地球科学进展 ›› 2011, Vol. 26 ›› Issue (9): 944 -953. doi: 10.11867/j.issn.1001-8166.2011.09.0944

综述与评述 上一篇    下一篇

微藻应用于煤炭烟气减排的研究进展
徐少琨 1,2,张峰 1,2, 向文洲 1,吴园涛 3,任小波 3*   
  1. 1.中国科学院海洋生物资源可持续利用重点实验室,中国科学院南海海洋研究所,广东 广州 510301;
    2.中国科学院研究生院,北京 100049;
    3.中国科学院资源环境科学与技术局,北京 100864
  • 收稿日期:2011-02-25 修回日期:2011-06-20 出版日期:2011-09-10
  • 通讯作者: 任小波(1971-),男,四川合江人,副研究员,主要从事大气海洋科研管理研究 E-mail:xbren@cashq.ac.cn
  • 基金资助:

    海洋公益专项经费项目“电厂废气联产微藻生物柴油研究与示范”(编号:2010050315);广东科技计划项目“电厂废气的微藻减排技术研究”(编号:2009B080701093)资助.

Progress in the Study of Removal from Coal Fired Flue Gas by Microalgae

Xu Shaokun 1,2, Zhang Feng 1,2, Xiang Wenzhou 1, Wu Yuantao 3, Ren Xiaobo 3   

  1. 1.Key Laboratory of Marine Bio-resources Sustaninable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
    2.Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    3.Bureau of Science and Technology for Resources and Environment, Chinese Academy of Sciences,Beijing 100864, China
  • Received:2011-02-25 Revised:2011-06-20 Online:2011-09-10 Published:2011-09-10

长久以来,我国因煤炭燃烧产生的大量CO2、SO2、NOx、烟尘等对生态环境造成了严重危害,煤炭烟气的减排也愈来愈受到重视,利用微藻进行烟气减排正逐渐成为研究热点。主要介绍了微藻固碳和减排生理机制等相关理论基础,阐述了微藻藻种筛选驯化、光生物反应器等减排关键技术研究进展,阐述了国内外微藻煤炭烟气减排应用现状,探讨了微藻烟气减排技术规模化应用存在的问题和发展趋势。

For a long time, a large amount of harmful materials, like CO2, SO2, NOx  and smokedust brought by coal′s burning in both China and the world has been creating grievous atmospheric pollution. Much emphasis has been putting on reducing the emission of flue gas, and using microalgae to achieve the aim, which  is one of the international research hotspots. In this paper, the theories about the physiological mechanism of carbon fixation and emission reduction of coal fired flue gas by microalgae, the research progress in some key techniques such as microalgae strain selection and design of new photobioreactors  are outlined. Meanwhile, the existing problems and future trends of large-scale application of emission reduction by microalgae are discussed.

中图分类号: 

[1]Agency I E.Key World Energy Statistics 2010[M]. Paris: OECD/IEA, 2010.
[2]Eggleston H S.IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Japan: Hayama, 2006.
[3]Zhu Chuan, Jiang Ying, Wu Linlin.Discussion on quantification of CO2 emission reduction and treatment technologies and classification assessment[J].Sin-Global Energy,2010, 15(3):19-23.[朱川, 姜英, 武琳琳.CO2减排、处理技术的量化讨论与分类评价[J].中外能源2010,15(3):19-23.]
[4]Usui N,Ikenouchi M. Biological CO2 fixation and utilization project by RITE .1. Highly-effective photobioreactor system[J].Energy Conversion and Management,1997, 38(1):487-492.
[5]Kumar A, Ergas S, Yuan X, et al.Enhanced CO(2) fixation and biofuel production via microalgae: Recent developments and future directions[J]. Trends Biotechnol, 2010, 28(7):371-380.
[6]Skjanes K, Lindblad P, Muller J.BiOCO2—A multidisciplinary, biological approach using solar energy to capture CO2 while producing H-2 and high value products[J]. Biomolecular Engineering, 2007, 24(4):405-413.
[7]Giordano M, Beardall J, Raven J A.CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution[J].Annual Review of Plant Biology, 2005,56:99-131.
[8]Raven J A. Inorganic carbon assimilation by marine biota[J].Journal of  Experimental Marine Biology Ecology,1996, 203:39-47.
[9]Fu Xiang, Han Boping, Lin Qiuqi. Review of the CO2 concentration mechanism in cyanobacteria[J].Marine Sciences,2003, 27(4):13-17.[付翔, 韩博平, 林秋奇. 蓝细菌CO2浓缩机制的研究概况[J]. 海洋科学, 2003, 27(4):13-17.]
[10]Qiu Baosheng, Gao Kunshan. Carbon dioxide concentrating mechanism inblue-green algae[J].Plant Physiology Communications,2001, 37(5):385-392.[邱保胜, 高坤山.蓝藻浓缩二氧化碳的机制[J]. 植物生理学通讯, 2001, 37(5):385-392.]
[11]Moroney J V, Chen Z Y. The role of the chloroplast in inorganic carbon uptake by eukaryotic algae[J]. Canadian Journal of Botany,1998, 76(6):1 025-1 034.
[12]Moroney J V, Ynalvez R A. Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii[J]. Eukaryotic Cell, 2007, 6(8):1 251-1 259.
[13]Spalding M H.Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters[J]. Journal of Experiment Botany,2008, 59(7):1 463-1 473.
[14]Roberts K, Granum E, Leegood R C,et al. Carbon acquisition by diatoms[J].Photosynthesis Research,2007,93(1/3):79-88.
[15]Zhi Yanli, Chu Zhaosheng, Zhong Yuan,et al. Photosynthetic HCO- utilization of Microcystis aeruginosa and Scenedesmus quadriccauda[J].Lake Sciences,2008, 20(4):443-449.[支彦丽, 储昭升, 钟远,等.铜绿微囊藻和四尾栅藻光合利用碳酸氢盐探讨[J].湖泊科学, 2008, 20(4):443-449.]
[16]Lopez-Archilla A I, Moreira D, Lopez-Garcia P,et al. Phytoplankton diversity and cyanobacterial dominance in a hypereutrophic shallow lake with biologically produced alkaline pH[J].Extremophiles, 2004, 8(2):109-115.
[17]Badger M R, Price G D, Long B M,et al. The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism[J].Journal of  Expany Botany,2006, 57(2):249-265.
[18]Du Jijun, Zeng Ping, Shi Yingjie,et al.Cultivation of wild mixed microalgae by synthetic flue gas[J].Research of Environmental Sciences,2010,23(3):366-370.[都基峻, 曾萍, 石应杰,等. 模拟烟气条件下野生混合微藻的培养[J]. 环境科学研究, 2010,23(3):366-370.]
[19]Qian Yongchang, Yu Shuwen. Oxidation of sulfur dioxide on plants and anti-oxidation of plants[J].Plant Physiology Communications,1991, 27(5):326-331.[钱永常, 余叔文.SO2对植物的氧化作用和植物的抗氧化作用[J]. 植物生理学通讯, 1991, 27(5):326-331.]
[20]Peng Changlian, Lin Zhifang. Effects of SO2-3 of HCO-3 on chlorophyll fluorescence in Dunaliella Salina 1009[J].Tropical and Subtropical Botany,1998, 6(2):117-123.[彭长连, 林植芳.强光下SO2-3和HCO-3对盐藻叶绿素荧光的影响[J]. 热带亚热带植物学报, 1998, 6(2):117-123.]
[21]Xia Zongliang, Wang Yongxia, Zhang Xuecai,et al.Advances in studies on sulfite oxidase in higher plants[J].Chinese Agricultural Science Bulletin,2007, 23(9):302-306.[夏宗良, 王永霞, 张学才,等.高等植物亚硫酸盐氧化酶研究进展[J]. 中国农学通报, 2007, 23(9):302-306.]
[22]Aguilar M, Cardenas J, Fernandez E.Quantitation of molybdopterin oxidation product in wild-type and molybdenum cofactor deficient mutants of Chlamydomonas reinhardtii[J].Biochim Biophys Acta,1992,1 160(3):269-274.
[23]Solomonson L P, Barber M J, Howard W D. Electron paramagnetic resonance studies on the molybdenum center of assimilatory NADH:Nitrate reductase from Chlorella vulgaris[J].Journal of Biological Chemistry,1984, 259(2):849-853.
[24]Rabinowitch H D, Fridovich I. Growth of Chlorella Sorokiniana in the presence of sulfite elevates cell content of superoxide-dismutase and imparts resistance towards paraquat[J].Planta,1985, 164(4):524-528.
[25]Castenholz R W, Utkilen H C. Physiology of sulfide tolerance in a thermophilic Oscillatoria[J].Archives of Microbiology,1984, 138(4):299-305.
[26]Yue Lihong, Chen Weigong, Li Jianguo,et al. Chrollera ZY-1 cultivation and its CO2 fixation in the environmental condition of flue gases[J].Journal of Qingdao Technological University,2005, 26(6):15-19.[岳丽宏, 陈为公, 李建国,等.烟气环境条件下小球藻的生长及其CO2固定[J]. 青岛理工大学学报, 2005, 26(6):15-19.]
[27]Lee J S, Kim D K, Lee J P,et al. Effects of SO2 and NO on growth of Chlorella sp KR-1[J]. Bioresource Technology,2002, 82(1):1-4.
[28]Yang S L, Wang J, Cong W,et al.Effects of bisulfite and sulfite on the microalga Botryococcus braunii[J].Enzyme and Microbial Technology,2004, 35(1):46-50.
[29]Zhang Min, Chen Jun. Control and development situation of nitrogen oxide at domestic coal-fired power plant[J].Sichuan Chemical Industry,2009, 12(5):44-52.[张敏, 陈军.国内燃煤电厂氮氧化物的控制现状及其发展[J]. 四川化工, 2009, 12(5):44-52.]
[30]Nagase H, Yoshihara K, Eguchi K,et al. Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolecta culture system[J].Journal of Fermentation and Bioengineering,1997, 83(5):461-465.
[31]Nagase H, Yoshihara K, Eguchi K,et al. Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae[J]. Biochemical Engineering Journal,2001, 7(3):241-246.
[32]Doucha J, Straka F, Livansky K. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor[J]. Journal of Applied Phycology,2005, 17(5):403-412.
[33]Misra A N, Misra M, Singh R. Nitric oxide biochemistry, mode of action and signaling in plants[J]. Journal of Medicinal Plants Research, 2010,4(25):2 729-2 739.
[34]Singh A K, Sharma L, Mallick N.Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, Chlorella[J]. Ecotoxicology and Environmental Safety,2004, 59(2):223-227.
[35]Zhang L P, Mehta S K, Liu Z P,et al. Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii[J].Plantard Cell Physiology,2008, 49(3):411-419.
[36]Yoo C, Jun S Y, Lee J Y,et al.Selection of microalgae for lipid production under high levels carbon dioxide[J]. Bioresource Technology, 2010, 101(1):S71-S74.
[37]de Morais M G, Costa J A V. Carbon dioxide fixation by Chlorella kessleri, C-vulgaris, Scenedesmus obliquus and Spirulina sp cultivated in flasks and vertical tubular photobioreactors[J].Biotechnology Letters, 2007, 29(9):1 349-1 352.
[38]Negoro M, Hamasaki A, Ikuta Y, et al. Carbon-dioxide fixation by microalgae photosynthesis using actual flue-gas discharged from a Boiler[J]. Applied Biochemistry and Biotechnology,1993, 39:643-653.
[39]Chae S R,  Hwang E J, Shin H S. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor[J].Bioresource Technology,2006, 97(2):322-329.
[40]Ono E, Cuello J L. Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector[J].Biosystems Engineering, 2006, 95:597-606.
[41]Yue Lihong, Chen Baozhi. Isolation and determination of cultural characteristics of microalgae forgreenhouse gases fixation from the stack gases[J].Journal of Northeastern University(Natural Science), 2002, 23(2):289-292.[岳丽宏, 陈宝智.固定烟道气温室气体的微藻的分离及培养特性测定[J].东北大学学报:自然科学版, 2002, 23(2):289-292.]
[42]Sung K D, Lee J S, Shin C S. Isolation of a new highly CO2 tolerant fresh water microalga Chlorella sp KR-1[J].Korean Journal of Chemical Engineering,1998, 15(4):449-450.
[43]Fulke A B, Mudliar S N, Yadav R,et al. Bio-mitigation of CO(2), calcite formation and simultaneous biodiesel precursors production using Chlorella sp.[J].Bioresource Technology, 2010, 101(21):8 473-8 476.
[44]Hsueh H T,Li W J, Chen H H,et al. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp CL-1 and Nannochloropsis oculta[J]. Journal of Photochemistry and Photobiology B-Biology, 2009, 95(1/2):33-39.
[45]Lai Wenliang, Li Chonggai, Su Huimei,et al. A case study of CO2 fixation from the flue gas by microalgae on Talin coal-fired thermal power plant[J].Monthly Journal of Taipower′s Engineering, 1998, 729:1-13.[赖文亮, 李崇垓, 苏惠美,等.微藻固定烟道气中二氧化碳之效益——以大林火电发电厂为例[J].台电工程月刊, 1998, 729:1-13.]
[46]Olaizola M.Microalgal removal of CO2 from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures[J]. Biotechnology and Bioprocess Engineering, 2003, 8(6):360-367.
[47]Pulz O.Photobioreactors: Production systems for phototrophic microorganisms[J]. Applied Microbiology and Biotednology,2001, 57(3):287-293.
[48]Jacob-Lopes E, Scoparo C H G, Lacerda L M C F,et al. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors[J].Chemical Engineering and Processing, 2009, 48(1):306-310.
[49]Ono E, Cuello J L. Design parameters of solar concentrating systems for CO2-mitigating algal photobioreactors[J]. Energy, 2004, 29(9/10):1 651-1 657.
[50]Takano H, Takeyama H, Nakamura N, et al. CO2 Removal by high-density culture of a marine cyanobacterium Synechococcus sp using an improved photobioreactor employing light-diffusing optical fibers[J]. Applied Biochemisty and Biotechnology,1992, 34(5):449-458.
[51]Jacob-Lopes E, Lacerda L M C F, Franco T T. Biomass production and carbon dioxide fixation by Aphanothece microscopica Nageli in a bubble column photobioreactor[J]. Biochemical Engineering Journal, 2008, 40(1):27-34.
[52]Masojidek J, Papacek S, Sergejevova M,et al. A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: Basic design and performance[J]. Journal of Applied Phycology, 2003, 15(2/3):239-248.
[53]Sato T, Usui S, Tsuchiya Y,et al. Invention of outdoor closed type photobioreactor for microalgae[J]. Energy Conversion and Management,2006, 47(6):791-799.
[54]Nagase H, Eguchi K, Yoshihara K,et al. Improvement of microalgal NOx removal in bubble column and airlift reactors[J]. Journal of Fermentation and Bioengineering, 1998, 86(4):421-423.
[55]Cheng L H, Zhang L, Chen H L. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor[J]. Separation and Purification Technology, 2006, 50(3):324-329.
[56]Yun Y S, Park J M. Development of gas recycling photobioreactor system for microalgal carbon dioxide fixation[J]. Korean Journal of Chemical Engineering,1997, 14(4):297-300.
[57]Vunjak-Novakovic G, Kim Y, Wu X,et al.Air-lift bioreactors for algal growth on flue gas: Mathematical modeling and pilot-plant studies[J]. Indastrial Engineering Chemistry Research,2005, 44(16):6 154-6 163.
[58]Meng Peinan, Deng Dingxun, Zhou Ke. Experimental study on disposing the organic sewage andcultivating fodder Spirulina with solar energy light-organic reactor[J].Acta Energiae Solaris Sinica,2002, 23(1):1-3.[蒙沛南, 邓鼎勋, 周科.利用太阳能光生物反应器处理有机污水并培养饲料级螺旋藻实验研究[J]. 太阳能学报, 2002, 23(1):1-3.]
[59]Burlew J S.Algal Culture from Laboratory to Pilot Plant[M]. Washington DC: Carnegie Institution of Washington Publication 600, 1953.
[60]Kurano N, Ikemoto H, Miyashita H.Fixation and utilization of carbon-dioxide by microalgal photosynthesis[J]. Energy Conversion and Management,1995, 36(6):689-692.
[61]Douskova I, Doucha J, Livansky K,et al. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs[J]. Applied Microbiology and Biotechnology, 2009, 82(1):179-185.
[62]Lee Juno, Lee Jinsuk, Shin Chulseung,et al. Methods to enhance tolerances of Chlorella KR-1 to toxic compounds in flue gas[J]. Applied Biochemistry and Biotechnology, 2000,84/86(1):329-342.
[63]Xiang W Z, Su J, Liu J. Isolation of an extremophilic diatom strain and its potential in biotechnology[C]China Energy Society.  Proceedings of Conference on China Technological Development of Renewable Energy Source, Bejing.   Sicentific Reserch Publishing,USA,2010,17/19:493-497.
[64]Wang B, Li Y, Wu N,et al. CO2 bio-mitigation using microalgae[J].Applied Microbiology and Biotechnology, 2008, 79(5):707-718.
[65]Mata T M,  Martins A A, Caetano N S. Microalgae for biodiesel production and other applications: A review[J].Renewable and Sustainable Energy Reviews,2010,14(1):217-232.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[3] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[4] 唐文魁,高全洲. 河口二氧化碳水—气交换研究进展[J]. 地球科学进展, 2013, 28(9): 1007-1014.
[5] 薛亮,于卫东,宁春林,王辉武. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.
[6] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[7] 李琦,刘桂臻,张建,贾莉,刘海丽. 二氧化碳地质封存环境监测现状及建议[J]. 地球科学进展, 2013, 28(6): 718-727.
[8] 段利江,唐书恒,夏朝辉,张铭. 煤吸附气体诱导的基质膨胀研究进展[J]. 地球科学进展, 2012, 27(3): 262-267.
[9] 魏小芳,罗一菁,刘可禹,帅燕华. 油气藏埋存二氧化碳生物转化甲烷的机理和应用研究进展[J]. 地球科学进展, 2011, 26(5): 499-506.
[10] 尹飞虎,李晓兰,董云社,谢宗铭,高志建,何帅,刘长勇. 干旱半干旱区CO 2浓度升高对生态系统的影响及碳氮耦合研究进展[J]. 地球科学进展, 2011, 26(2): 235-244.
[11] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
[12] 任小波,吴园涛,向文洲,秦松. 海洋生物质能研究进展及其发展战略思考[J]. 地球科学进展, 2009, 24(4): 403-410.
[13] 高众勇,陈立奇,CAI Wei-jun,WANG Yong-chen. 全球变化中的北极碳汇:现状与未来[J]. 地球科学进展, 2007, 22(8): 857-865.
[14] 许志刚,陈代钊,曾荣树. CO 2的地质埋存与资源化利用进展[J]. 地球科学进展, 2007, 22(7): 698-707.
[15] 刘羿,彭子成,刘卫国,肖应凯,孙若愚,贺剑峰,刘桂建. 古海水pH值代用指标——海洋碳酸盐硼同位素研究进展[J]. 地球科学进展, 2007, 22(12): 1240-1250.
阅读次数
全文


摘要