地球科学进展 ›› 2013, Vol. 28 ›› Issue (2): 253 -261. doi: 10.11867/j.issn.1001-8166.2013.02.0253

综述与评述 上一篇    下一篇

海洋浮游植物对磷的响应研究进展
金 杰,刘素美 *   
  1. 中国海洋大学化学化工学院,海洋化学理论与工程技术教育部重点实验室,山东 青岛 266100
  • 收稿日期:2012-05-07 修回日期:2012-12-04 出版日期:2013-02-10
  • 通讯作者: 刘素美(1967-),女,辽宁抚顺人,教授,主要从事海洋生物地球化学研究.E-mail:sumeiliu@ouc.edu.cn E-mail:sumeiliu@ouc.edu.cn
  • 基金资助:

    国家重点基础研究发展计划项目“多重压力下近海生态系统可持续产出与适应性管理的科学基础”(编号:2011CB409802);国家自然科学基金项目“海洋生物地球化学”(编号:40925017)资助.

Advances in Studies of Phosphorus Utilization by Marine Phytoplankton

Jin Jie, Liu Sumei   

  1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2012-05-07 Revised:2012-12-04 Online:2013-02-10 Published:2013-02-10

磷是海洋浮游植物赖以生存的一种必需营养元素。海洋浮游植物对磷的响应,与初级生产力、碳循环以及固氮作用密切相关。总结了浮游植物可利用的磷源:优先吸收溶解无机磷;在寡磷海域,可通过相关酶类协助利用溶解有机磷来抵御无机磷的缺乏。对比了不同种类浮游植物对不同形态磷源利用方式的差异并从浮游植物生理学角度阐述了存在差异的根本原因。探讨了浮游植物对低磷环境的响应机制。近期的研究发现浮游植物细胞表面可以吸附磷,该发现有利于更加准确地衡量浮游植物承受的营养盐限制问题,进一步完善对海洋磷储库及其生物地球化学循环的认识。最后提出了今后需进一步研究的关键科学问题:浮游植物细胞表面吸附磷的机制;对不同结构有机磷化物的利用机理;浮游植物对磷的海洋生物地球化学循环的响应及反馈作用。

Phosphorus is a necessary nutrient utilized by marine phytoplankton. Responses of marine phytoplankton to phosphorus are closely linked with primary production, carbon cycle and nitrogen fixation. The phosphorus pools utilized by phytoplankton are summarized. Phytoplankton prefers dissolved inorganic phosphorus, and can also utilize Dissolved Organic Phosphorus (DOP) by some enzymes in phosphorus deficient regions. Utilization of various phosphorus forms by different phytoplankton species is then compared. Phytoplankton physiology studies explained differences in phosphorus availability to different phytoplankton species. Strategies of phytoplankton response to phosphorus deficiency are also summarized. Recent studies indicated phosphorus could be adsorbed onto phytoplankton cell surface. Distinguishing cell surface adsorbed phosphorus can help to assess the nutrient limitation on phytoplankton growth more accurately and to better understand phosphorus inventory and its marine biogeochemical cycle. Finally, challenges in further studies are suggested as follows: the mechanism on phytoplankton cell surface adsorbed phosphorus; the mechanism on utilization of different DOP pools by phytoplankton; the feedback and response of phytoplankton to phosphorus marine biogeochemical cycle.

中图分类号: 

[1]Paytan A, McLaughlin K. The oceanic phosphorus cycle[J]. Chemical Reviews, 2007, 107(2): 563-576.

[2]Ji Y, Sherrell R M. Differential effects of phosphorus limitation on cellular metals in Chlorella and Microcystis[J]. Limnology and Oceanography, 2008, 53(5): 1 790-1 804.

[3]Liu S, Guo Z, Li T, et al. Photosynthetic efficiency, cell volume, and elemental stoichiometric ratios in Thalassirosira weissflogii under phosphorus limitation[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(5): 1 048-1 056.

[4]Mackey K R M, Labiosa R G, Calhoun M, et al. Phosphorus availability, phytoplankton community dynamics, and taxon-specific phosphorus status in the Gulf of Aqaba, Red Sea[J]. Limnology and Oceanography, 2007, 52(2): 873-885.

[5]Saudo-Wilhelmy S A, Kustka A B, Gobler C J, et al. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean[J].Nature, 2001, 411(6 833): 66-69.

[6]Dyhrman S T, Chappell P D, Haley S T, et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium[J]. Nature, 2006, 439(7 072): 68-71.

[7]Hynes A M, Chappell P D, Dyhrman S T, et al. Cross-basin comparison of phosphorus stress and nitrogen fixation in Trichodesmium [J]. Limnology and Oceanography, 2009, 54(5): 1 438-1 448.

[8]Toggweiler J R. An ultimate limiting nutrient[J]. Nature, 1999, 400(6 744): 511-512.

[9]Tyrrell T. The relative influences of nitrogen and phosphorus on oceanic primary production[J]. Nature, 1999, 400(6 744): 525-531.

[10]Krom M D, Emeis K C, Van Cappellen P. Why is the Eastern Mediterranean phosphorus limited?[J]. Progress in Oceanography, 2010, 85(3): 236-244.

[11]Krom M D, Herut B, Mantoura R F C. Nutrient budget for the Eastern Mediterranean: Implications for phosphorus limitation[J]. Limnology and Oceanography, 2004,45(9):1 582-1 592.

[12]Thingstad T F, Krom M D, Mantoura R F C, et al. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean[J]. Science, 2005, 309(5 737): 1 068-1 071.

[13]Li H, Veldhuis M J W, Post A F. Alkaline phosphatase activities among planktonic communities in the northern Red Sea[J]. Marine Ecology Progress Series, 1998, 173: 107-115.

[14]Lomas M W, Swain A, Shelton R, et al. Taxonomic variability of phosphorus stress in Sargasso Sea phytoplankton[J]. Limnology and Oceanography, 2004, 49(6): 2 303-2 310.

[15]Salihoglu B, Garon V, Oschlies A, et al. Influence of nutrient utilization and remineralization stoichiometry on phytoplankton species and carbon export: A modeling study at BATS[J]. Deep-Sea Research I, 2008, 55(1): 73-107.

[16]Ammerman J W, Hood R R, Case D A, et al. Phosphorus deficiency in the Atlantic: An emerging paradigm in oceanography[J]. Eos, Transaction American Geophysical Union, 2003, 84(18): 165-170.

[17]Bjrkman K M, Karl D M. Bioavailability of dissolved organic phosphorus in the euphotic zone at Station ALOHA, North Pacific Subtropical Gyre[J]. Limnology and Oceanography, 2003, 48(3): 1 049-1 057.

[18]Lagus A, Suomela J, Weithoff G, et al. Species-specific differences in phytoplankton responses to N and P enrichments and the N∶ [KG-*2]P ratio in the Archipelago Sea, northern Baltic Sea[J]. Journal of Plankton Research, 2004, 26(7): 779-798.

[19]Xu J, Yin K D, He L, et al. Phosphorus limitation in the northern South China Sea during late summer: Influence of the Pearl River[J]. Deep-Sea Research I, 2008, 55(10): 1 330-1 342.

[20]Chai C, Yu Z M, Shen Z L, et al. Nutrient characteristics in the Yangtze River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam[J]. Science of the Total Environment, 2009, 407(16): 4 687-4 695.

[21]Xu S S, Song J M, Li X G, et al. Changes in nitrogen and phosphorus and their effects on phytoplankton in the Bohai Sea[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(4): 945-952.

[22]Clark L L, Ingall E D, Benner R. Marine phosphorus is selectively remineralized[J]. Nature, 1998, 393(6 684): 426-426.

[23]Cotner J B, Wetzel R G. Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton[J]. Limnology and Oceanography, 1992, 37(2): 232-243.

[24]Oh S J, Yamamoto T, Kataoka Y, et al. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae)[J]. Fisheries Science, 2002, 68(2): 416-424.

[25]Martínez A, Osburne M S, Sharma A K, et al. Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301[J]. Environmental Microbiology, 2012, 14(6): 1 363-1 377.

[26]Mather R L, Reynolds S E, Wolff G A, et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres[J]. Nature Geoscience, 2008, 1: 439-443.

[27]Huang Shiyu, Huang Bangqin. Effects of different phosphorus sources on algal growth and biochemical composition[J]. Journal of Oceanography in Taiwan Strait, 1997, 16(4): 458-464.[黄世玉,黄邦钦. 不同磷源对藻类生长及其生化组成的影响[J].台湾海峡, 1997, 16(4):458-464.]

[28]Donald K M, Scanlan D J, Carr N G, et al. Comparative phosphorus nutrition of the marine cyanobacterium Synechococcus WH7803 and the marine diatom Thalassiosira weissflogii[J]. Journal of Plankton Research, 1997, 19(12): 1 793-1 813.

[29]Dyhrman S T, Haley S T. Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii[J]. Applied and Environmental Microbiology, 2006, 72: 1 452-1 458.

[30]Wang Z H, Liang Y, Kang W. Utilization of dissolved organic phosphorus by different groups of phytoplankton taxa[J]. Harmful Algae, 2011, 12: 113-118.

[31]Oh S J, Kwon H K, Noh I H, et al. Dissolved organic phosphorus utilization and alkaline phosphatase activity of the dinoflagellate Gymnodinium impudicum isolated from the South Sea of Korea[J]. Ocean Science Journal, 2010, 45(3): 171-178.

[32]Zhang Qingchun, Yu Rencheng, Zhou Mingjiang, et al. Effects of different phosphorus substrates on growth and toxin generation of Alexandrium minutum[J]. Oceanologia et Limnologia Sinica, 2005, 36(5): 465-474.[张清春,于仁诚,周名江,等.不同类型含磷营养物质对微小亚历山大藻(Alexandrium minutum)生长和毒素产生的影响[J].海洋与湖沼,2005,36(5):465-474.]

[33]Zhao Yanfang, Yu Zhiming, Song Xiuxian, et al. Effects of different phosphorus substrates on the growth and phosphatase activity of Skeletonema costatum and Prorocentrum donghaiense[J]. Environmental Science, 2009, 3(3): 693-699.[赵艳芳,俞志明,宋秀贤,等.不同磷源形态对中肋骨条藻和东海原甲藻生长及磷酸酶活性的影响[J]. 环境科学,2009,3(3):693-699.]

[34]Huang B Q, Ou L J, Hong H S, et al. Bioavailability of dissolved organic phosphorus compounds to typical harmful dinoflagellate Prorocentrum donghaiense Lu[J]. Marine Pollution Bulletin, 2005, 51(8/12): 838-844.

[35]Li Ying, Lü Songhui, Xu Ning, et al. The utilization of Prorocentrum donghaiense to four different types of phosphorus[J]. Ecologic Science, 2005, 24(4): 314-317.[李英,吕颂辉,徐宁,等.东海原甲藻对不同磷源的利用特征[J].生态科学,2005,24(4):314-317.]

[36]Yamaguchi H, Sakou H, Fukami K, et al. Utilization of organic phosphorus and production of alkaline phosphatase by the marine phytoplankton, Heterocapsa circularisquama, Fibrocapsa japonica and Chaetoceros ceratosporum [J]. Plankton Biology and Ecology, 2005, 52(2): 67-75.

[37]Wang Haili, Hong Huasheng, Huang Bangqin. A preliminary study on the bioactivity of dissolved organic phosphorus in marine environment[J]. Journal of Xiamen University (Natural Science), 1995, 34(3):416-420.[王海黎,洪华生,黄邦钦. 海洋环境中溶解有机磷的生物活性初探[J]. 厦门大学学报:自然科学版, 1995, 34(3):416-420.]

[38]Wang Yan, Tang Hairong. Effects of different phosphorus on the growth and alkaline phospohatase activity in Phaeocystis globosa[J]. Ecologic Science, 2006, 25(1): 38-40.[王艳,唐海溶. 不同形态的磷源对球形棕囊藻生长及碱性磷酸酶的影响[J]. 生态科学, 2006,25(1):38-40.]

[39]Fu F X, Zhang Y, Feng Y, et al. Phosphate and ATP uptake and growth kinetics in axenic cultures of the cyanobacterium Synechococcus CCMP 1334[J]. European Journal of Phycology, 2006, 41(1): 15-28.

[40]Li Zhengfeng. The Eco-Physiological Studies of Phosphorus on the Growth of Karenia mikimotoi Hansen[D].Guangzhou: Ji’nan University, 2007.[李正峰.米氏凯伦藻的磷营养生理生态研究[D].广州:暨南大学,2007.]

[41]Yang Weidong, Zhong Na, Liu Jiesheng, et al. Effects of different Phosphorus sources on the growth and toxin production of Prorocentrum lima [J]. Environment Science, 2008, 29(10): 2 760-2 765.[杨维东,钟娜,刘洁生,等. 不同磷源及浓度对利玛原甲藻生长和产毒的影响研究[J]. 环境科学,2008,29(10):2 760-2 765.]

[42]Saudo-Wilhelmy S A. A phosphate alternative[J]. Nature, 2006, 439(7 072): 25-26.

[43]Beversdorf L J, White A E, Rkman K, et al. Phosphonate metabolism by Trichodesmium IMS101 and the production of greenhouse gases[J]. Limnology and Oceanography, 2010, 55(4): 1 768-1 778.

[44]Ilikchyan I N, McKay R M L, Kutovaya O A, et al. Seasonal expression of the picocyanobacterial phosphonate transporter gene phnD in the Sargasso Sea[J]. Frontiers in Microbiology, 2010, 1:135.

[45]Kolowith L C, Ingall E D, Benner R. Composition and cycling of marine organic phosphorus[J]. Limnology and Oceanography, 2001, 46(2): 309-320.

[46]Bjrkman K M, Karl D M. Bioavailability of inorganic and organic phosphorus compounds to natural assemblages of microorganisms in Hawaiian coastal waters[J]. Marine Ecology Progress Series, 1994, 111(3): 265-273.

[47]Huang Bangqin, Hong Huasheng. A preliminary study on uptake kinetics of phosphate by several species of algae[J]. Journal of Xiamen University (Natural Science), 1994, 33(Suppl.): 7-11.[黄邦钦,洪华生. 几种藻类吸收磷酸盐动力学的初步研究[J]. 厦门大学学报:自然科学版, 1994, 33(增刊):7-11.]

[48]Wang Dan, Huang Chunxiu, Huang Bangqin, et al. Physiological responses of two typical species of diatoms to phosphorus stress in Yellow Sea[J]. Marine Sciences, 2008, 32(5): 22-27.[王丹,黄春秀,黄邦钦,等. 黄海两种典型硅藻的磷胁迫生理研究[J]. 海洋科学,2008,32(5):22-27.]

[49]Smayda T J. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea[J]. Limnology and Oceanography, 1997, 42(5): 1 137-1 153.

[50]Qiu D J, Huang L M, Zhang J L, et al. Phytoplankton dynamics in and near the highly eutrophic Pearl River Estuary, South China Sea[J]. Continental Shelf Research, 2010, 30(2): 177-186.

[51]Saudo-Wilhelmy S A, Tovar-Sanchez A, Fu F X, et al. The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry[J]. Nature, 2004, 432(7 019): 897-901.

[52]Tovar-Sanchez A, Saudo-Wilhelmy S A, Garcia-Vargas M, et al. A trace metal clean reagent to remove surface-bound iron from marine phytoplankton[J]. Marine Chemistry, 2003, 82(1/2): 91-99.

[53]Fu F X, Zhang Y, Leblanc K, et al. The biological and biogeochemical consequences of phosphate scavenging onto phytoplankton cell surfaces[J]. Limnology and Oceanography, 2005, 50(5): 1 459-1 472.

[54]Yao B, Xi B D, Hu C M, et al. A model and experimental study of phosphate uptake kinetics in algae: Considering surface adsorption and P-stress[J]. Journal of Environmental Sciences, 2011, 23(2): 189-198.

[55]Yao Bo, Xi Beidou, Hu Chunming, et al. Phosphorous absorption dynamics of starved Scenedesmus Quadricauda in phosphate-replete medium[J]. Research of Environmental Sciences, 2010, 23(4): 420-425.[姚波, 席北斗,胡春明,等. 缺磷胁迫后四尾栅藻在富磷环境中对磷的吸收动力学[J]. 环境科学研究,2010,23(4):420-425.]

[56]Saxton M A, Arnold R J, Bourbonniere R A, et al. Plasticity of total and intracellular phosphorus quotas in Microcystis aeruginosa cultures and Lake Erie algal assemblages[J]. Frontiers in Microbiology, 2012, 3: 3.

[57]Hoppe H G. Phosphatase activity in the sea[J]. Hydrobiologia, 2003, 493(1): 187-200.

[58]Tang Hongjie, Yang Rujun, Zhang Chuansong, et al. Characterization of alkaline phosphatase in several marine microalgaes[J]. Marine Science, 2006, 30(10): 61-64.[唐洪杰,杨茹君,张传松,等.几种海洋微藻的碱性磷酸酶性质初步研究[J].海洋科学,2006,30(10):61-64.]

[59]Benitez-Nelson C R. The biogeochemical cycling of phosphorus in marine systems[J]. Earth-Science Reviews, 2000, 51(1/4): 109-135.

[60]Suzumura M, Hashihama F, Yamada N, et al. Dissolved phosphorus pools and alkaline phosphatase activity in the euphotic zone of the western North Pacific Ocean[J]. Frontiers in Microbiology, 2012, 3:99.

[61]Gambin F, Bogé G, Jamet D. Alkaline phosphatase in a littoral Mediterranean marine ecosystem: Role of the main plankton size classes[J]. Marine Environmental Research, 1999, 47(5): 441-456.

[62]Huang Bangqin, Huang Shiyu, Weng Yan, et al. Effect of dissolved phosphorus on alkaline phosphatase activity in marine microalgae[J]. Acta Oceanologica Sinica, 1999, 21(1):55-60.[黄邦钦,黄世玉,翁妍,等.溶解态磷在海洋微藻碱性磷酸酶活力变化中的调控作用[J].海洋学报, 1999,21(1):55-60.]

[63]Huang B Q, Ou L J, Wang X L, et al. Alkaline phosphatase activity of phytoplankton in East China Sea coastal waters with frequent harmful algal bloom occurrences[J]. Aquatic Microbial Ecology, 2007, 49(2): 195-206.

[64]Yamaguchi H, Yamaguchi M, Fukami K, et al. Utilization of phosphate diester by the marine diatom Chaetoceros ceratosporus[J]. Journal of Plankton Research, 2005, 27(6): 603-606.

[65]Ammerman J W, Azam F. Bacterial 5’-nucleotidase activity in estuarine and coastal marine waters: Characterization of enzyme activity[J]. Limnology and Oceanography, 1991, 37(7): 1 427-1 436.

[66]Hong H S, Wang H L, Huang B Q. The availability of dissolved organic phosphorus compounds to marine phytoplankton[J]. Chinese Journal of Oceanology and Limnology, 1995, 13(2): 169-176.

[67]Orchard E, Webb E, Dyhrman S. Characterization of phosphorus-regulated genes in Trichodesmium spp.[J]. The Biological Bulletin, 2003, 205(2): 230-231.

[68]Moore L R, Ostrowski M, Scanlan D J, et al. Ecotypic variation in phosphorus-acquisition mechanisms within marine picocyanobacteria[J]. Aquatic Microbial Ecology, 2005, 39: 257-269.

[69]Pu Xinming, Wu Yulin. Review of nutrients limitation of phytoplankton[J]. Marine Sciences, 2000, 24(2): 27-30.[蒲新明,吴玉霖.浮游植物的营养限制研究进展[J].海洋科学,2000,24(2):27-30.]

[70]Orchard E D, Webb E A, Dyhrman S T. Molecular analysis of the phosphorus starvation response in Trichodesmium spp.[J]. Environmental Microbiology, 2009, 11(9): 2 400-2 411.

[71]Martiny A C, Coleman M L, Chisholm S W. Phosphate acquisition genes in Prochlorococcus ecotypes: Evidence for genome-wide adaptation[J]. Proceedings of the National Academy of Sciences, 2006, 103(33): 12 552-12 557.

[72]Bertilsson S, Berglund O, Karl D M, et al. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea[J]. Limnology and Oceanography, 2003, 48(5): 1 721-1 731.

[73]Ho T Y, Quigg A, Finkel Z V, et al. The elemental compositon of some marine phytoplankton[J]. Journal of Phycology, 2003, 39(6): 1 145-1 159.

[74]Van Mooy B A S, Fredricks H F, Pedler B E, et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity[J]. Nature, 2009, 458(7 234): 69-72.

[75]Van Mooy B A S, Rocap G, Fredricks H F, et al. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments[J]. Proceedings of the National Academy of Sciences, 2006, 103(23): 8 607-8 612.

[76]Fekry M I, Tipton P A, Gates K S. Kinetic consequences of replacing the internucleotide phosphorus atoms in DNA with arsenic[J]. ACS Chemical Biology, 2011, 6(2): 127-130.

[1] 陈会,李阳兵,唐家发. 贵州坝子现代农业功能分布特征研究[J]. 地球科学进展, 2019, 34(9): 962-973.
[2] 邓浩俊, 陶贞, 高全洲, 姚玲, 冯雍, 李银花. 河流筑坝对生源物质循环的改变研究进展 *[J]. 地球科学进展, 2018, 33(12): 1237-1247.
[3] 李佳霖, 秦松. 海洋微微型蓝细菌分子生态学研究进展[J]. 地球科学进展, 2015, 30(4): 477-486.
[4] 宋洪军,季如宝,王宗灵. 近海浮游植物水华动力学和生物气候学研究综述[J]. 地球科学进展, 2011, 26(3): 257-265.
[5] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
[6] 刘诚刚,宁修仁,郝锵,乐凤凤. 海洋浮游植物溶解有机碳释放研究进展[J]. 地球科学进展, 2010, 25(2): 123-132.
[7] 陈纪新,黄邦钦,刘媛,曹振锐,洪华生. 应用特征光合色素研究东海和南海北部浮游植物的群落结构[J]. 地球科学进展, 2006, 21(7): 738-746.
[8] 孙军;宁修仁. 海洋浮游植物群落的比生长率[J]. 地球科学进展, 2005, 20(9): 939-945.
[9] 张运林;秦伯强;陈伟民. 增强的UV-B对湖泊生态系统的影响研究[J]. 地球科学进展, 2005, 20(1): 106-112.
[10] 魏皓,赵亮,武建平. 浮游植物动力学模型及其在海域富营养化研究中的应用[J]. 地球科学进展, 2001, 16(2): 220-225.
阅读次数
全文


摘要