地球科学进展 ›› 2007, Vol. 22 ›› Issue (8): 857 -865. doi: 10.11867/j.issn.1001-8166.2007.08.0857

全球变化研究 上一篇    下一篇

全球变化中的北极碳汇:现状与未来
高众勇 1,2,陈立奇 1,2,3,CAI Wei-jun 4, WANG Yong-chen 4   
  1. 1.国家海洋局海洋—大气化学与全球变化重点实验室,福建 厦门 361005; 2.国家海洋局第三海洋研究所,福建 厦门 361005; 3.国家海洋局极地考察办公室,北京 100860; 4.Department of Marine Sciences, University of Georgia, Athens, GA, USA,30602
  • 收稿日期:2007-04-23 修回日期:2007-06-18 出版日期:2007-08-10
  • 通讯作者: 高众勇(1975-),男,福建连江人,研究员,主要从事极区碳循环研究.E-mail: zgao@263.net E-mail:zgao@263.net
  • 基金资助:

    国家自然科学青年基金项目“西北冰洋与白令海CO2体系特征及变异”(编号:40406014);国家自然科学基金重点项目“白令海与西北冰洋碳通量及其对北极快速变化的响应”(编号:40531007);国家自然科学基金项目“南极中山站大气铅污染的同位素示踪研究”(编号:40676062);国家海洋局青年基金项目“北冰洋CO2体系及其海—气交换通量研究”(编号:2004606);福建省青年科技人才创新项目“南极普里兹湾CO2海—气交换通量及其主要调控因子研究”(编号:2004J056);福建省自然科学基金项目(编号:Z0513027);极地科学重点实验室资助项目(编号:KP2005003);国家海洋局第三海洋研究所所长基金项目“南北极海区碳循环的差异对比研究”资助.

Arctic Carbon Sink in Global Change: Present and Future

GAO Zhong-yong 1,2 ,  CHEN Li-qi 1,2,3,CAI Wei-jun 4,WANG Yong-chen 4   

  1. 1.Key Laboratory of Global Change and Marine-Atmospheric Chemistry,SOA,Xiamen 361005,China;2.Third Institute of Oceanography State Oceanic Administration,Xiamen 361005,China;3.Chinese Arctic and Antarctic Administration, Beijing 100860, China;4.Department of Marine Sciences, University of Geogia Athens GA USA 30602
  • Received:2007-04-23 Revised:2007-06-18 Online:2007-08-10 Published:2007-08-10

由于海冰覆盖,北极碳汇(Arctic Carbon Sink)在全球碳通量预算中经常被忽略或简单处理。但随着全球变化加剧,北极发生快速变化,北极碳循环及其对全球变化的响应与反馈日趋重要。综合对北极碳汇的研究结果,分析了北极碳汇的来源、变化以及主要调控因子,评估了北极碳汇现状。探讨了在全球变化中,影响北极碳汇变化的因素及其对未来北极碳汇变化趋势的影响。

The Arctic carbon sink was always ignored in the global carbon budget or dealt with in a simple way because the central Arctic was covered by ice yearlong. This view has changed, however, recently. With the increasing rates of global changes, the Arctic Ocean also changes. It becomes clearer that it is of paramount importance to understand the interplay between the carbon cycle in Arctic Ocean. This paper summarizes the current results on Arctic carbon sink (ACS), analyzes sources, variations and the controlling factors of the ACS, and then estimates the current status of ASC. The trend of ACS variation in the future is also evaluated here.

中图分类号: 

[1]Parkinson C L, Cavalieri D J, Gloersen P, et al. Arctic sea ice extents, area, and trends, 1978-1996[J].Journal of Geophysical Research,1999,104(C9):20 837-20 856.
[2]Serreze M, Walsh J, Chapin F, et al. Observational evidence of recent changes in the northern highlatitude environment [J].Climate Change,2000, 46: 159-207.
[3]Comiso J. A rapidly declining perennial sea ice cover in the Arctic [J].Geophysical Research Letters, 2002, 29(20):1 956. 
[4]Chen Liqi, Zhao Jinping, Bian Lin'gen, et al. Study of key processes affecting rapid changes in the Arctic [J].Chinese Journal of Polar Research,2003, 15(4):283-302.[陈立奇,赵进平,卞林根,等. 影响北极地区迅速变化的一些关键过程研究[J]. 极地研究,2003,15(4),283-302.]
[5]Chen Liqi, Gao Zhongyong, Wang Weiqiang, et al. Characteristics of p(CO2) in surface water of the Bering Basin and their effects to the carbon cycling in the western Arctic Ocean[J].Science in China(Series D),2004, 47(11): 35-144.
[6]Chen Liqi, Gao Zhongyong, Yang Xulin, et al. Surface ocean and low atmosphere study in polar and sub-polar regions[C]//Feng Shizuo, eds. Scientific Issues in Frontier of Surface Ocean and Low Atmosphere Study. Beijing:China Meteorological Press, 2006:76-82.[陈立奇,高众勇,杨绪林,等. 极区和亚极区的上层海洋—低层大气研究[C]//冯士筰主编.上层海洋与低层大气研究的前沿科学问题.北京:气象出版社,2006:76-82.]
[7]Chapman W L, Walsh J E. Recent variations of sea ice and air temperatures in high latitudes [J].Bulletin of the American Meteorological Society,1993, 74(1): 33-47.
[8]Stroeve J C, Serreze M C, Fetterer F T, et al. Tracking the Arctic's shrinking ice cover: Another extreme September minimum in 2004 [J].Geophysical Research Letters,2005, 32(L04501), doi:10.1029/2004GL021810.
[9]Allison I, Barry R G, Goodison B E. Climate and Cryosphere (Clic) Project Science and Co-ordination Plan. Version 1[R]. WCPR-114(WMO/TD No.1053),2001.
[10]Dickson B, Yashayaev I, Meincke J, et al. Rapid freshening of the deep North Atlantic ocean over the past four decades [J].Nature,2002, 416: 832-837.
[11]Trenberth K E. Climate variability and global warming [J].Science,2001, 293(5 527):48.
[12]Bates N R. Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean [J].Journal of Geophysical Research,2006, 111(C10013), doi:10.1029/2005JC003083.
[13]Walsh J J. Simulated polar food web responses to reduced ice cover: A southern ocean perspective on an ice-free north pole[C]//Shelf-Basin Interactions Pan Arctic meeting. US National Science Foundation SBI Project Office, 2000.
[14]Lindstrom R D, MacAyeal D R. Scandinavian, Siberian, and Arctic Ocean glaciations: Effect of Holocene atmospheric CO2 variations [J].Science,1989, 245: 628-631.
[15]Fortier M, Fortier L, Michel C, et al. Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice [J].Marine Ecology Progress Series, 2002, 225: 1-16.
[16]IASC Working Group on Global Change. Barents Sea Impact Study (BASIS) [R]. IASC Special Report 2. Oslo, Norway, IASC, 1995.
[17]Anderson L G, Kaltin S. Carbon fluxes in the Arctic Ocean-potential impact by climate change [J].Polar Research,2001, 20 (2): 225-232.
[18]Anderson L G, Dyrssen D, Jones E P. An assessment of the transport of atmospheric CO2 into the Arctic Ocean [J].Journal of Geophysical Research,1990, 95: 1 703-1 711.
[19]Walsh J J. Arctic carbon sinks: Present and future [J].Global Biogeochemical Cycle,1989, 3(4): 393-411.
[20]Sakshaug E, Skjoldal H R. Life at the ice edge [J].AMBIO,1989, 18: 60-67.
[21]Gosselin M, Levasseur M, Wheeler P A, et al. New measurements of phytoplankton and ice algal production in the Arctic Ocean [J].Deep-Sea Research,1997,44:1 623-1 644.
[22]Millero F J. The carbonate system[C]//Chemical Oceanography(2nd). Boca Raton: CRC Press, 1996.
[23]Murata A, Takizawa T. Summertime CO2 sinks in shelf and slope waters of the western Arctic Ocean [J].Continental Shelf Research,2003,23:753-776.
[24]Anderson L G, Olsson K, Skoog A. Distribution of dissolved inorganic and organic in the Eurasian basin of the Arctic Ocean[C]//Johannessen O M, Muench R D, Overland J E, eds. The Polar Oceans and Their Role in Shaping the Global Enviroment.Washington DC: AGU,1994,85:255-262.
[25]Hulth S. Mineralization of biogenic debris in continental shelf and slope sediments[D]. Department Analyse and Marine Chemostry. Sweden Gteborg: University,1995.
[26]Anderson L G, Leif G, Olson K, et al. A carbon budget for the Arctic Ocean [J].Global Biogeochemical Cycles,1998, 12(3):455-465.
[27]Cai W-J, Dai M, Wang Y. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis[J].Geophysical Research Letters,2006,33(L12603),doi:10.1029/2006GL026219.
[28]Keeling C D, Bacastow R B, Carter A F, et al. A three-dimensional model of atmosphere CO2 transport based on observed winds, 1. analysis of observational data[C]//Peterson D H, eds. Aspects of Climate Variability in the Pacific and the Western Americas.
Washington DC:AGU,1989,55:165-236.
[29]Keeling C D, Whorf T P.Atmospheric CO2 records from sites in the SIO air sampling network[J/OL].http://cdiac.ornl.gov/trends/co2/sio-mlo.htm.
[30]Fransson A, Chierici M, Anderson G L, et al. The importance of shelf processes for the modification of chemical constituents in the waters of the Eurasian Arctic Ocean: Implication for carbon fluxes[J].Continental Shelf Research,2001,21:225-242.
[31]Pipko I I, Semiletov P I, Tishchenko Y P, et al. Carbonate chemistry dynamics in Bering Strait and the Chukchi Sea[J].Progress in Oceanography,2002,55:77-94.
[32]Wang Weiqiang, Chen Liqi, Yang Xulin, et al. Investigations on distributions and fluxes of sea-air CO2 of the expedition areas in the Arctic Ocean[J].Science in China(Series D),2003,46(6):569-579.
[33]Ludwig W, Amiotte-Suchet P, Probst J L. River discharges of carbon to the world's oceans: Determining local inputs of alkalinity and of dissolved and particulate organic carbon[J].Comptes Rendus de l'Aacademie des Sciences serie II: Fascicule a Sciences de la Terre et des Planetes,1996,323(12):1 007-1 014.
[34]Opsahl S, Benner R, Amon R M W. Major flux of terrigenous dissolved organic matter through the Arctic Ocean[J].Limnology and Oceonography,1999,44:2 017-2 023.
[35]Olsson K, Anderson L G. Input and biogeochemical transformation of dissolved carbon in the Siberian shelf seas[J].Continental Shelf Research,1997,17:819-833.
[36]Walsh J J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen[J].Nature,1991, 350:53-55.
[37]Tsunogai S, Watanabe S, Sato T. Is there a“continental shelf pump”for the absorption of atmospheric CO2?[J].Tellus,1999, 51B:701-712.
[38]Frankignoulle M, Borges A V. European continental shelf as a signi.cant sink for atmospheric carbon dioxide[J].Global Biogeochemical Cycles,2001, 15:569-576.
[39]Yool A, Fasham M J R. An examination of the “continental shelf pump” in an open ocean general circulation model[J].Global Biogeochemical Cycles,2001,15:831-844.
[40]Miller L A, Chierici M, Johannessen T, et al. Seasonal dissolved inorganic carbon variations in the Greenland Sea and implications for atmospheric CO2 exchange[J].Deep-Sea Research II,1999, 46: 1 473-1 496.
[41]Broecker W S, Peng T-H. Interhemispheric transport of carbon dioxide by ocean circulation[J].Nature,1992, 356: 587-589.
[42]Broecker W S, Peng T-H. Tracers in the Sea[M].New York:Eldigio Press,1982.
[43]Savidge G, Priddle J, Gilpin L C, et al. An assessment of the role of the marginal ice zone in the carbon cycle of the Southern Ocean[J].Antarctic Science,1996,8(4):349-358.
[44]Ishii M, Inoue Y H, Matsueda H, et al. Close coupling between seasonal biological production and dynamics of dissolved inorganic carbon in the Indian Ocean sector and the western Pacific Ocean sector of the Antarctic Ocean[J].Deep-Sea Research I,1998, 45:1 187-1 209.
[45]Skjelvan I, Johannesen T, Miller L A. Interannual variability of fCO2 in the Greenland and Norwegian Seas[J].Tellus,1999, 51B: 477-489.
[46]Peterson B J, Holmes R M, McClelland J W, et al. Increasing River Discharge to the Arctic Ocean[J].Science,2002, 289:2 171-2 173.
[47]Codispoti L A , Friedrich G E, Hood D W. Variability in the inorganic carbon system over the southeastern Bering sea shelf during spring 1980 and spring-summer 1981[J].Continental Shelf Research,1986,5:133-160.
[48]Chen Jianfang, Zhang Haisheng, Jin Haiyan, et al. Accumulation of sedimentary organic carbon in the Arctic shelves and its significance on global carbon budget[J].Chinese Journal of Polar Research,2004,16(3):193-201.[陈建芳,张海生,金海燕,等.北极陆架沉积碳埋藏及其在全球碳循环中的作用[J]. 极地研究,2004,16(3):193-201.]
[49]Li Xiaona, Zhou Weihua, Liu Sumei, et al. Sediment chlorophyll in HAB(Harmful Algal Bloom) area of east China sea[J].Chinese Journal of Applied Ecology,2003,14(7):1 102-1 106.[李肖娜,周伟华,刘素美,等. 东海赤潮高发区沉积物中叶绿素的分析[J]. 应用生态学报,2003,14(7):1 102-1 106.]
[50]Aagaard K, Coachman L K. Toward an ice-free Arctic Ocean[J].EOS,1975, 56: 484-486.
[51]Aaggaard K, Coachman L K, Carmack E. On the halocline of the Arctic Ocean[J].Deep-Sea Research,1981,28:529-545.
[52]Loughlin T R, Ohtani K. Dynamics of the Bering Sea[M]. Fairbanks:University of Alaska Sea Grant, AK-SG-99-03, 1999.
[53]Coachman L K, Aagaard K. Reevaluation of water transports in the vicinity of Bering Strait[C]//Hood D W, Calder J A, eds. The Eastern Bering Sea Shelf: Oceanography and Resources. Office of Marine Pollution Assessment, NOAA and BLM,1981, WA 98105, 95-110.
[54]Roach A T, Aagaard K, Pease C H, et al. Direct measurements of transport and water properties through the Bering Strait[J].Journal of Geophysical Research, 1995, 100(C9):18 443-18 457.
[55]Sambrotto R N, Goering J J, McRoy C P. Large yearly production of phytoplankton in the western Bering Strait [J].Science,1984, 225:1 147-1 150.
[56]Aagaard K. The Beaufort undercurrent[C]//Barnes P W, Schell D M, Reimnitz E, eds. The Alaskan Beaufort Sea: Ecosystems and Environments. Orlando FL: Academic Press,1984:47-71.
[57]Mountain D G. Preliminary analysis of Beaufort shelf circulation in summer[C]//Reed J C, Sater J E, eds. The Coast and Shelf of the Beaufort sea. Arlington VA, Arctic Institute of North America, 1974:27-48.
[58]Fissel D B, Marko J R, Birch J R, et al. Water mass distributions[C]//Richardson W J, eds. Importance of the Eastern Alaskan Beaufort Sea to Feeding Bowhead Whales.1985-6. US Minerals Management Service Report MMS87-0037. Available from National Technical Information Service, Springfield, VA 22161, as PB88-150271/AF,1987:11-131.
[59]Chen A, Chen-Tung. Carbonate chemistry of the wintertime Bering sea marginal ice zone[J].Continental Shelf Research,1993,13(1):67-87.
[60]Banse K, English D C. Comparing phytoplankton seasonality in the eastern subarctic Pacific and the western Bering sea[J].Progress in Oceanography,1999, 43:235-288.
[61]Shiomoto A, Saitoh S, Imai K, et al. Interannual variation in phytoplankton biomass in the Bering sea basin in the 1990s[J].Progress in Oceanography,2002, 55: 147-163.
[62]Ramseier R O, Bauerfeind E, Garrity C, et al. Seasonal variability of sediment trap collections in the northeast water polynya .1. Sea-ice parameters and particle flux[J].Journal of Marine System,1997, 10(1/4):359-369.
[63]Ramseier R O, Garrity C, Bauerfeind E, et al. Sea-ice impact on long-term particle flux in the Greenland Sea's Is Odden-Nordbukta region, 1985-1996[J].Journal of Geophysical Research,1999,104(C3):5 329-5 343.
[64]Legendre L, Ackley S F, Dieckmann G S, et al. Ecology of sea ice biota. 2. Global significance[J].Polar Biology,1992,12:429-444.
[65]Armstronga R A, Leea C, Hedgesb I J, et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J].Deep-Sea Research II,2002, 49: 219-236.
[66]Feely R A, Sabine C L, Lee K, et al. Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans[J].Science,2004,305:362-366.
[67]Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J].Nature,2005, 437: 681-686.

[1] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[2] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[3] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[4] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[5] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[6] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[7] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[8] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[9] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[10] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[11] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[12] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[13] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
[14] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
[15] 魏学琼, 叶瑜, 崔玉娟, 李蓓蓓, 袁存, 方修琦. 中国历史土地覆被变化重建研究进展[J]. 地球科学进展, 2014, 29(9): 1037-1045.
阅读次数
全文


摘要