-1 169.
[32]Pan Z,Connell L D. A theoretical model for gas adsorption-induced coal swelling[J]. International Journal of Coal Geology, 2007, 69: 243-252.
[33]Wu Shiyue, Zhao Wen. Analysis of effective stress in adsorbed methane-coal system[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(10): 1 674-1 678. [吴世跃,赵文. 含吸附煤层气煤的有效应力分析[J].岩石力学与工程学报,2005,24(10):1 674-1 678.]
[34]Bai Bing,Li Xiaochun,Liu Yanfeng,et al. Preliminary theoretical study on impact on coal caused by interactions between CO2 and coal[J]. Rock and Soil Mechanics, 2007, 28(4): 823-826.[白冰,李小春,刘延锋,等. CO2-ECBM中气固作用对煤体应力和强度的影响分析[J]. 岩土力学,2007,28(4): 823-826.]
[35]Zhou Junping, Xian Xuefu, Jiang Yongdong, et al. A model of adsorption induced coal deformation based on thermodynamics approach[J]. Journal of China Coal Society, 2011, 36(3):468-472. [周军平,鲜学福,姜永东,等. 基于热力学方法的煤岩吸附变形模型[J]. 煤炭学报,2011, 36(3):468-472.]
[36]Larsen J W. The effects of dissolved CO2 on coal structure and properties[J]. International Journal of Coal Geology, 2004, 57: 63-70.
[37]Ceglarska-Stefańska G, Czapliński A. Correlation between sorption and dilatometric processes in hard coals[J]. Fuel, 1993, 72: 413-417.
[38]Hou L, Hatcher P G, Botto R E. Diffusion of pyridine in Illinois No. 6 coal: Measuring the swelling and deswelling characteristics by combined methods of Nuclear Magnetic Resonance (NMRI) and Nuclear Resonance Imaging(NMRI) [J].International Journal of Coal Geology, 1996, 32: 167-189.
[39]Larsen J W, Flowers R A, Hall P J. Structural rearrangement of strained coals[J]. Energy Fuels, 1997, 11: 998-1 002.
[40]Wang G X, Zhang X D, Wei X R, et al. A review on transport of coal seam gas and its impact on coalbed methane recovery[J]. Frontal Chemical Science Engineering, 2011, 5(2): 139-161.
[41]White C M, Smith D H, Jones K L, et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery: A review[J].Energy Fuels, 2005, 19(3): 659-724.
[42]He Manjun, Zhang Hongdong, Chen Weixiao, et al. Macromolecule Physics[M]. Shanghai: Fudan University Press, 2007: 34-37.[何曼君,张红东,陈维孝,等.高分子物理[M]. 上海:复旦大学出版社, 2007: 34-37.]
[43]Derbyshire F, Marzec A, Schulten H, et al. Molecular structure of coals: A debate[J].Fuel, 1989, 68: 1 091-1 106. 
[44]Karacan C. Swelling-induced volumetric strains internal to a stressed coal associated with CO2 sorption[J].International Journal of Coal Geology, 2007, 72: 209-220.
[45]Gorbaty M L. Prominent frontiers of coal science: Past, present and future[J]. Fuel, 1994, 73(12): 1 879-1 828.
[46]Qin Kuangzong, Guo Shaohui, Li Shuyuan. New concept on coal structure and new consideration for the generation mechanism of oil from coal[J]. Chinese Science Bulletin, 1998, 43(18): 2 025-2 035.[秦匡宗, 郭绍辉, 李术元. 煤结构的新概念与煤成油机理的再认识[J].科学通报,1998, 43(18): 2 025-2 035.]

[1] 杨建,刘基,黄浩,梁向阳. 鄂尔多斯盆地北部深埋区“地貌—沉积”控水关键要素研究[J]. 地球科学进展, 2019, 34(5): 523-530.
[2] 王的, 冯海艳, 景慧敏. 北京市冬季、春季PM 10和PM 2.5中元素地球化学特征[J]. 地球科学进展, 2017, 32(8): 850-858.
[3] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[4] 姜波, 李明, 屈争辉, 刘杰刚, 李伍. 构造煤研究现状及展望[J]. 地球科学进展, 2016, 31(4): 335-346.
[5] 张莉, 王金满, 刘涛. 露天煤矿区受损土地景观重塑与再造的研究进展[J]. 地球科学进展, 2016, 31(12): 1235-1246.
[6] 杜佳媛, 魏永鹏, 刘菲菲, 代燕辉, 赵建, 王震宇. 氧化石墨烯对环境污染物的吸附行为及吸附机理[J]. 地球科学进展, 2016, 31(11): 1125-1136.
[7] 郭晨, 秦勇, 卢玲玲. 黔西红梅井田煤层气有序开发的水文地质条件[J]. 地球科学进展, 2015, 30(4): 456-464.
[8] 范婷婷, 王玉军,李成保,周东美. 基于悬液Wien效应研究离子与土壤黏粒之间[J]. 地球科学进展, 2015, 30(12): 1295-.
[9] 简阔, 傅雪海, 王可新, 张玉贵. 中国长焰煤物性特征及其煤层气资源潜力[J]. 地球科学进展, 2014, 29(9): 1065-1074.
[10] 陈志耕. 软流层的地球膨胀成因及其形成时间[J]. 地球科学进展, 2013, 28(7): 834-846.
[11] 金杰,刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253-261.
[12] 姚素平,焦堃,李苗春,吴浩. 煤和干酪根纳米结构的研究进展[J]. 地球科学进展, 2012, 27(4): 367-378.
[13] 徐少琨,张峰 向文洲,吴园涛,任小波. 微藻应用于煤炭烟气减排的研究进展[J]. 地球科学进展, 2011, 26(9): 944-953.
[14] 朱炎铭,陈尚斌,王道华,曹新款,李伍. 煤中金的研究现状及其展望[J]. 地球科学进展, 2010, 25(8): 794-799.
[15] 张泓,张群,曹代勇,李小彦,李贵红,黄文辉,冯宏,靳德武,张子敏,贾建称,石智军,邵龙义,程建远,汤达祯,姜在炳. 中国煤田地质学的现状与发展战略[J]. 地球科学进展, 2010, 25(4): 343-352.
阅读次数
全文


摘要