[1]Tissot B P. Recent advances in petroleum geochemistry applied to hydrocarbon exploration[J].AAPG Bulletin,1984, 68(5): 545-563. [2]Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions[J]. Fuel, 1999, 78(11): 1 333-1 344. [3]Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 2. Adsorption rate modeling[J]. Fuel, 1999, 78(11): 1 345-1 362. [4]Karacan C O, Okandan E. Adsorption and gas transport in coal microstructure: Investigation and evaluation by quantitative X-ray CT imaging[J]. Fuel, 2001, 80(4): 509-520. [5]Kabe T, Ishihara A, Qian E W, et al. Coal and Coal-related Compounds: Structures, Reactivity and Catalytic Reactions[M]. Tokyo: Kodansha Ltd., 2004. [6]Davidson R M. Studying the Structural Chemistry of Coal[R].IEA Clean Coal Centre Report CCC/82,2004. [7]Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian barnett shale[J]. Journal of Sedimentary Research, 2009, 79(11/12): 848-861. [8]Fu Jiamo, Liu Dehan, Sheng Guoying. Geochemistry of Coal-Generated Hydrocarbons[M]. Beijing: Science Press, 1990.[傅家谟, 刘德汉, 盛国英. 煤成烃地球化学[M]. 北京: 科学出版社,1990.] [9]Huang Difan, Hua Axin, Wang Tieguan, et al. Advances in Geochemistry of Oil Derived from Coals[M]. Beijing: Petroleum Industry Press, 1992.[黄第藩, 华阿新, 王铁冠, 等. 煤成油地球化学新进展[M]. 北京: 石油工业出版社,1992.] [10]Qin Yong. Micropetrology and Structural Evolution of High-rank Coals in P. R. C[M]. Xuzhou: China University of Mining and Technology Press, 1994.[秦勇. 中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州:中国矿业大学出版社,1994.] [11]Huang Difan, Qin Kuangzong, Wang Tieguan, et al. Formation and Mechanism of Oil from Coal[M]. Beijing: Petroleum Industry Press, 1995.[黄第藩, 秦匡宗, 王铁冠,等. 煤成油的形成和成烃机理[M]. 北京: 石油工业出版社,1995.] [12]Qin Kuangzong, Guo Shaohui, Li Shuyuan. New concept on coal structure and new consideration for the generation mechanism of oil from coal[J].Chinese Science Bulletin, 1998,43(18):1 912-1 918.[秦匡宗, 郭绍辉, 李术元. 煤结构的新概念与煤成油机理的再认识[J]. 科学通报, 1998,43(18): 1 912-1 918.] [13]Dai Jinxing. Significant advancement in research on coalformed gas in China[J].Petroleum Exploration and Development, 1999, (3): 21-30.[戴金星. 中国煤成气研究二十年的重大进展[J]. 石油勘探与开发, 1999, 26(3): 21-30.] [14]Stach E. The development of coal vitrit[J]. Angewandte Chemie,1933, 46:275-278. [15]Biggs B S, Weiler J F. The chemical constitution of a bituminous coal as revealed by its hydrogenation products[J]. Journal of the American Chemical Society, 1937,59(2):369-372. [16]Fuchs W, Sandhoff A G. Theory of coal pyrolysis[J]. Industrial and Engineering Chemistry, 1942,34(5):567-571. [17]Gillet A. Stages in the dissolution of coal[J]. Nature, 1951, 167(4 245): 406-407. [18]Vankrevelen D W. Chemical structure of coal[J]. Fuel, 1959, 38(2): 245-247. [19]Cartz L, Hirsch P B. A contribution to the structure of coals from X-ray diffraction studies[J]. Philosophical Transactions of the Royal Society of London Series A (Mathematical and Physical Sciences), 1960, 252(1 019): 557-602. [20]Given P H. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, 39(2): 147-153. [21]Ladner W R, Stacey A E. The hydrogen distribution in macerals[J]. Fuel,1963, 42(1): 75-83. [22]Wiser W H, Anderson L L. Transformation of solids to liquid fuels[J]. Annual Review of Physical Chemistry, 1975, 26:339-357. [23]Pitt G J, Dawson K M. Some considerations involved in the automation of reflectance measurement on coal[J]. Journal of Microscopy-Oxford, 1979, 116(AUG): 321-328. [24]Heredy L A, Wender I. Model structure for a bituminous coal[J]. Abstracts of Papers of the American Chemical Society, 1980, 180(AUG): 38-45. [25]Blom L, Edelhausen L, Vankrevelen D W. Chemical structure and properties of coal. 18. oxygen groups in coal and related products[J].Fuel, 1957, 36(2): 135-153. [26]Shinn J H. From coal to single-stage and 2-stage products—A reactive model of coal structure[J]. Fuel,1984, 63(9): 1 187-1 196. [27]Marzec A. Macromolecular and molecular-model of coal structure[J]. Fuel Processing Technology,1986,14:39-46. [28]Qin Kuangzong, Zhao Piyu. Study of structural features of Huangxian lignite by solid state 13C NMR[J].Journal of Fuel Chemistry and Technology, 1990,18(1): 3-9.[秦匡宗, 赵丕裕. 用固体13C核磁共振技术研究黄县褐煤的化学结构[J]. 燃料化学学报, 1990,18(1): 3-9.] [29]Brown J K. Infra-red spectra of solvent extracts of coals[J]. Fuel, 1959, 38(1): 55-63. [30]Lazarov L, Marinov S P. Modeling the structure of a coking coal[J]. Fuel Processing Technology, 1987, 15:411-422. [31]Oberlin A, Terriere G. Graphitization studies of anthracites by high resolution electron microscopy[J]. Carbon,1975, 13(5): 367-376. [32]Oberlin A. Application of dark-field electron-microscopy to carbon study[J]. Carbon, 1979,17(1): 7-20. [33]Rouzaud J N. Contribution of transmission electron-microscopy to the study of the coal carbonization processes[J]. Fuel Processing Technology,1990, 24:55-69. [34]Larsen J W, Urban L, Lawson G, et al. Kinetic-study of the de-polymerization of bruceton coal[J]. Fuel,1981, 60(3): 267-271. [35]Given P H, MarZec A, Barton W A, et al. The concept of a mobile or molecular phase within the macromolecular network of coak: A debate[J]. Fuel, 1986, 65 (2): 155-163. [36]Spiro C L. Space-filling models for coal—A molecular description of coal plasticity[J]. Fuel,1981, 60(12): 1 121-1 126. [37]Spiro C L, Kosky P G. Space-filling models for coal .2. Extension to coals of various ranks[J]. Fuel, 1982, 61(11): 1 080. [38]Carlson G A, Granoff B. Modeling of coal structure by using computer-aided molecular design[J]. ACS Symposium Series, 1991,461:159-170. [39]Faulon J L, Hatcher P G, Carlson G A, et al. A computer-aided molecular-model for high volatile bituminous coal[J]. Fuel Processing Technology, 1993,34(3): 277-293. [40]Forsman J P. Geochemistry of kerogen[C]∥Breger I A ed. Organic Geochemistry:Monograph No.16, Earth Science Series. Oxford: Pergamon Press, 1963:148-182. [41]Burlingame A L, Haug P A, Schnoes H K, et al. Fatty acids derived from the Green River Formation oil shale by extractions and oxidations—A review[C]∥Schenck P A, Havenaar I, eds. Advances in Organic Geochemistry. Oxford: Pergamon Press,1969: 85-129. [42]Djuricic M, Murphy R C, Vitorovi D, et al. Organic acids obtained by alkaline permanganate oxidation of kerogen from Green River (Colorado) shale[J]. Geochimica et Cosmochimica Acta, 1971, 35(12): 1 201-1 207. [43]Yen T F. Structural aspects of organic components in oil shales[C]∥Yen T F, Chilingarian G V, eds. Oil Shale, Developments in Petroleum Science, Vol. 5. Amsterdam: Elsevier, 1976:129-148. [44]Oberlin A, Boulmier J L, Villey M. Electron microscopic study of kerogen microtexture. Selected criteria for determining the evolution path and evolution stage of kerogen[C]∥Durand B ed. Kerogen, Insoluble Organic Matter from Sedimentary Rocks 1968. Paris: Editions Technip, 1980:191-241. [45]Behar F, Vandenbroucke M. Chemical modeling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24. [46]Faulon J L, Vandenbroucke M, Drappier J M, et al. 3D chemical model for geological macromolecules[C]∥Durand B, Behar F, eds. Advances in Organic Geochemistry 1989, Organic Geochemistry, Vol. 16. Oxford: Pergamon Press, 1990:981-993. [47]Vandenbroucke M. Kerogen: From types to models of chemical structure[J]. Oil & Gas Science and Technology-Revue de L′ Institut Francais Du Petrole, 2003, 58(2): 243-269. [48]Yuan Xinghai. Astride hierarchy is main structural characteristics of nanometer substance structure[J].Guangdong Chemical Industry,2003,30(2): 67-68.[苑星海. 跨层次是纳米物质结构的主要结构特征[J]. 广东化工, 2003,30(2): 67-68.] [49]Zhang Zhongde, Mou Jimei. Nanomaterial and Nanostructure[M]. Beijing: Science Press, 2001: 14-49.[张众德, 牟季美. 纳米材料和纳米结构[M]. 北京:科学出版社, 2001: 14-49.] [50]Gu Ning. The application of nanotechnology in biomedicine development[J].Advanced Materials Industry, 2002, (12): 67-71.[顾宁. 纳米技术在生物医药学发展中的应用[J]. 新材料产业, 2002,(12): 67-71.] [51]Hochella M F. Nanoscience and technology the next revolution in the earth sciences[J]. Earth and Planetary Science Letters, 2002, 203(2): 593-605. [52]Hochella M F. There′s plenty of room at the bottom: Nanoscience in geochemistry[J]. Geochimica et Cosmochimica Acta, 2002, 66(5): 735-743. [53]Waychunas G A. Structure, aggregation and characterization of nanoparticles[J].Reviews in Mineralogy & Geochemistry, 2001, 44(1): 105-166. [54]Taylor G H. Electron microscopy of vitrinites[J]. Advances in Chemistry Series,1966, 55: 274-283. [55]Glikson M, Fielding C. The Late Triassic callide coal measures, Queensland, Australia—Coal petrology and depositional environment[J]. International Journal of Coal Geology, 1991, 17(3/4): 313-332. [56]Wang Feiyu, He Ping, Liu Dehan. Ultralaminae in humic coals[J]. Goal Geology & Exploration, 1994, 22(6): 13-15.[王飞宇, 何萍, 刘德汉. 腐植煤中的超细纹层[J]. 煤田地质与勘探,1994, 22(6): 13-15.] [57]Yao Suping, Zhang Jingrong, Wang Keren, et al. Organic petrology study on the Yan′an formation coal measures in Ordos Basin[J]. Sedimentologica Sinica, 1999,17(2): 126-135.[姚素平, 张景荣, 王可仁, 等. 鄂尔多斯盆地延安组煤有机岩石学研究[J]. 沉积学报,1999,17(2): 126-135.] [58]Yao Suping, Hu Wenxuan, Xue Chunyan, et al. Characteristics of organic petrology and hydrocarbon-generating potential of Wayaopu coal measures[J]. Sedimentologica sinica, 2004,22(3): 518-524.[姚素平, 胡文瑄, 薛春燕, 等.瓦窑堡煤系有机岩石学特征及煤成烃潜力研究[J]. 沉积学报, 2004,22(3): 518-524.] [59]Largeau C, Derenne S, Casadevall E, et al. Occurrence and origin of ultralaminar structures in amorphous kerogens of various source rocks and oil shales[J]. Organic Geochemistry, 1990,16(4/6): 889-895. [60]Boussafir M, Gelin F, Lallierverges E, et al. Electron-microscopy and pyrolysis of kerogens from the Kimmeridge Clay Formation, UK: Source organisms, preservation processes, and origin of microcycles[J]. Geochimica et Cosmochimica Acta, 1995, 59(18): 3 731-3 747. [61]Cao Qingying, Yu Bing, Wang Lihua. TEM study of the texture of highly/over-matured kerogens[J]. Petroleum Exploration and Development,1995,22(1): 20-24.[曹庆英, 于冰, 王丽华. 高(过)成熟干酪根结构的TEM研究[J]. 石油勘探与开发,1995,22(1): 20-24.] [62]Glikson M, Taylor G H. Cyanobacterial mats: Major contributors to the organic matter in Toolebuc Formation oil shales[C]∥Gravestock D I, Moore P S, Pitt G M, eds. Contributions to the Geology and Hydrocarbon Potential of the Eromanga Basin, Vol. 12. Geological Society of Australia Special Publication, 1986:273-286. [63]Glikson M, Gibson D L, Philp R P. Organic-matter in Australian Cambrian oil shales and other lower Paleozoic shales[J]. Chemical Geology, 1985, 51(3/4): 175-191. [64]Glikson M, Taylor D. Nature of organic matter in the Early Proterozoic, earliest life forms and metal associations[C]∥Glikson M, Mastalerz M, eds. Organic Matter and Mineralisation: Thermal Alternation, Hydrocarbon Generation and Role in Metallogenesis. Dordrecht: Kluwer Academic Publishers,2000. [65]Arouri K, Greenwood P F, Walter M R. A possible chlorophycean affinity of some neoproterozoic acritarchs[J]. Organic Geochemistry, 1999, 30(10): 1 323-1 337. [66]Moreau J W, Sharp T G. A transmission electron study of silica and kerogen biosignatures in ~1.9 Ga gunflint microfossils[J]. Astrobiology, 2004, 4(2): 196-210. [67]Mastalerz M, Glikson M. In-situ analysis of solid bitumen in coal: Examples from the Bowen basin and the Illinois basin[J]. International Journal of Coal Geology, 2000, 42(2/3): 207-220. [68]Sharma A, Kyotani T, Tomita A. Direct observation of layered structure of coals by a transmission electron microscope[J]. Energy & Fuels, 2000, 14(2): 515-516. [69]Sharma A, Kyotani T, Tomita A. Direct observation of raw coals in lattice fringe mode using high-resolution transmission electron microscopy[J]. Energy & Fuels, 2000, 14(6): 1 219-1 225. [70]Yumura M, Ohshima S, Kuriki S. Atomoic force microscopy observations of coals[C]∥Proceedings of International Conference on Coal Science 1, 1993:394-397. [71]Yang Qi, Pan Zhigui, Yang Dazhen,et al. Study of coal structure using STM and AFM[J].Chinese Science Bulletin, 1994, 39(7): 633-635.[杨起, 潘治贵, 汤达祯, 等. 煤结构的STM和AFM研究[J]. 科学通报, 1994, 39(7): 633-635.] [72]Liao Libing, Ma Zhesheng, Shi Nicheng, et al. A new approach to coal structure research—STM and AFM[J].Geological Laboratory, 1995, 11(1): 44-46.[廖立兵, 马哲生, 施倪承, 等. 煤结构研究的一种新手段——扫描隧道显微镜和原子力显微镜[J]. 地质实验室, 1995, 11(1): 44-46.] [73]Lawrie G A, Gentle I R, Fong C, et al. Atomic force microscopy studies of Bowen basin coal macerals[J]. Fuel, 1997,76(14/15): 1 519-1 526. [74]Cohen A D, Bailey A M, Myrick M L, et al. Applications of atomic force microscopy to study of artificially coalified peats[J]. The Society for Organic Petrology, 1998,15: 23-26. [75]Bruening F A, Cohen A D. Measuring surface properties and oxidation of coal macerals using the atomic force microscope[J]. International Journal of Coal Geology, 2005,63(3/4): 195-204. [76]Golubev Y A, Kovaleva O V, Philippov V N. The characteristic of the superstructural organizations of natural solid bitumens with AFM[J]. Microscopy and Microanalysis, 2003,9(S03): 306-307. [77]Golubev Y A, Kovaleva O V, Yushkin N P. Observations and morphological analysis of supermolecular structure,of natural bitumens by atomic force microscopy[J]. Fuel, 2008, 87(1): 32-38. [78]Wang Xiaogang, Mou Guodong, Li Xiaochi, et al. Gangue nanostructure and effect of the structure on synthesizing SiC[J]. Journal of Inorganic Materials, 2001, 16(4): 715-719.[王晓刚, 牟国栋, 李晓池, 等. 煤矸石的纳米结构及其对合成SiC的影响[J]. 无机材料学报, 2001,16(4): 715-719.] [79]Wang Yunhe, Liang Dong, Xiao Shuheng, et al. Experiment observation of coal surface structure in mesoscopic scale by Atomic Force Microscope(AFM)[J]. Journal of Heilongjiang Institute of Science and Technology,2006,16(5): 272-275.[王云鹤, 梁栋, 肖淑衡, 等. 煤表面结构介观表象的原子力显微镜观测[J].黑龙江科技学院学报, 2006,16(5): 272-275.] [80]Yang Hongguo, Chang Yingmei, Fan Lijuan, et al.The application of AFM in study on microstructure of coal[J]. Electronic Instrumentation Customer, 2006, 13(5): 135-136.[杨红果, 常迎梅, 范丽娟, 等. AFM在煤体微结构研究中的应用[J]. 仪器仪表用户, 2006,13(5): 135-136.] [81]Ouyang Jianfei, Fan Lijuan, Yang Hongguo, et al. The nanoconstructure studying method of the outburst coal[J]. Acta Metrologica Sinica, 2006,27(z1): 22-25.[欧阳健飞, 范丽娟, 杨红果, 等. 瓦斯突出煤体的纳米结构研究方法[J]. 计量学报, 2006, 27(z1): 22-25.] [82]Liu J X, Jiang X M, Huang X Y, et al. Morphological characterization of super fine pulverized coal particle. Part 2. AFM investigation of single coal particle[J]. Fuel,2010, 89(12): 3 884-3 891. [83]Hirsch P B. X-ray scattering from coals[J].Proceedings of the Royal Society of London Series A (Mathematical and Physical Sciences), 1954, 226(1 165): 143-169. [84]Tao Zhu. Coal Chemistry[M]. Beijing: Metallurgical IndustryPress, 1984.[陶著. 煤化学[M]. 北京: 冶金工业出版社,1984.] [85]Zhang Daijun, Xian Xuefu. A research of the structure of macromolecule in coal by X-ray[J]. Chemical Research in Chinese Universities, 1990, 11(8): 912-914.[张代钧, 鲜学福. 用X射线研究煤中大分子的结构[J]. 高等学校化学学报, 1990,11(8): 912-914.] [86]Zhang Daijun, Xian Xuefu.A study of the stacking structure of coal macromolecules[J]. Journal of Chongqing University(Natural Science Edition), 1992, 15(3): 56-61.[张代钧, 鲜学福. 煤大分子堆垛结构的研究[J]. 重庆大学学报:自然科学版, 1992,15(3): 56-61.] [87]Grigoriew H. Diffraction studies of coal structure[J]. Fuel, 1990, 69(7): 840-845. [88]Vandenbroucke M, Largeau C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5): 719-833. [89]Zeng Fangui, Xie Kechang. Theoretical system and methodology of coal structural chemistry[J]. Journal of China Coal Society, 2004,29(4): 443-447.[曾凡桂,谢克昌.煤结构化学的理论体系与方法论[J]. 煤炭学报, 2004,29(4): 443-447.] [90]Endo M, Kim Y A, Ezaka M, et al. Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers[J]. Nano Letters, 2003, 3(6): 723-726. [91]Sisk C, Diaz E, Walls J, et al. 3D visualization and classification of pore structure and pore filling in gas shale[C]∥SPE Annual Techical Conference and Exhibition Florence, Italy,2010: 1-4. [92]Donnet J B, Custodero E. Ordered structures observed by scanning tunneling microscopy at atomic scale on carbon-black surfaces[J]. Carbon, 1992, 30(5): 813-815. [93]Economy J, Daley M, Hippo E J, et al. Elucidating the pore structure of activated carbon-fibers through direct imaging using Scanning-Tunneling-Microscopy (STM) [J]. Carbon, 1995, 33(3): 344-345. [94]Sattler K. Scanning-tunneling-microscopy of carbon nanotubes and nanocones[J]. Carbon, 1995, 33(7): 915-920. [95]Baker A A, Helbert W, Sugiyama J, et al. New insight into cellulose structure by atomic force microscopy shows the i-alpha crystal phase at near-atomic resolution[J]. Biophysical Journal, 2000, 79(2): 1 139-1 145. [96]Lower S K, Tadanier C J, Hochella M F. Measuring interfacial and adhesion forces between bacteria and mineral surfaces with biological force microscopy[J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3 133-3 139. [97]Lower S K, Hochella M F, Beveridge T J. Bacterial recognition of mineral surfaces: Nanoscale interactions between shewanella and alpha-FeOOH[J]. Science, 2001, 292(5 520): 1 360-1 363. [98]Woodside M T, Mceuen P L. Scanned probe imaging of single-electron charge states in nanotube quantum dots[J]. Science, 2002, 296(5 570): 1 098-1 101. [99]Fan C F, Teng H H. Surface behavior of gypsum during dissolution[J]. Chemical Geology, 2007, 245(3/4): 242-253. [100]Vavouraki A I, Putnis C V, Putnis A, et al. An atomic force microscopy study of the growth of calcite in the presence of sodium sulfate[J]. Chemical Geology, 2008, 253(3/4): 243-251. [101]Can M F, Cinar M, Benli B,et al. Determining the fiber size of nano structured sepiolite using Atomic Force Microscopy (AFM)[J]. Applied Clay Science, 2010, 47(3/4): 217-222. [102]Li Lixin, Wang Xu, Zhang Xinyu, et al. Folding characteristics of graphite layers studied by atomic force microscopy[J]. Chinese Journal of Materials Research, 2007, 21(3): 287-290.[李立新, 王煦, 张新宇, 等. 石墨层折叠特性的原子力显微镜研究[J]. 材料研究学报, 2007, 21(3): 287-290.] [103]Iino M, Takanohashi T, Ohsuga H, et al. Extraction of coals with CS2-N-methyl-2-pyrrolidinone mixed solvent at room temperature: Eeffect of coal rank and synergism of the mixedsolvent[J]. Fuel, 1988, 67(12): 1 639-1 647. [104]Dyrkacz G. The nature of the binary solvent N-methylpyrrolidone/carbon disulfide[J]. Energy & Fuels, 2001, 15(4): 918-929. [105]Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes[J]. Science,1996, 273(5 274): 483-487. [106]Wilson H M, Almond J E. New euthycarcinoids and an enigmatic arthropod from the British coal measures[J]. Palaeontology, 2001, 44(Part 1): 143-156. [107]Barnakov A N, Barnakova L A, Hazelbauer G L. Allosteric enhancement of adaptational demethylation by a carboxyl-terminal sequence on chemoreceptors[J]. Journal of Biological Chemistry, 2002, 277(44): 42 151-42 156. [108]Xie Kechang. Systematical understanding and research on coal structure and reactivity: The structure aspects[J]. Coal Conversion, 1992, 15(1): 24-30.[谢克昌. 煤结构和反应性的多方位认识和研究——Ⅰ.煤的结构[J]. 煤炭转化, 1992, 15(1): 24-30.] [109]Xodot B B.Coal and Gas Outburst[M]. Song Shizhao, Wang Youan,translated. Beijing: China Industry Press, 1966.[Xodot B B 著.煤与瓦斯突出[M].宋世钊, 王佑安译. 北京: 中国工业出版社, 1966.] [110]Gan H, Walker P L, Nandi S P. Nature of porosity in American coals[J]. Fuel, 1972, 51(4): 272-277. [111]Zhang Hui. Genetical types of pores in coal reservoir and its research significance[J]. Journal of China Coal Society, 2001,26(1): 40-44.[张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001,26(1): 40-44.] [112]Hao Qi. On morphological character and origin of micropores in coal[J]. Journal of China Coal Society, 1987,12(4): 51-56.[郝琦. 煤的显微孔隙形态特征及其成因探讨[J]. 煤炭学报, 1987,12(4): 51-56.] [113]Wu Jun, Jin Kuili, Tong Youde, et al. Theory of coal pores and its application in evaluation of gas outburst proneness and gas drainage[J]. Journal of China Coal Society, 1991, 16(3): 86-95.[吴俊, 金奎励, 童有德, 等. 煤孔隙理论及在瓦斯突出和抽放评价中的应用[J]. 煤炭学报, 1991, 16(3): 86-95.] [114]Su Xianbo. Pore characteristic of coalbed methane reservoir[J]. Journal of Jiaozuo Institute of techonolgy, 1998,17(1): 9-14.[苏现波. 煤层气储集层的孔隙特征[J]. 焦作工学院学报, 1998,17(1): 9-14.] [115]Lu X C, Li F C, Watson A T. Adsorption measurements in Devonian shales[J]. Fuel, 1995, 74(4): 599-603. [116]Ross D, Bustin R M. Sediment geochemistry of the lower Jurassic Gordondale member, northeastern British Columbia[J]. Bulletin of Canadian Petroleum Geology, 2006, 54(4): 337-365. [117]Ross D, Bustin R M. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J]. Fuel, 2007, 86(17/18): 2 696-2 706. [118]Hickey J J, Henk B. Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T. P. Sims well, Wise country, Texas[J]. AAPG Bulletin, 2007, 91(4): 437-443. [119]Chalmers G, Bustin R M. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity[J]. Bulletin of Canadian Petroleum Geology, 2008, 56(1): 1-21. [120]Chalmers G, Bustin R M. On the effects of petrographic composition on coalbed methane sorption[J]. International Journal of Coal Geology, 2007, 69(4): 288-304. [121]Zhang Hui. SEM Research of Coal in China[M]. Beijing: Geological Publishing House, 2003.[张慧. 中国煤的扫描电子显微镜研究[M]. 北京: 地质出版社,2003.] [122]Zhu Chuanfeng, Wang Chen. Application Advances in Scanning probe Microscopy[M]. Beijing: Chemical Industry Press, 2007.[朱传凤, 王琛. 扫描探针显微术应用进展[M]. 北京: 化学工业出版社,2007.] [123]Benitez J J, Matas A J, Heredia A. Molecular characterization of the plant biopolyester cutin by AFM and spectroscopic techniques[J]. Journal of Structural Biology, 2004, 147(2): 179-184. [124]Chang Yingmei, Yang Hongguo, Ma Tengwu, et al. Study of the coal micro-structure based on AFM[J]. Modern Scientific Instruments, 2006, (6): 71-72.[常迎梅, 杨红果, 马腾武, 等. 基于AFM的煤体微结构研究[J]. 现代科学仪器, 2006, (6): 71-72.] [125]Zeszotarski J C, Chromik R R, Vinci R P, et al. Imaging and mechanical property measurements of kerogen via nanoindentation[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4 113-4 119. [126]Kempe A, Schopf J W, Altermann W, et al. Atomic force microscopy of Precambrian microscopic fossils[J].Proceedings of the National Academy of Sciences of the United States of America,2002, 99(14): 9 117-9 120. [127]Hirono T, Lin W, Nakashima S. Pore space visualization of rocks using an atomic force microscope[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(2): 317-320. [128]Yao S P, Jiao K, Zhang K, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011, 56(25): 2 706-2 712. [129]Stoeckli F, Hugi-cleary D, Centeno T A. The characterisation of solids by adsorption and immersion techniques and by AFM/STM[J]. Journal of the European Ceramic Society, 1998, 18(9): 1 177-1 185. [130]Balabin R M, Syunyaev R Z, Schmid T, et al. Asphaltene adsorption onto an iron surface: Combined Near-Infrared (NIR), Raman, and AFM study of the kinetics, thermodynamics, and layer structure[J]. Energy & Fuels, 2011, 25(1): 189-196. [131]Wu Jun. The Theories and Applications of Coal-generated Hydrocarbon in China[M]. Beijing: China Coal Industry Publishing House, 1994.[吴俊. 中国煤成烃基本理论与实践[M]. 北京: 煤炭工业出版社,1994.] [132]Chikatamarla L, Bustin R M. Sequestration potential of acid gases in Western Canadian coals[C]∥Proceedings of the 2003 international coalbed symposium, 16, 2003. [133]Harpalani S, Prusty B K, Dutta P. Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration[J].Energy & Fuels, 2006, 20(4): 1 591-1 599. [134]Feng Qiyan, Zhou Lai, Chen Zhongwei, et al. Numerical simulation of coupled binary gas-solid interaction during carbon dioxide sequestration in a coal bed[J]. Geological Journal of China Universities, 2009,15(1): 63-68.[冯启言, 周来, 陈中伟, 等. 煤层处置CO2的二元气—固耦合数值模拟[J]. 高校地质学报, 2009, 15(1): 63-68.] [135]Marzec A. Towards an understanding of the coal structure: A review[J]. Fuel Processing Technology, 2002, (77/78): 25-32. |