地球科学进展 ›› 2012, Vol. 27 ›› Issue (4): 367 -378. doi: 10.11867/j.issn.1001-8166.2012.04.0367

综述与评述    下一篇

煤和干酪根纳米结构的研究进展
姚素平,焦堃,李苗春,吴浩   
  1. 南京大学地球科学与工程学院,江苏南京210093
  • 收稿日期:2011-10-20 修回日期:2012-02-23 出版日期:2012-04-10
  • 通讯作者: 姚素平(1965-),男,安徽无为人,教授,主要从事有机地球化学和有机岩石学研究. E-mail:spyao@nju.edu.cn
  • 基金资助:

    国家自然科学基金项目“煤和干酪根纳米结构特征、演化机制及油气地质意义”(编号:41172139)资助.

Advances in Research of Coal and Kerogen Nanostructure

Yao Suping, Jiao Kun, Li Miaochun, Wu Hao   

  1. School of Earth Sciences and Engineering, Nanjing University, Nanjing210093, China
  • Received:2011-10-20 Revised:2012-02-23 Online:2012-04-10 Published:2012-04-10

对煤和干酪根结构的认识得益于技术和方法的不断创新。基于各种方法,先后建立了多个煤和干酪根的结构模型,但至今没有得到普遍认可。原子力显微镜(AFM)可以实时、实空间、原位成像,可以观察单个原子层的局部表面结构,直接观察表面缺陷、表面重构、表面吸附体的形态和位置以及表面扩散等动态过程。在对图像的分析中,AFM超越了传统仪器单纯平面成像的功能,可提供样品表面动态三维图像和用于分析的定量化信息。通过纳米技术,实现了原子级的分辨率的观察,揭示了煤和干酪根聚集态分子和纳米级孔隙的形态、大小、结构及相互间的空间排列特征,显示出在煤和干酪根结构研究中的巨大潜力。纳米技术为煤和干酪根结构的基础研究工作拓展了新的途径,也为非常规油气的勘探开发和煤炭的二次转化研究提供了科学依据。

The research of structure of coal and kerogen is enhanced by innovation of technology and methodology. From early chemical depolymerization to physical method and then to computer aided molecular modeling, many structural models of coal and kerogen are built up. However, no structural model is widely accepted  as the heterogeneity and structural complexity of coal and kerogen enhance the difficulty to illustrate their physical and chemical structure. Nanotechnology greatly promotes the research and knowledge of structure of coal and kerogen. Atomic Force Microscopy (AFM) is a representative example. As result of real-time, real-space, in-situ imaging and ability to partly observe surface structure of single molecular layer, AFM can directly observe the morphology and position of surface defect, surface reconstruction and surface adsorbate and even dynamic process such as surface diffusion. AFM surpasses conventional 2D plane imaging and provides 3D dynamic images  and quantitative information. Realizing atomic level resolution and revealing the morphology, size, structure and spatial arrangement of molecular aggregates and nanopores of coal and kerogen, nanotechnology shows great potential in structural research of coal and kerogen. Nanotechnology provides new approaches for basic research of coal and kerogen and supports exploration and exploitation of unconventional oil and gas and research of coal secondary transformation with scientific evidence.

中图分类号: 

[1]Tissot B P. Recent advances in petroleum geochemistry applied to hydrocarbon exploration[J].AAPG Bulletin,1984, 68(5): 545-563.
[2]Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions[J]. Fuel, 1999, 78(11): 1 333-1 344.
[3]Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 2. Adsorption rate modeling[J]. Fuel, 1999, 78(11): 1 345-1 362.
[4]Karacan C O, Okandan E. Adsorption and gas transport in coal microstructure: Investigation and evaluation by quantitative X-ray CT imaging[J]. Fuel, 2001, 80(4): 509-520.
[5]Kabe T, Ishihara A, Qian E W, et al. Coal and Coal-related Compounds: Structures, Reactivity and Catalytic Reactions[M]. Tokyo: Kodansha Ltd., 2004.
[6]Davidson R M. Studying the Structural Chemistry of Coal[R].IEA Clean Coal Centre Report CCC/82,2004.
[7]Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian barnett shale[J]. Journal of Sedimentary Research, 2009, 79(11/12): 848-861.
[8]Fu Jiamo, Liu Dehan, Sheng Guoying. Geochemistry of Coal-Generated Hydrocarbons[M]. Beijing: Science Press, 1990.[傅家谟, 刘德汉, 盛国英. 煤成烃地球化学[M]. 北京: 科学出版社,1990.]
[9]Huang Difan, Hua Axin, Wang Tieguan, et al. Advances in Geochemistry of Oil Derived from Coals[M]. Beijing: Petroleum Industry Press, 1992.[黄第藩, 华阿新, 王铁冠, 等. 煤成油地球化学新进展[M]. 北京: 石油工业出版社,1992.]
[10]Qin Yong. Micropetrology and Structural Evolution of High-rank Coals in P. R. C[M]. Xuzhou: China University of Mining and Technology Press, 1994.[秦勇. 中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州:中国矿业大学出版社,1994.]
[11]Huang Difan, Qin Kuangzong, Wang Tieguan, et al. Formation and Mechanism of Oil from Coal[M]. Beijing: Petroleum Industry Press, 1995.[黄第藩, 秦匡宗, 王铁冠,等. 煤成油的形成和成烃机理[M]. 北京: 石油工业出版社,1995.]
[12]Qin Kuangzong, Guo Shaohui, Li Shuyuan. New concept on coal structure and new consideration for the generation mechanism of oil from coal[J].Chinese Science Bulletin, 1998,43(18):1 912-1 918.[秦匡宗, 郭绍辉, 李术元. 煤结构的新概念与煤成油机理的再认识[J]. 科学通报, 1998,43(18): 1 912-1 918.]
[13]Dai Jinxing. Significant advancement in research on coalformed gas in China[J].Petroleum Exploration and Development, 1999, (3): 21-30.[戴金星. 中国煤成气研究二十年的重大进展[J]. 石油勘探与开发, 1999, 26(3): 21-30.]
[14]Stach E. The development of coal vitrit[J]. Angewandte Chemie,1933, 46:275-278.
[15]Biggs B S, Weiler J F. The chemical constitution of a bituminous coal as revealed by its hydrogenation products[J]. Journal of the American Chemical Society, 1937,59(2):369-372.
[16]Fuchs W, Sandhoff A G. Theory of coal pyrolysis[J]. Industrial and Engineering Chemistry, 1942,34(5):567-571.
[17]Gillet A. Stages in the dissolution of coal[J]. Nature, 1951, 167(4 245): 406-407.
[18]Vankrevelen D W. Chemical structure of coal[J]. Fuel, 1959, 38(2): 245-247.
[19]Cartz L, Hirsch P B. A contribution to the structure of coals from X-ray diffraction studies[J]. Philosophical Transactions of the Royal Society of London Series A (Mathematical and Physical Sciences), 1960, 252(1 019): 557-602.
[20]Given P H. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, 39(2): 147-153.
[21]Ladner W R, Stacey A E. The hydrogen distribution in macerals[J]. Fuel,1963, 42(1): 75-83.
[22]Wiser W H, Anderson L L. Transformation of solids to liquid fuels[J]. Annual Review of Physical Chemistry, 1975, 26:339-357.
[23]Pitt G J, Dawson K M. Some considerations involved in the automation of reflectance measurement on coal[J]. Journal of Microscopy-Oxford, 1979, 116(AUG): 321-328.
[24]Heredy L A, Wender I. Model structure for a bituminous coal[J]. Abstracts of Papers of the American Chemical Society, 1980, 180(AUG): 38-45.
[25]Blom L, Edelhausen L, Vankrevelen D W. Chemical structure and properties of coal. 18. oxygen groups in coal and related products[J].Fuel, 1957, 36(2): 135-153.
[26]Shinn J H. From coal to single-stage and 2-stage products—A reactive model of coal structure[J]. Fuel,1984, 63(9): 1 187-1 196.
[27]Marzec A. Macromolecular and molecular-model of coal structure[J]. Fuel Processing Technology,1986,14:39-46.
[28]Qin Kuangzong, Zhao Piyu. Study of structural features of Huangxian lignite by solid state 13C NMR[J].Journal of Fuel Chemistry and Technology, 1990,18(1): 3-9.[秦匡宗, 赵丕裕. 用固体13C核磁共振技术研究黄县褐煤的化学结构[J]. 燃料化学学报, 1990,18(1): 3-9.]
[29]Brown J K. Infra-red spectra of solvent extracts of coals[J]. Fuel, 1959, 38(1): 55-63. 
[30]Lazarov L, Marinov S P. Modeling the structure of a coking coal[J]. Fuel Processing Technology, 1987, 15:411-422.
[31]Oberlin A, Terriere G. Graphitization  studies  of anthracites by high resolution electron microscopy[J]. Carbon,1975, 13(5): 367-376.
[32]Oberlin A. Application of dark-field electron-microscopy to carbon study[J]. Carbon, 1979,17(1): 7-20.
[33]Rouzaud J N. Contribution of transmission electron-microscopy to the study of the coal carbonization processes[J]. Fuel Processing Technology,1990, 24:55-69.
[34]Larsen J W, Urban L, Lawson G, et al. Kinetic-study of the de-polymerization of bruceton coal[J]. Fuel,1981, 60(3): 267-271.
[35]Given P H, MarZec A, Barton W A, et al. The concept of a mobile or molecular phase within the macromolecular network of coak: A debate[J]. Fuel, 1986, 65 (2): 155-163.
[36]Spiro C L. Space-filling models for coal—A molecular description of coal plasticity[J]. Fuel,1981, 60(12): 1 121-1 126.
[37]Spiro C L, Kosky P G. Space-filling models for coal .2. Extension to coals of various ranks[J]. Fuel, 1982, 61(11): 1 080.
[38]Carlson G A, Granoff B. Modeling of coal structure by using computer-aided molecular design[J]. ACS Symposium Series, 1991,461:159-170.
[39]Faulon J L, Hatcher P G, Carlson G A, et al. A computer-aided molecular-model for high volatile bituminous coal[J]. Fuel Processing Technology, 1993,34(3): 277-293.
[40]Forsman J P. Geochemistry of kerogen[C]Breger I A ed. Organic Geochemistry:Monograph No.16, Earth Science Series.  Oxford: Pergamon Press, 1963:148-182.
[41]Burlingame A L, Haug P A, Schnoes H K, et al. Fatty acids derived from the Green River Formation oil shale by extractions and oxidations—A  review[C]Schenck P A, Havenaar I, eds. Advances in Organic Geochemistry. Oxford: Pergamon Press,1969: 85-129.
[42]Djuricic M, Murphy R C, Vitorovi D, et al. Organic acids obtained by alkaline permanganate oxidation of kerogen from Green River (Colorado) shale[J]. Geochimica et Cosmochimica Acta, 1971, 35(12): 1 201-1 207.
[43]Yen T F. Structural aspects of organic components in oil shales[C]Yen T F, Chilingarian G V, eds. Oil Shale, Developments in Petroleum Science, Vol. 5. Amsterdam: Elsevier, 1976:129-148.
[44]Oberlin A, Boulmier J L, Villey M. Electron microscopic study of kerogen microtexture. Selected criteria for determining the evolution path and evolution stage of kerogen[C]Durand B ed. Kerogen, Insoluble Organic Matter from Sedimentary Rocks 1968. Paris: Editions Technip, 1980:191-241.
[45]Behar F, Vandenbroucke M. Chemical modeling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24.
[46]Faulon J L, Vandenbroucke M, Drappier J M, et al. 3D chemical model for geological macromolecules[C]Durand B, Behar F, eds. Advances in Organic Geochemistry 1989, Organic Geochemistry, Vol. 16. Oxford: Pergamon Press, 1990:981-993.
[47]Vandenbroucke M. Kerogen: From types to models of chemical structure[J]. Oil & Gas Science and Technology-Revue de L′ Institut Francais Du Petrole, 2003, 58(2): 243-269.
[48]Yuan Xinghai. Astride hierarchy is main structural characteristics of nanometer substance structure[J].Guangdong Chemical Industry,2003,30(2): 67-68.[苑星海. 跨层次是纳米物质结构的主要结构特征[J]. 广东化工, 2003,30(2): 67-68.]
[49]Zhang Zhongde, Mou Jimei. Nanomaterial and Nanostructure[M]. Beijing: Science Press, 2001: 14-49.[张众德, 牟季美. 纳米材料和纳米结构[M]. 北京:科学出版社, 2001: 14-49.]
[50]Gu Ning. The application of nanotechnology in biomedicine development[J].Advanced Materials Industry, 2002, (12): 67-71.[顾宁. 纳米技术在生物医药学发展中的应用[J]. 新材料产业, 2002,(12): 67-71.]
[51]Hochella M F. Nanoscience and technology the next revolution in the earth sciences[J]. Earth and Planetary Science Letters, 2002, 203(2): 593-605.
[52]Hochella M F. There′s plenty of room at the bottom: Nanoscience in geochemistry[J]. Geochimica et Cosmochimica Acta, 2002, 66(5): 735-743.
[53]Waychunas G A. Structure, aggregation and characterization of nanoparticles[J].Reviews in Mineralogy & Geochemistry, 2001, 44(1): 105-166.
[54]Taylor G H. Electron microscopy of vitrinites[J]. Advances in Chemistry Series,1966, 55: 274-283.
[55]Glikson M, Fielding C. The Late Triassic callide coal measures, Queensland, Australia—Coal petrology and depositional environment[J]. International Journal of Coal Geology, 1991, 17(3/4): 313-332.
[56]Wang Feiyu, He Ping, Liu Dehan. Ultralaminae in humic coals[J].  Goal Geology & Exploration,  1994, 22(6): 13-15.[王飞宇, 何萍, 刘德汉. 腐植煤中的超细纹层[J]. 煤田地质与勘探,1994, 22(6): 13-15.]
[57]Yao Suping, Zhang Jingrong, Wang Keren,  et al. Organic petrology study on the Yan′an formation coal measures in Ordos Basin[J].  Sedimentologica Sinica,  1999,17(2): 126-135.[姚素平, 张景荣, 王可仁, 等. 鄂尔多斯盆地延安组煤有机岩石学研究[J]. 沉积学报,1999,17(2): 126-135.]
[58]Yao Suping, Hu Wenxuan, Xue Chunyan,  et al.  Characteristics of organic petrology and hydrocarbon-generating potential of Wayaopu coal measures[J].  Sedimentologica sinica,  2004,22(3): 518-524.[姚素平, 胡文瑄, 薛春燕, 等.瓦窑堡煤系有机岩石学特征及煤成烃潜力研究[J]. 沉积学报, 2004,22(3): 518-524.]
[59]Largeau C, Derenne S, Casadevall E, et al. Occurrence and origin of ultralaminar structures in amorphous kerogens of various source rocks and oil shales[J]. Organic Geochemistry, 1990,16(4/6): 889-895.
[60]Boussafir M, Gelin F, Lallierverges E, et al. Electron-microscopy and pyrolysis of kerogens from the Kimmeridge Clay Formation, UK: Source organisms, preservation processes, and origin of microcycles[J]. Geochimica et Cosmochimica Acta, 1995, 59(18): 3 731-3 747.
[61]Cao Qingying, Yu Bing, Wang Lihua. TEM study of the texture of highly/over-matured kerogens[J]. Petroleum Exploration and Development,1995,22(1): 20-24.[曹庆英, 于冰, 王丽华. 高(过)成熟干酪根结构的TEM研究[J]. 石油勘探与开发,1995,22(1): 20-24.]
[62]Glikson M, Taylor G H. Cyanobacterial mats: Major contributors to the organic matter in Toolebuc Formation oil shales[C]Gravestock D I, Moore P S, Pitt G M, eds. Contributions to the Geology and Hydrocarbon Potential of the Eromanga Basin, Vol. 12. Geological Society of Australia Special Publication, 1986:273-286.
[63]Glikson M, Gibson D L, Philp R P. Organic-matter in Australian Cambrian oil shales and other lower Paleozoic shales[J]. Chemical Geology, 1985, 51(3/4): 175-191.
[64]Glikson M, Taylor D. Nature of organic matter in the Early Proterozoic, earliest life forms and metal associations[C]Glikson M, Mastalerz M, eds. Organic Matter and Mineralisation: Thermal Alternation, Hydrocarbon Generation and Role in Metallogenesis. Dordrecht: Kluwer Academic Publishers,2000.
[65]Arouri K, Greenwood P F, Walter M R. A possible chlorophycean affinity of some neoproterozoic acritarchs[J]. Organic Geochemistry, 1999, 30(10): 1 323-1 337.
[66]Moreau J W, Sharp T G. A transmission electron study of silica and kerogen biosignatures in ~1.9 Ga gunflint microfossils[J]. Astrobiology, 2004, 4(2): 196-210.
[67]Mastalerz M, Glikson M. In-situ analysis of solid bitumen in coal: Examples from the Bowen basin and the Illinois basin[J]. International Journal of Coal Geology, 2000, 42(2/3): 207-220.
[68]Sharma A, Kyotani T, Tomita A. Direct observation of layered structure of coals by a transmission electron microscope[J]. Energy & Fuels, 2000, 14(2): 515-516.
[69]Sharma A, Kyotani T, Tomita A. Direct observation of raw coals in lattice fringe mode using high-resolution transmission electron microscopy[J]. Energy & Fuels, 2000, 14(6): 1 219-1 225.
[70]Yumura M, Ohshima S, Kuriki S. Atomoic force microscopy observations of coals[C]∥Proceedings of International Conference on Coal Science 1, 1993:394-397.
[71]Yang Qi, Pan Zhigui, Yang Dazhen,et al. Study of coal structure using STM and AFM[J].Chinese Science Bulletin, 1994, 39(7): 633-635.[杨起, 潘治贵, 汤达祯, 等. 煤结构的STM和AFM研究[J]. 科学通报, 1994, 39(7): 633-635.]
[72]Liao Libing, Ma Zhesheng, Shi Nicheng, et al. A new approach to coal structure research—STM and AFM[J].Geological Laboratory, 1995, 11(1): 44-46.[廖立兵, 马哲生, 施倪承, 等. 煤结构研究的一种新手段——扫描隧道显微镜和原子力显微镜[J]. 地质实验室, 1995, 11(1): 44-46.]
[73]Lawrie G A, Gentle I R, Fong C, et al. Atomic force microscopy studies of Bowen basin coal macerals[J]. Fuel, 1997,76(14/15): 1 519-1 526.
[74]Cohen A D, Bailey A M, Myrick M L, et al. Applications of atomic force microscopy to study of artificially coalified peats[J]. The Society for Organic Petrology, 1998,15: 23-26.
[75]Bruening F A, Cohen A D. Measuring surface properties and oxidation of coal macerals using the atomic force microscope[J]. International Journal of Coal Geology, 2005,63(3/4): 195-204.
[76]Golubev Y A, Kovaleva O V, Philippov V N. The characteristic of the superstructural organizations of natural solid bitumens with AFM[J]. Microscopy and Microanalysis, 2003,9(S03): 306-307.
[77]Golubev Y A, Kovaleva O V, Yushkin N P. Observations and morphological analysis of supermolecular structure,of natural bitumens by atomic force microscopy[J]. Fuel, 2008, 87(1): 32-38.
[78]Wang Xiaogang, Mou Guodong, Li Xiaochi, et al. Gangue nanostructure and effect of the structure on synthesizing SiC[J]. Journal of Inorganic Materials, 2001, 16(4): 715-719.[王晓刚, 牟国栋, 李晓池, 等. 煤矸石的纳米结构及其对合成SiC的影响[J]. 无机材料学报, 2001,16(4): 715-719.]
[79]Wang Yunhe, Liang Dong, Xiao Shuheng, et al. Experiment observation of coal surface structure in mesoscopic scale by Atomic Force Microscope(AFM)[J]. Journal of Heilongjiang Institute of Science and Technology,2006,16(5): 272-275.[王云鹤, 梁栋, 肖淑衡, 等. 煤表面结构介观表象的原子力显微镜观测[J].黑龙江科技学院学报, 2006,16(5): 272-275.]
[80]Yang Hongguo, Chang Yingmei, Fan Lijuan, et al.The application of AFM in study on microstructure of coal[J]. Electronic Instrumentation Customer, 2006, 13(5): 135-136.[杨红果, 常迎梅, 范丽娟, 等. AFM在煤体微结构研究中的应用[J]. 仪器仪表用户, 2006,13(5): 135-136.]
[81]Ouyang Jianfei, Fan Lijuan, Yang Hongguo, et al. The nanoconstructure studying method of the outburst coal[J]. Acta Metrologica Sinica, 2006,27(z1): 22-25.[欧阳健飞, 范丽娟, 杨红果, 等. 瓦斯突出煤体的纳米结构研究方法[J]. 计量学报, 2006, 27(z1): 22-25.]
[82]Liu J X, Jiang X M, Huang X Y, et al. Morphological characterization of super fine pulverized coal particle. Part 2. AFM investigation of single coal particle[J]. Fuel,2010, 89(12): 3 884-3 891.
[83]Hirsch P B. X-ray scattering from coals[J].Proceedings of the Royal Society of London Series A (Mathematical and Physical Sciences), 1954, 226(1 165): 143-169.
[84]Tao Zhu. Coal Chemistry[M]. Beijing: Metallurgical IndustryPress, 1984.[陶著. 煤化学[M]. 北京: 冶金工业出版社,1984.]
[85]Zhang Daijun, Xian Xuefu. A research of the structure of macromolecule in coal by X-ray[J]. Chemical Research in Chinese Universities, 1990, 11(8): 912-914.[张代钧, 鲜学福. 用X射线研究煤中大分子的结构[J]. 高等学校化学学报, 1990,11(8): 912-914.]
[86]Zhang Daijun, Xian Xuefu.A study of the stacking structure of coal macromolecules[J]. Journal of Chongqing University(Natural Science Edition), 1992, 15(3): 56-61.[张代钧, 鲜学福. 煤大分子堆垛结构的研究[J]. 重庆大学学报:自然科学版, 1992,15(3): 56-61.]
[87]Grigoriew H. Diffraction studies of coal structure[J]. Fuel, 1990, 69(7): 840-845.
[88]Vandenbroucke M, Largeau C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5): 719-833.
[89]Zeng Fangui, Xie Kechang. Theoretical system and methodology of coal structural chemistry[J]. Journal of China Coal Society, 2004,29(4): 443-447.[曾凡桂,谢克昌.煤结构化学的理论体系与方法论[J]. 煤炭学报, 2004,29(4): 443-447.]
[90]Endo M, Kim Y A, Ezaka M, et al. Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers[J]. Nano Letters, 2003, 3(6): 723-726.
[91]Sisk C, Diaz E, Walls J, et al. 3D visualization and classification of pore structure and pore filling in gas shale[C]∥SPE Annual Techical Conference and Exhibition Florence, Italy,2010: 1-4. 
[92]Donnet J B, Custodero E. Ordered structures observed by scanning tunneling microscopy at atomic scale on carbon-black surfaces[J]. Carbon, 1992, 30(5): 813-815.
[93]Economy J, Daley M, Hippo E J, et al. Elucidating the pore structure of activated carbon-fibers through direct imaging using Scanning-Tunneling-Microscopy (STM) [J]. Carbon, 1995, 33(3): 344-345.
[94]Sattler K. Scanning-tunneling-microscopy of carbon nanotubes and nanocones[J]. Carbon, 1995, 33(7): 915-920.
[95]Baker A A, Helbert W, Sugiyama J, et al. New insight into cellulose structure by atomic force microscopy shows the i-alpha crystal phase at near-atomic resolution[J]. Biophysical Journal, 2000, 79(2): 1 139-1 145.
[96]Lower S K, Tadanier C J, Hochella M F. Measuring interfacial and adhesion forces between bacteria and mineral surfaces with biological force microscopy[J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3 133-3 139.
[97]Lower S K, Hochella M F, Beveridge T J. Bacterial recognition of mineral surfaces: Nanoscale interactions between shewanella and alpha-FeOOH[J]. Science, 2001, 292(5 520): 1 360-1 363.
[98]Woodside M T, Mceuen P L. Scanned probe imaging of single-electron charge states in nanotube quantum dots[J]. Science, 2002, 296(5 570): 1 098-1 101.
[99]Fan C F, Teng H H. Surface behavior of gypsum during dissolution[J]. Chemical Geology, 2007, 245(3/4): 242-253.
[100]Vavouraki A I, Putnis C V, Putnis A, et al. An atomic force microscopy study of the growth of calcite in the presence of sodium sulfate[J]. Chemical Geology, 2008, 253(3/4): 243-251.
[101]Can M F, Cinar M, Benli B,et al. Determining the fiber size of nano structured sepiolite using Atomic Force Microscopy (AFM)[J]. Applied Clay Science, 2010, 47(3/4): 217-222.
[102]Li Lixin, Wang Xu, Zhang Xinyu, et al. Folding characteristics of graphite layers studied by atomic force microscopy[J]. Chinese Journal of Materials Research, 2007, 21(3): 287-290.[李立新, 王煦, 张新宇, 等. 石墨层折叠特性的原子力显微镜研究[J]. 材料研究学报, 2007, 21(3): 287-290.]
[103]Iino M, Takanohashi T, Ohsuga H, et al. Extraction of coals with CS2-N-methyl-2-pyrrolidinone mixed solvent at room temperature: Eeffect of coal rank and synergism of the mixedsolvent[J]. Fuel, 1988, 67(12): 1 639-1 647.
[104]Dyrkacz G. The nature of the binary solvent N-methylpyrrolidone/carbon disulfide[J]. Energy & Fuels, 2001, 15(4): 918-929.
[105]Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes[J]. Science,1996, 273(5 274): 483-487.
[106]Wilson H M, Almond J E. New euthycarcinoids and an enigmatic arthropod from the British coal measures[J]. Palaeontology, 2001, 44(Part 1): 143-156.
[107]Barnakov A N, Barnakova L A, Hazelbauer G L. Allosteric enhancement of adaptational demethylation by a carboxyl-terminal sequence on chemoreceptors[J]. Journal of Biological Chemistry, 2002, 277(44): 42 151-42 156.
[108]Xie Kechang. Systematical understanding and research on coal structure and reactivity: The structure aspects[J]. Coal Conversion, 1992, 15(1): 24-30.[谢克昌. 煤结构和反应性的多方位认识和研究——Ⅰ.煤的结构[J]. 煤炭转化, 1992, 15(1): 24-30.]
[109]Xodot B B.Coal and Gas Outburst[M]. Song Shizhao, Wang Youan,translated. Beijing: China Industry Press, 1966.[Xodot B B 著.煤与瓦斯突出[M].宋世钊, 王佑安译. 北京: 中国工业出版社, 1966.]
[110]Gan H, Walker P L, Nandi S P. Nature of porosity in American coals[J]. Fuel, 1972, 51(4): 272-277.
[111]Zhang Hui. Genetical types of pores in coal reservoir and its research significance[J]. Journal of China Coal Society, 2001,26(1): 40-44.[张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001,26(1): 40-44.]
[112]Hao Qi. On morphological character and origin of micropores in coal[J]. Journal of China Coal Society, 1987,12(4): 51-56.[郝琦. 煤的显微孔隙形态特征及其成因探讨[J]. 煤炭学报, 1987,12(4): 51-56.]
[113]Wu Jun, Jin Kuili, Tong Youde, et al. Theory of coal pores and its application in evaluation of gas outburst proneness and gas drainage[J]. Journal of China Coal Society, 1991, 16(3): 86-95.[吴俊, 金奎励, 童有德, 等. 煤孔隙理论及在瓦斯突出和抽放评价中的应用[J]. 煤炭学报, 1991, 16(3): 86-95.]
[114]Su Xianbo. Pore characteristic of coalbed methane reservoir[J]. Journal of Jiaozuo Institute of techonolgy, 1998,17(1): 9-14.[苏现波. 煤层气储集层的孔隙特征[J]. 焦作工学院学报, 1998,17(1): 9-14.]
[115]Lu X C, Li F C, Watson A T. Adsorption measurements in Devonian shales[J]. Fuel, 1995, 74(4): 599-603.
[116]Ross D, Bustin R M. Sediment geochemistry of the lower Jurassic Gordondale member, northeastern British Columbia[J]. Bulletin of Canadian Petroleum Geology, 2006, 54(4): 337-365.
[117]Ross D, Bustin R M. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J]. Fuel, 2007, 86(17/18): 2 696-2 706.
[118]Hickey J J, Henk B. Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T. P. Sims well, Wise country, Texas[J]. AAPG Bulletin, 2007, 91(4): 437-443.
[119]Chalmers G, Bustin R M. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity[J]. Bulletin of Canadian Petroleum Geology, 2008, 56(1): 1-21.
[120]Chalmers G, Bustin R M. On the effects of petrographic composition on coalbed methane sorption[J]. International Journal of Coal Geology, 2007, 69(4): 288-304.
[121]Zhang Hui. SEM Research of Coal in China[M]. Beijing: Geological Publishing House, 2003.[张慧. 中国煤的扫描电子显微镜研究[M]. 北京: 地质出版社,2003.]
[122]Zhu Chuanfeng, Wang Chen. Application Advances in Scanning probe Microscopy[M]. Beijing: Chemical Industry Press, 2007.[朱传凤, 王琛. 扫描探针显微术应用进展[M]. 北京: 化学工业出版社,2007.]
[123]Benitez J J, Matas A J, Heredia A. Molecular characterization of the plant biopolyester cutin by AFM and spectroscopic techniques[J]. Journal of Structural Biology, 2004, 147(2): 179-184.
[124]Chang Yingmei, Yang Hongguo, Ma Tengwu, et al. Study of the coal micro-structure based on AFM[J]. Modern Scientific Instruments, 2006, (6): 71-72.[常迎梅, 杨红果, 马腾武, 等. 基于AFM的煤体微结构研究[J]. 现代科学仪器, 2006, (6): 71-72.]
[125]Zeszotarski J C, Chromik R R, Vinci R P, et al. Imaging and mechanical property measurements of kerogen via nanoindentation[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4 113-4 119.
[126]Kempe A, Schopf J W, Altermann W, et al. Atomic force microscopy of Precambrian microscopic fossils[J].Proceedings of the National Academy of Sciences of the United States of America,2002, 99(14): 9 117-9 120.
[127]Hirono T, Lin W, Nakashima S. Pore space visualization of rocks using an atomic force microscope[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(2): 317-320.
[128]Yao S P, Jiao K, Zhang K, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011, 56(25): 2 706-2 712.
[129]Stoeckli F, Hugi-cleary D, Centeno T A. The characterisation of solids by adsorption and immersion techniques and by AFM/STM[J]. Journal of the European Ceramic Society, 1998, 18(9): 1 177-1 185.
[130]Balabin R M, Syunyaev R Z, Schmid T, et al. Asphaltene adsorption onto an iron surface: Combined Near-Infrared (NIR), Raman, and AFM study of the kinetics, thermodynamics, and layer structure[J]. Energy & Fuels, 2011, 25(1): 189-196.
[131]Wu Jun. The Theories and Applications of Coal-generated Hydrocarbon in China[M]. Beijing: China Coal Industry Publishing House, 1994.[吴俊. 中国煤成烃基本理论与实践[M]. 北京: 煤炭工业出版社,1994.]
[132]Chikatamarla L, Bustin R M. Sequestration potential of acid gases in Western Canadian coals[C]Proceedings of the 2003 international coalbed symposium, 16, 2003.
[133]Harpalani S, Prusty B K, Dutta P. Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration[J].Energy & Fuels, 2006, 20(4): 1 591-1 599.
[134]Feng Qiyan, Zhou Lai, Chen Zhongwei, et al. Numerical simulation of coupled binary gas-solid interaction during carbon dioxide sequestration in a coal bed[J]. Geological Journal of China Universities, 2009,15(1): 63-68.[冯启言, 周来, 陈中伟, 等. 煤层处置CO2的二元气—固耦合数值模拟[J]. 高校地质学报, 2009, 15(1): 63-68.]
[135]Marzec A. Towards an understanding of the coal structure: A review[J]. Fuel Processing Technology, 2002, (77/78): 25-32.

[1] 杨建,刘基,黄浩,梁向阳. 鄂尔多斯盆地北部深埋区“地貌—沉积”控水关键要素研究[J]. 地球科学进展, 2019, 34(5): 523-530.
[2] 王的, 冯海艳, 景慧敏. 北京市冬季、春季PM 10和PM 2.5中元素地球化学特征[J]. 地球科学进展, 2017, 32(8): 850-858.
[3] 姜波, 李明, 屈争辉, 刘杰刚, 李伍. 构造煤研究现状及展望[J]. 地球科学进展, 2016, 31(4): 335-346.
[4] 张莉, 王金满, 刘涛. 露天煤矿区受损土地景观重塑与再造的研究进展[J]. 地球科学进展, 2016, 31(12): 1235-1246.
[5] 郭晨, 秦勇, 卢玲玲. 黔西红梅井田煤层气有序开发的水文地质条件[J]. 地球科学进展, 2015, 30(4): 456-464.
[6] 简阔, 傅雪海, 王可新, 张玉贵. 中国长焰煤物性特征及其煤层气资源潜力[J]. 地球科学进展, 2014, 29(9): 1065-1074.
[7] 段利江,唐书恒,夏朝辉,张铭. 煤吸附气体诱导的基质膨胀研究进展[J]. 地球科学进展, 2012, 27(3): 262-267.
[8] 徐少琨,张峰 向文洲,吴园涛,任小波. 微藻应用于煤炭烟气减排的研究进展[J]. 地球科学进展, 2011, 26(9): 944-953.
[9] 朱炎铭,陈尚斌,王道华,曹新款,李伍. 煤中金的研究现状及其展望[J]. 地球科学进展, 2010, 25(8): 794-799.
[10] 张泓,张群,曹代勇,李小彦,李贵红,黄文辉,冯宏,靳德武,张子敏,贾建称,石智军,邵龙义,程建远,汤达祯,姜在炳. 中国煤田地质学的现状与发展战略[J]. 地球科学进展, 2010, 25(4): 343-352.
[11] 姚素平,丁 海,胡凯,焦堃. 我国南方早古生代聚煤过程中硫的生物地球化学行为及成矿效应[J]. 地球科学进展, 2010, 25(2): 174-183.
[12] 吴艳艳,秦勇. 煤中矿物/金属元素在生气过程中的催化作用[J]. 地球科学进展, 2009, 24(8): 882-890.
[13] 黄思静,佟宏鹏,黄可可,刘丽红,张雪花. 阴极发光分析在恢复砂岩碎屑长石含量中的应用 ——鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球科学进展, 2008, 23(10): 1013-1019.
[14] 许志刚,陈代钊,曾荣树. CO 2的地质埋存与资源化利用进展[J]. 地球科学进展, 2007, 22(7): 698-707.
[15] 袁朱. 我国煤炭城市实现可持续发展的思路与对策研究[J]. 地球科学进展, 2005, 20(6): 679-686.
阅读次数
全文


摘要