[1]Sarmiento J L, Toggweiler J R, Najjar R. Ocean carbon-cycle dynamics and atmospheric pCO2 [J]. Philosophical Transactions of the Royal Society of London, 1988, 325:3-21. [2]Charlson R J, Lovelock J E, Andreae M O, et al. Oceanic phytoplankton, atmospheric sulphur, cloud abedo and climate [J]. Nature, 1987, 326:655-661. [3]Sathyendranath S, Gouveia A D, Shetya S R, et al. Biological control of surface temperature in the Arabian Sea [J]. Nature, 1991, 349:54-56. [4]Fan Yuanbing, Pu Shuzhen. Research progress in oceanographic sciences of China relevant to global change [J]. Advances in Earth Science, 1998, 13(1):62-71.[范元炳, 蒲书箴. 我国海洋科学领域的全球变化研究进展[J]. 地球科学进展, 1998, 13(1):62-71.] [5]Tang Qisheng, Su Jilan.Study on marine ecosystem dynamics and living resources sustainable utilization [J]. Advances in Earth Science, 2001, 16(1):5-11. [唐启升, 苏纪兰. 海洋生态系统动力学研究与海洋生物资源可持续利用[J]. 地球科学进展, 2001, 16(1):5-11.] [6]Chen Jianfang. New geochemical proxies in paleoceanography studies [J]. Advances in Earth Science, 2002, 17(3):402-410. [陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3):402-410.] [7]Sommer U. Competition and coexistence[J]. Nature, 1999, 402:366-367. [8]Eppley R W. Temperature and phytoplankton growth in the sea [J]. Fishery Bulletin, 1972, 70:1 063-1 085. [9]Leftley J W, Bonin D J, Maestrini S Y. Problems in estimating marine phytoplankton growth, productivity and metabolic activity in nature: an overview of methodology [J]. Oceanography and Marine Biology(An Annual Review),1983, 21:23-66. [10]Sun Jun, Liu Dongyan, Qian Shuben. Study on phytoplankton biomass I. Phytoplankton measurement biomass from cell volume or plasma volume [J]. Acta Oceanologica Sinica, 1999, 21(2):75-85. [孙军, 刘东艳, 钱树本. 浮游植物生物量研究I.浮游植物生物量细胞体积转换法[J]. 海洋学报, 1999, 21(2):75-85.] [11]Furnas M. In situ growth rates of marine phytoplankton: Approaches to measurement, community and species growth rates [J]. Journal of Plankton Research, 1990, 12: 1 117-1 151. [12]Swift E, Stuart M, Meunier V. The in situ growth rates of some deep-living oceanic dinoflagellates: Pyrocystis fusiformis and Pyrocystis noctiluca [J]. Limnology and Oceanography, 1976, 21:418-426. [13]Weiler C S, Chisholm S W. Phased cell division in natural populations of marine dinoflagellates from ship-board cultures [J]. Journal of Experimental Marine Biology and Ecology, 1976, 25:239-247. [14]McDuff R E, Chisholm S W. The calculation of in situ growth rates of phytoplankton populations from fractions of cells undergoing mitosis: A clarification [J]. Limnology and Oceanography, 1982, 27:783-788. [15]Rivkin R B. Radioisotopic method for measuring cell division rates of individual species of diatoms from natural populations [J]. Applied and Environmental Microbiology, 1986, 51:769-775. [16]Rivkin R B, Seliger H H. Liquid scintillation counting for 14C uptake of single algal cells isolated from natural samples [J]. Limnology and Oceanography, 1981, 26:780-785. [17]Rivkin R B, Voytek M A. Cell division rates of eucaryotic algae measured by tritiated thymidine incorporation into DNA: Coincident measurements of photosynthesis and cell division of individual species of phytoplankton isolated from natural populations [J]. Journal of Phycology, 1986, 22:199-205. [18]Vaulot D. Estimate of phytoplankton division rates by the mitotic index method: The fmax approach revisited [J]. Limnology and Oceanography, 1992, 37:644-649. [19]Braunwarth C, Sommer U. Analyses of the in situ growth rates of Cryptophyceae by use of the mitotic index technique [J]. Limnology and Oceanography, 1985, 30:893-897. [20]Campbell L, Carpenter E J. Diel patterns of cell division in marine Synechococcus spp.(Cyanobacteria): Use of the frequency of dividing cells technique to measure growth rate [J]. Marine Ecology Progress Series, 1986, 32:139-148. [21]Lin S J, Chang J, Carpenter E J. Can a non-terminal event of the cell cycle be used for phytoplankton species-specific growth rate estimation? [J]. Marine Ecology Progress Series, 1997, 151(1~3):283-290. [22]Chang J, Carpenter E J. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. II. DNA quantification and model verification in the dinoflagellate Heterocapsa triquetra [J]. Marine Ecology Progress Series, 1988, 44:287-296. [23]Antia A N, Carpenter E J, Chang J. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. III. Accuracy of growth rate measurement in the dinoflagellate Prorocentrum minutum [J]. Marine Ecology Progress Series, 1990, 63:273-279. [24]Chang J, Dam H G. The influence of grazing on the estimation of phytoplankton growth rate via cell cycle analysis: Modeling and experimental evidences [J]. Limnology and Oceanography, 1993, 38:202-212. [25]Carpenter E J, Chang J. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. I. Concept of the method [J]. Marine Ecology Progress Series,1988, 43:105-111. [26]Chang J, Carpenter E J. Species-specific phytoplankton growth-gates via diel DNA-synthesis cycles .IV. Evaluation of the magnitude of error with computer-simulated cell-populations [J]. Marine Ecology Progress Series, 1990, 65:293-304. [27]Chang J, Carpenter E J. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. V. Application to natural populations in Long Island Sound [J]. Marine Ecology Progress Series,1991, 78:115-122. [28]Chang J, Carpenter E J. Active growth of the oceanic dinoflagellate Ceratium teres in the Caribbean and Sargasso Seas estimated by cell cycle analysis [J]. Journal of Phycology, 1994, 30:375-381. [29]Binder B J, DuRand M D. Diel cycles in surface waters of the equatorial Pacific [J]. Deep-Sea Research II, 2002, 49:2 601-2 617. [30]Redalje D G, Laws E A. A new method for estimating phytoplankton growth rates and carbon biomass [J]. Marine Biology, 1981, 62:73-79. [31]Gieskes W W, Kraay G W. Estimating the carbon-specific growth rate of the major algal species in eastern Indonesian waters by 14C labeling of taxon-specific carotenoids [J]. Deep-Sea Research II, 1989, 36:1 127-1 139. [32]DiTullio G R, Laws E A. Diel periodicity of nitrogen and carbon assimilation in five species of marine phytoplankton: Accuracy of methosdology for predicting N-assimilation rates and N/C composition ratios [J].Marine Ecology Progress Series, 1986, 32:123-132. [33]Laws E A. Improved estimates of phytoplankton carbon based on 14C incorporation into chlorophyll a [J]. Journal of Theoretical Biology, 1984, 110: 425-434. [34]Redalje D G. The labeled chlorophyll a technique for determining photoautotrophic carbon specific growth rates and biomass [A]. In: Kemp P F ed. Handbook of Methods in Aquatic Microbial Ecology [C]. Boca Raton: Lewis Publishers, 1993. 563-572. [35]Gould D G, Gallagher E D. Field measurement of specific growth rate, biomass and primary production of benthic diatoms of Savin Hill Cove, Boston [J]. Limnology and Oceanography, 1990, 35:1 757-1 770. [36]Redalje D G. Phytoplankton carbon biomass and specific growth rates determined with the labeled chlorophyll a technique [J].Marine Ecology Progress Series, 1983, 11: 217-225. [37]Goericke R, Welschmeyer N A. The chlorophyll-labeling method: measuring specific rates of chlorophyll a synthesis in cultures and in the open ocean [J]. Limnology and Oceanography, 1993, 38: 80-95. [38]Jesperson A M, Nielsen J, Riemann B, et al. Carbon-specific phytoplankton growth rates: A comparison of methods [J]. Journal of Plankton Research, 1992, 14: 637-648. [39]Welschmeyer N A, Lorenzen C J. Carbon-14 labeling of phytoplankton carbon and chlorophyll a carbon: Determination of specific growth rates [J]. Limnology and Oceanography, 1984, 29: 135-145. [40]Gieskes W W, Kraay G W. Floristic and physiological differences between the shallow and the deep nanophytoplankton community in the euphotic zone of the open tropical Atlantic revealed by HPLC analysis of pigments [J]. Marine Biology, 1986, 91: 567-576. [41]Laws E A, Redalje D J, Haas L W, et al. High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters [J]. Limnology and Oceanography,1884, 29: 1 161-1 169. [42]Strom S L, Welschmeyer N A. Pigmentspecific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific Ocean [J]. Limnology and Oceanography, 1991, 36: 50-63. [43]Goericke R, Welschmeyer N A. The carotenoid-labeling method: Measuring specific rates of carotenoid synthesis in natural phytoplankton communities [J]. Marine Ecology Progress Series, 1993, 98: 157-171. [44]Pinckney J L, Millie D F, Howe K E, et al. Flow scintillation counting of 14C-labeled microalgal photosynthetic pigments [J]. Journal of Plankton Research, 1996, 18:1 867-1 880. [45]Pinckney J L, Tammi L R, David F M, et al. Application of photopigment biomarkers for quantifying microalgal community composition and in situ growth rates [J]. Organic Geochemistry, 2001, 32:585-595. [46]Goldman J. On phytoplankton growth rates and particulate C∶N∶P ratios at low light [J]. Limnology and Oceanography, 1986, 31:1 358-1 363. [47]Laws E A, DiTullio G R, Redalje D J. High phytoplankton growth and production rates in the North Pacific subtropical gyre [J]. Limnology and Oceanography, 1987, 34: 905-918. [48]Goldman J C, McCarthy J J, Peavey D G. Growth rate influence on the chemical composition of phytoplankton in oceanic waters [J]. Nature, 1979, 279: 210-215. [49]Steele J H. Environmental control of photosynthesis in the sea [J]. Limnology and Oceanography, 1962, 7:137-150. [50]Geider R J, MacIntyre H L, Kana T M. A dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a: Carbon ratio to light, nutrient-limitation, and temperature [J]. Marine Ecology Progress Series, 1997, 148:187-200. [51]Parker A. Empirical functions relating metabolic processes in aquatic systems to environmental variables [J]. Journal of the Fisheries Research Board of Canada, 1972, 31: 1 550-1 552. [52]Lehman J T, Botkin D B, Likens G E. The assumptions and rationales of a computer model of phytoplankton population dynamics [J]. Limnology and Oceanography,1975, 20:343-364. [53]Bierman Jr V J. Mathematical model of the selective enhancement of blue green algae by nutrient enrichment [A]. In: Canale R P. ed.Modelling Biochemical Processes in Aquatic Ecosystems [C]. Ann Arbor: Ann Arbor Sciences, 1976. 1-31. [54]Bannister T T. Quantitative description of steady state, nutrient-saturated algal growth, including adaptation [J]. Limnology and Oceanography, 1979, 24:76-96. [55]Laws E A, Bannister T T. Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the oceans [J]. Limnology and Oceanography, 1980, 25:457-473. [56]Landry M R, Hassett R P.Estimating the grazing impact of marine microzooplankton [J]. Marine Biology, 1982, 67:283-288. [57]Landry M R, Kirshtein J, Constantinou J. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific [J]. Marine Ecology Progress Series, 1995, 120:53-63. [58]Gallegos C L, Vant W N. An incubation procedure for estimating carbon-to-chlorophyll ratios and growth irradiance relationships of estuarine phytoplankton [J]. Marine Ecology Progress Series, 1996, 138:275-291. [59]Brown S L, Landry M R, Barber R T, et al. Picophytoplankton dynamics and production in the Arabian Sea during the 1995 Southwest Monsoon [J]. Deep-Sea Research Part II, 1999, 46(8~9):1 745-1 768. [60]Wolfe G V, Levasseur M, Cantin G, et al. DMSP and DMS dynamics and microzooplankton grazing in the Labrador Sea: Application of the dilution technique [J]. Deep-Sea Research Part I, 2000, 47(12): 2 243-2 264. [61]Sun Jun, Liu Dongyan, Wang Zongling, et al. Microzooplankton herbivory during red tide frequent occurrence period in Spring in the East China Sea [J]. Chinese Journal of Applied Ecology, 2003, 14(7):1 073-1 080. [孙军, 刘东艳, 王宗灵,等. 春季赤潮频发期东海微型浮游动物摄食研究[J]. 应用生态学报, 2003, 14(7):1 073-1 080.] [62]Edwards E S, Burkill P H, Stelfox C E. Zooplankton herbivory in the Arabian Sea during and after the SW monsoon, 1994 [J]. Deep-Sea Research Part II, 1999, 46(3~4):843-863. [63]Stelfox-Widdicombe C E, Archer S D, Burkill P H, et al. Microzooplankton grazing in Phaeocystis and diatom-dominated waters in the southern North Sea in spring [J]. Journal of Sea Research, 2004, 51(1):37-51. [64]Rivkin R B, Putland J N, Anderson M R, et al. Microzooplankton bacterivory and herbivory in the NE subarctic Pacific [J]. Deep-Sea Research II, 1999, 46:2 579-2 618. [65]Bertalanffy L von. Metabolic types and growth types [J]. American naturalist, 1951, 85:111-117. |