地球科学进展 ›› 2005, Vol. 20 ›› Issue (9): 939 -945. doi: 10.11867/j.issn.1001-8166.2005.09.0939

综述与评述 上一篇    下一篇

海洋浮游植物群落的比生长率
孙军 1,宁修仁 2   
  1. 1.中国科学院海洋研究所海洋环境与生态重点实验室,山东 青岛 266071;2.国家海洋局第二海洋研究所,浙江 杭州 310012
  • 收稿日期:2004-06-07 修回日期:2005-05-30 出版日期:2005-09-25
  • 通讯作者: 孙军
  • 基金资助:

    国家自然科学基金项目“胶州湾浮游植物对透明胞外聚合颗粒物产量的贡献研究”(编号: 40306025); 国家自然科学基金重点项目“南海基础生产力结构的物理—生物海洋学耦合过程及其对碳循环的影响”(编号: 90211021)资助.

MARINE PHYTOPLANKTON SPECIFIC GROWTH RATE

SUN Jun 1; NING Xiuren 2   

  1. 1.Key Laboratory of Marine Ecology & Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;  2.Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
  • Received:2004-06-07 Revised:2005-05-30 Online:2005-09-25 Published:2005-09-25

系统地介绍了海洋浮游植物群落比生长率(μ)及其相关概念。介绍和比较分析了研究μ的细胞分裂周期法、生物化学指示物法、模型法和去除摄食者稀释法这4类方法,推荐去除摄食者稀释法作为中国近海μ研究的重要方法。比较各海区μ的分布规律,初步发现:① μ与群落物种组成密切相关;② μ在大洋低于近岸;③ μ在近岸中等营养高于富营养水域;④ 小粒径浮游植物μ高于大粒径浮游植物。但还有很多未知的情况,尤其是在中国海区此类工作还很薄弱,需加强,为更深入了解海洋生态系统奠定基础。

The concept of marine phytoplankton community specific growth rate (μ) and its related concepts were discussed. The four basic methods for estimating μ, frequency of dividing cells, biochemical indices, model approaches, and dilution incubations without grazers were reviewed, among them the dilution method was recommend as standard method for preliminary investigations of μ in China seas. After preliminary comparing and analyzing the μ around the world, we found that (1) μ depends on taxa composition of target phytoplankton community, (2) μ is relatively higher in offshore waters than in open seas and oligotrophic waters, (3) μ is even higher in mesotrophic areas than in eutrophic areas in offshore waters, and (4) μ is higher in smallcelldominated community than in big-cell-dominated community. Many things still poorly understand and more studies on μ are needed in China.

中图分类号: 

[1]Sarmiento J L, Toggweiler J R, Najjar R.  Ocean carbon-cycle dynamics and atmospheric pCO2 [J]. Philosophical Transactions of the Royal Society of London, 1988, 325:3-21.
[2]Charlson R J, Lovelock J E, Andreae M O, et al.  Oceanic phytoplankton, atmospheric sulphur, cloud abedo and climate [J]. Nature, 1987, 326:655-661.
[3]Sathyendranath S, Gouveia A D, Shetya S R, et al.  Biological control of surface temperature in the Arabian Sea [J]. Nature, 1991, 349:54-56.
[4]Fan Yuanbing, Pu Shuzhen. Research progress in oceanographic sciences of China relevant to global change [J]. Advances in Earth Science, 1998, 13(1):62-71.[范元炳, 蒲书箴. 我国海洋科学领域的全球变化研究进展[J]. 地球科学进展, 1998, 13(1):62-71.]
[5]Tang Qisheng, Su Jilan.Study on marine ecosystem dynamics and living resources sustainable utilization [J]. Advances in Earth Science, 2001, 16(1):5-11. [唐启升, 苏纪兰. 海洋生态系统动力学研究与海洋生物资源可持续利用[J]. 地球科学进展, 2001, 16(1):5-11.]
[6]Chen Jianfang. New geochemical proxies in paleoceanography studies [J]. Advances in Earth Science, 2002, 17(3):402-410. [陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3):402-410.]
[7]Sommer U.  Competition and coexistence[J]. Nature, 1999, 402:366-367.
[8]Eppley R W.  Temperature and phytoplankton growth in the sea [J]. Fishery Bulletin, 1972, 70:1 063-1 085.
[9]Leftley J W, Bonin D J, Maestrini S Y. Problems in estimating marine phytoplankton growth, productivity and metabolic activity in nature: an overview of methodology [J]. Oceanography and Marine Biology(An Annual Review),1983, 21:23-66.
[10]Sun Jun, Liu Dongyan, Qian Shuben. Study on phytoplankton biomass I. Phytoplankton measurement biomass from cell volume or plasma volume [J]. Acta Oceanologica Sinica, 1999, 21(2):75-85. [孙军, 刘东艳, 钱树本. 浮游植物生物量研究I.浮游植物生物量细胞体积转换法[J]. 海洋学报, 1999, 21(2):75-85.]
[11]Furnas M. In situ growth rates of marine phytoplankton: Approaches to measurement, community and species growth rates [J]. Journal of Plankton Research, 1990, 12: 1 117-1 151.
[12]Swift E, Stuart M, Meunier V.  The in situ growth rates of some deep-living oceanic dinoflagellates: Pyrocystis fusiformis and Pyrocystis noctiluca [J]. Limnology and Oceanography, 1976, 21:418-426.
[13]Weiler C S, Chisholm S W.  Phased cell division in natural populations of marine dinoflagellates from ship-board cultures [J]. Journal of Experimental Marine Biology and Ecology, 1976, 25:239-247.
[14]McDuff R E, Chisholm S W. The calculation of in situ growth rates of phytoplankton populations from fractions of cells undergoing mitosis: A clarification [J]. Limnology and Oceanography, 1982, 27:783-788.
[15]Rivkin R B.  Radioisotopic method for measuring cell division rates of individual species of diatoms from natural populations [J]. Applied and Environmental Microbiology, 1986, 51:769-775. 
[16]Rivkin R B, Seliger H H. Liquid scintillation counting for 14C uptake of single algal cells isolated from natural samples [J]. Limnology and Oceanography, 1981, 26:780-785.
[17]Rivkin R B, Voytek M A. Cell division rates of eucaryotic algae measured by tritiated thymidine incorporation into DNA: Coincident measurements of photosynthesis and cell division of individual species of phytoplankton isolated from natural populations [J]. Journal of Phycology, 1986, 22:199-205.
[18]Vaulot D. Estimate of phytoplankton division rates by the mitotic index method: The fmax approach revisited [J]. Limnology and Oceanography, 1992, 37:644-649.
[19]Braunwarth C, Sommer U.  Analyses of the in situ growth rates of Cryptophyceae by use of the mitotic index technique [J]. Limnology and Oceanography, 1985, 30:893-897.
[20]Campbell L, Carpenter E J.  Diel patterns of cell division in marine Synechococcus spp.(Cyanobacteria): Use of the frequency of dividing cells technique to measure growth rate [J]. Marine Ecology Progress Series, 1986, 32:139-148.
[21]Lin S J, Chang J, Carpenter E J. Can a non-terminal event of the cell cycle be used for phytoplankton species-specific growth rate estimation? [J]. Marine Ecology Progress Series, 1997, 151(1~3):283-290.
[22]Chang J, Carpenter E J.  Species-specific phytoplankton growth rates via diel DNA synthesis cycles. II. DNA quantification and model verification in the dinoflagellate Heterocapsa triquetra [J]. Marine Ecology Progress Series, 1988, 44:287-296.
[23]Antia A N, Carpenter E J, Chang J. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. III. Accuracy of growth rate measurement in the dinoflagellate Prorocentrum minutum [J]. Marine Ecology Progress Series, 1990, 63:273-279.
[24]Chang J, Dam H G.  The influence of grazing on the estimation of phytoplankton growth rate via cell cycle analysis: Modeling and experimental evidences [J]. Limnology and Oceanography, 1993, 38:202-212.
[25]Carpenter E J, Chang J. Species-specific phytoplankton growth rates via diel DNA synthesis cycles. I. Concept of the method [J]. Marine Ecology Progress Series,1988, 43:105-111.
[26]Chang J, Carpenter E J.  Species-specific phytoplankton growth-gates via diel DNA-synthesis cycles .IV. Evaluation of the magnitude of error with computer-simulated cell-populations [J]. Marine Ecology Progress Series, 1990, 65:293-304.
[27]Chang J, Carpenter E J.  Species-specific phytoplankton growth rates via diel DNA synthesis cycles. V. Application to natural populations in Long Island Sound [J]. Marine Ecology Progress Series,1991, 78:115-122.
[28]Chang J, Carpenter E J.  Active growth of the oceanic dinoflagellate Ceratium teres in the Caribbean and Sargasso Seas estimated by cell cycle analysis [J]. Journal of Phycology, 1994, 30:375-381.
[29]Binder B J, DuRand M D.  Diel cycles in surface waters of the equatorial Pacific [J]. Deep-Sea Research II, 2002, 49:2 601-2 617.
[30]Redalje D G, Laws E A. A new method for estimating phytoplankton growth rates and carbon biomass [J]. Marine Biology, 1981, 62:73-79.
[31]Gieskes W W, Kraay G W.  Estimating the carbon-specific growth rate of the major algal species in eastern Indonesian waters by 14C labeling of taxon-specific carotenoids [J]. Deep-Sea Research II, 1989, 36:1 127-1 139.
[32]DiTullio G R, Laws E A.  Diel periodicity of nitrogen and carbon assimilation in five species of marine phytoplankton: Accuracy of methosdology for predicting N-assimilation rates and N/C composition ratios [J].Marine Ecology Progress Series, 1986, 32:123-132.
[33]Laws E A.  Improved estimates of phytoplankton carbon based on 14C incorporation into chlorophyll a [J]. Journal of Theoretical Biology, 1984, 110: 425-434. 
[34]Redalje D G. The labeled chlorophyll a technique for determining photoautotrophic carbon specific growth rates and biomass [A]. In: Kemp P F ed. Handbook of Methods in Aquatic Microbial Ecology [C]. Boca Raton: Lewis Publishers, 1993. 563-572.
[35]Gould D G, Gallagher E D.  Field measurement of specific growth rate, biomass and primary production of benthic diatoms of Savin Hill Cove, Boston [J]. Limnology and Oceanography, 1990, 35:1 757-1 770.
[36]Redalje D G.  Phytoplankton carbon biomass and specific growth rates determined with the labeled chlorophyll a technique [J].Marine Ecology Progress Series, 1983, 11: 217-225.
[37]Goericke R, Welschmeyer N A. The chlorophyll-labeling method: measuring specific rates of chlorophyll a synthesis in cultures and in the open ocean [J]. Limnology and Oceanography, 1993, 38: 80-95.
[38]Jesperson A M, Nielsen J, Riemann B, et al. Carbon-specific phytoplankton growth rates: A comparison of methods [J]. Journal of Plankton Research, 1992, 14: 637-648.
[39]Welschmeyer N A, Lorenzen C J. Carbon-14 labeling of phytoplankton carbon and chlorophyll a carbon: Determination of specific growth rates [J]. Limnology and Oceanography, 1984, 29: 135-145.
[40]Gieskes W W, Kraay G W. Floristic and physiological differences between the shallow and the deep nanophytoplankton community in the euphotic zone of the open tropical Atlantic revealed by HPLC analysis of pigments [J]. Marine Biology, 1986, 91: 567-576. 
[41]Laws E A, Redalje D J, Haas L W, et al. High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters [J]. Limnology and Oceanography,1884, 29: 1 161-1 169.
[42]Strom S L, Welschmeyer N A. Pigmentspecific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific Ocean [J]. Limnology and Oceanography, 1991, 36: 50-63.
[43]Goericke R, Welschmeyer N A.  The carotenoid-labeling method: Measuring specific rates of carotenoid synthesis in natural phytoplankton communities [J]. Marine Ecology Progress Series, 1993, 98: 157-171.
[44]Pinckney J L, Millie D F, Howe K E, et al. Flow scintillation counting of 14C-labeled microalgal photosynthetic pigments [J]. Journal of Plankton Research, 1996, 18:1 867-1 880.
[45]Pinckney J L, Tammi L R, David F M, et al. Application of photopigment biomarkers for quantifying microalgal community composition and in situ growth rates [J]. Organic Geochemistry, 2001, 32:585-595.
[46]Goldman J. On phytoplankton growth rates and particulate C∶N∶P ratios at low light [J]. Limnology and Oceanography, 1986, 31:1 358-1 363.
[47]Laws E A, DiTullio G R, Redalje D J.  High phytoplankton growth and production rates in the North Pacific subtropical gyre [J]. Limnology and Oceanography, 1987, 34: 905-918.
[48]Goldman J C, McCarthy J J, Peavey D G. Growth rate influence on the chemical composition of phytoplankton in oceanic waters [J]. Nature, 1979, 279: 210-215.
[49]Steele J H. Environmental control of photosynthesis in the sea [J]. Limnology and Oceanography, 1962, 7:137-150.
[50]Geider R J, MacIntyre H L, Kana T M.  A dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a: Carbon ratio to light, nutrient-limitation, and temperature [J]. Marine Ecology Progress Series, 1997, 148:187-200.
[51]Parker A.  Empirical functions relating metabolic processes in aquatic systems to environmental variables [J]. Journal of the Fisheries Research Board of Canada, 1972, 31: 1 550-1 552.
[52]Lehman J T, Botkin D B, Likens G E.  The assumptions and rationales of a computer model of phytoplankton population dynamics [J]. Limnology and Oceanography,1975, 20:343-364.
[53]Bierman Jr V J. Mathematical model of the selective enhancement of blue green algae by nutrient enrichment [A]. In: Canale R P. ed.Modelling Biochemical Processes in Aquatic Ecosystems [C]. Ann Arbor: Ann Arbor Sciences, 1976. 1-31.
[54]Bannister T T.  Quantitative description of steady state, nutrient-saturated algal growth, including adaptation [J]. Limnology and Oceanography, 1979, 24:76-96.
[55]Laws E A, Bannister T T.  Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the oceans [J]. Limnology and Oceanography, 1980, 25:457-473.
[56]Landry M R, Hassett R P.Estimating the grazing impact of marine microzooplankton [J]. Marine Biology, 1982, 67:283-288. 
[57]Landry M R, Kirshtein J, Constantinou J. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific [J]. Marine Ecology Progress Series, 1995, 120:53-63.
[58]Gallegos C L, Vant W N.  An incubation procedure for estimating carbon-to-chlorophyll ratios and growth irradiance relationships of estuarine phytoplankton [J]. Marine Ecology Progress Series, 1996, 138:275-291. 
[59]Brown S L, Landry M R, Barber R T, et al.  Picophytoplankton dynamics and production in the Arabian Sea during the 1995 Southwest Monsoon [J]. Deep-Sea Research Part II, 1999, 46(8~9):1 745-1 768.
[60]Wolfe G V, Levasseur M, Cantin G, et al.  DMSP and DMS dynamics and microzooplankton grazing in the Labrador Sea: Application of the dilution technique [J]. Deep-Sea Research Part I, 2000, 47(12): 2 243-2 264.
[61]Sun Jun, Liu Dongyan, Wang Zongling, et al.  Microzooplankton herbivory during red tide frequent occurrence period in Spring in the East China Sea [J]. Chinese Journal of Applied Ecology, 2003, 14(7):1 073-1 080. [孙军, 刘东艳, 王宗灵,等. 春季赤潮频发期东海微型浮游动物摄食研究[J]. 应用生态学报, 2003, 14(7):1 073-1 080.]
[62]Edwards E S, Burkill P H, Stelfox C E.  Zooplankton herbivory in the Arabian Sea during and after the SW monsoon, 1994 [J]. Deep-Sea Research Part II, 1999, 46(3~4):843-863.
[63]Stelfox-Widdicombe C E, Archer S D, Burkill P H, et al.  Microzooplankton grazing in Phaeocystis and diatom-dominated waters in the southern North Sea in spring [J]. Journal of Sea Research, 2004, 51(1):37-51.
[64]Rivkin R B, Putland J N, Anderson M R, et al. Microzooplankton bacterivory and herbivory in the NE subarctic Pacific [J]. Deep-Sea Research II, 1999, 46:2 579-2 618.
[65]Bertalanffy L von.  Metabolic types and growth types [J]. American naturalist, 1951, 85:111-117.

[1] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631.
[2] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[3] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[4] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[5] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[6] 邓浩俊, 陶贞, 高全洲, 姚玲, 冯雍, 李银花. 河流筑坝对生源物质循环的改变研究进展 *[J]. 地球科学进展, 2018, 33(12): 1237-1247.
[7] 张洪瑞, 刘传联, 梁丹. 热带海洋生产力:现代过程与地质记录[J]. 地球科学进展, 2016, 31(3): 277-285.
[8] 肖传桃, 肖胜, 田宜聪, 韩超, 胡明毅. 川西地区中二叠世—中三叠世生物相及其分区研究[J]. 地球科学进展, 2015, 30(5): 602-608.
[9] 李佳霖, 秦松. 海洋微微型蓝细菌分子生态学研究进展[J]. 地球科学进展, 2015, 30(4): 477-486.
[10] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[11] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[12] 肖传桃, 龚丽, 梁文君. 川西地区中二叠统—中三叠统古生态研究[J]. 地球科学进展, 2014, 29(7): 819-827.
[13] 金杰,刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253-261.
[14] 宋洪军,季如宝,王宗灵. 近海浮游植物水华动力学和生物气候学研究综述[J]. 地球科学进展, 2011, 26(3): 257-265.
[15] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
阅读次数
全文


摘要