地球科学进展 ›› 2015, Vol. 30 ›› Issue (12): 1295 -. doi: 10.11867/j.issn.1001-8166.2015.12.1295

综述与评述    下一篇

基于悬液Wien效应研究离子与土壤黏粒之间
范婷婷 1,2, 王玉军 1*,李成保 1,周东美 1   
  1. 1.中国科学院土壤环境与污染修复重点实验室,中国科学院南京土壤研究所,江苏南京210008; 2.中国科学院大学,北京100049
  • 出版日期:2015-12-10
  • 通讯作者: 王玉军(1977-), 男, 江苏泰州人, 研究员, 主要从事重金属的环境土壤化学行为研究 E-mail:yjwang@issas.ac.cn
  • 基金资助:

    江苏省杰出青年科学基金项目“土壤胶体悬液Wien效应及其应用”(编号:BK20130050);国家自然科学基金优秀青年科学基金项目“土壤化学”(编号:41422105)资助.

The Energy Relationship between Ions and Soil Particles based on Wien Effect and Its Application in Soil Science

  • Online:2015-12-10 Published:2015-12-10

金属离子与土壤黏粒之间的相互作用决定了金属离子在土壤中的移动性和生物有效性等,一直是土壤化学研究的重点之一。近年来,基于悬液Wien效应发展了一种测定离子与土壤黏粒之间能量关系的新方法,相较以往基于吸附等温线或者离子活度计算离子与土壤黏粒之间能量关系的方法,悬液Wien效应方法具有测定简便、能够直接计算能量等优点。悬液Wien效应是指悬液电导随场强增加而增加的现象,从悬液Wien效应原理、仪器设备研发、悬液Wien效应应用等角度综述了过去10多年的主要研究进展。发现不同价态的离子在土壤黏粒上的结合能和吸附能不同,主要表现为二价 > 一价;由于三价离子(Cr3+和La3+)易于水解,三价离子的结合能和吸附能小于二价离子;相同离子在不同土壤类型上的结合能和吸附能表现出不同差异,与土壤性质如土壤有机质和土壤氧化铁含量有关。研究结果推动了传统土壤化学关于金属离子非专性吸附机理的认识,在理论和方法学方面深化了土壤学的基础研究内容。

The interaction between ions and soil particles plays an important role in the mobilization and bioavailability of ions in soils, which is one of the main research areas of soil chemistry. The new method based on suspension Wien effect has been developed recently to determine the binding energy and adsorption energy between ions and soil particles. Compared with other methods on the basis of adsorption isotherm or ions activity, Wien effect method has more advantages including convenience and direct measurement. The term suspension Wien effect refers to the increase of electrical conductivity of suspension with increasing applied electrical field. In this review paper, we introduced the fundamentals of suspension Wien effect, the apparatus about the Wien effect measurement, and along with demonstrating their application to quantifying the particles-ions interactions for several systems of soils. Our studies indicated that divalent cations have larger binding energies and adsorption energies on soil particles than monovalent because of the electrostatic interaction. However, few studies about the interaction between Cr3+ and La3+ on soil particles showed that the binding energy and adsorption energy of trivalent cations are lower than those of divalent cations because of hydrolysis. Soil properties such as soil organic matter, soil pH, and iron oxides significantly affected the binding energy and adsorption energy of ions. Our results deepened our understanding about the nonspecific adsorption of ions in soil chemistry, and enlarged the research area of soil chemistry in fundamental and methodology.

中图分类号: 

[1]Xiong Yi. Soil Colloids (No.2). Methods of Soil Colloid[M]. Beijing: Science Press, 1985.[熊毅. 土壤胶体 (第二册). 土壤胶体研究法[M].北京:科学出版社,1985.]

[2]Yu Tianren. The energy relationship in soil chemical phenomena[J]. Acta Pedologica Sinica,1963, 11(1): 99-108.[于天仁. 土壤化学现象中的能量关系[J]. 土壤学报, 1963, 11(1): 99-108.]

[3]Xuan Jiaxiang, Zhang Wan’gen, Yu Tianren. Studies on the electrochemical properties of soils V: Binding energies of cations in relation to the elelctrical charge of the soil[J].Acta Pedologica Sinica,1965, 13(4): 427-436.[宣家祥, 张畹根, 于天仁. 土壤电化学性质的研究Ⅴ:土壤对阳离子的结合能与土壤电荷的关系[J]. 土壤学报, 1965, 13(4): 427-436.]

[4]Fan T T, Wang Y J, Li C B,et al.Comparison between ion activity method and suspension Wien effect method in determining binding energy of divalent cations to soil particles[J]. Journal of Soils and Sediments, 2015,15(11):2 276-2 284.

[5]Marshall C, Barber S. The calcium-potassium relationships of clay minerals as revealed by activity measurements[J]. Soil Science Society Proceedings,1949,14:86-88.

[6]Xuan Jiaxiang, Zhang Wan’gen, Yu Tianren.Binding energies of cations in relation to the electrical charge of the soil[J]. Chinese Science Bulletin,1965, 3: 271-272.[宣家祥, 张畹根, 于天仁. 土壤对阳离子的结合能与土壤电荷的关系[J]. 科学通报, 1965, 3: 271-272.]

[7]Marshall C. Multifunctional ionization as illustrated by the clay minerals[J]. Clays and Clay Minerals, 1954, 327: 364-385.

[8]Amacher M. Determination of ionic activities in soil solutions and suspensions: Principal limitations[J]. Soil Science Society of America Journal, 1984, 48(3): 519-524.

[9]Michalska A. All-solid-state ion selective and all-solid-state reference electrodes[J]. Electroanalysis, 2012, 24(6): 1 253-1 265.

[10]Mobasherpour I, Salahi E, Pazouki M. Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study[J]. Arabian Journal of Chemistry,2012, 5(4): 439-446.

[11]Ünlü N, Ersoz M. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions[J]. Journal of Hazardous Materials,2006, 136(2): 272-280.

[12]Argun M E, Dursun S, Ozdemir C,et al. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics[J].Journal of Hazardous Materials, 2007, 141(1): 77-85.

[13]Benhammou A, Yaacoubi A, Nibou L,et al. Adsorption of metal ions onto Moroccan stevensite: Kinetic and isotherm studies[J]. Journal of Colloid and Interface Science,2005, 282(2): 320-326.

[14]Albadarin A B, Mangwandi C, Ala’a H,et al. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent[J]. Chemical Engineering Journal,2012, 179: 193-202.

[15]Sheela T, Nayaka Y A, Viswanatha R,et al. Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles[J]. Powder Technology,2012, 217: 163-170.

[16]Li C B, Zhao A, Friedman S P. A new method to estimate adsorption energies between cations and soil particles via Wien effect measurements in dilute suspensions and an approximate conductivity-activity analogy[J]. Environmental Science & Technology,2005, 39(17): 6 757-6 764.

[17]Li C B, Friedman S P. An apparatus for measuring the Wien effect in suspensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 222(1): 133-140.

[18]Wang Y, Li C, Wang L,et al. Organo-modification effects on soil particles—Inorganic cations interactions as revealed by Wien effect measurements[J].Soil Science Society of America Journal, 2013, 77(2): 442-449.

[19]Wang Y J, Wang L X, Li C B,et al. Exploring the effect of organic matter on the interactions between mineral particles and cations with Wien effect measurements[J].Journal of Soils and Sediments, 2013, 13(2): 304-311.

[20]Fan T T, Wang Y J, Li C B,et al.Effects of soil organic matter on sorption of metal ions on soil clay particles[J]. Soil Science Society of America Journal, 2015, 79(3): 794-802.

[21]Eckstrom H C, Schmelzer C. The Wien effect: Deviations of electrolytic solutions from Ohm’s Law under high field strengths[J]. Chemical Reviews,1939, 24(3): 367-414.

[22]Wang Y J, Li C B, Zhou D M,et al.Wien effect in suspensions and its applications in soil science: A review[J]. Advances in Agronomy,2013, 122: 127-178.

[23]Li C, Zhao A, Friedman S. Wien effect in suspensions of electrodialyzed soil particles and its influencing factors[J]. Pedosphere,2002, 12(3):235-242.

[24]Yu Tianren. Electrochemical Properties of Soils and Their Research Methods[M].Beijing: Science Press,1976.[于天仁. 土壤的电化学性质及其研究法[M].北京:科学出版社, 1976.]

[25]Kinraide T B, Yermiyahu U. A scale of metal ion binding strengths correlating with ionic charge, pauling electronegativity, toxicity, and other physiological effects[J]. Journal of Inorganic Biochemistry,2007, 101(9): 1 201-1 213.

[26]Wang Y J, Li C B, Wang W,et al. Wien effect determination of adsorption energies between heavy metal ions and soil particles[J]. Soil Science Society of America Journal, 2008, 72(1): 56-62.

[27]Usman A R A. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt[J]. Geoderma,2008, 144(1): 334-343.

[28]Wen Yuankai, Shao Jun. Ionic polarization and the role of metal hydrolysis[J]. Chinese Science Bulletin,1977, 6: 262-268.[温元凯, 邵俊. 离子极化和金属离子水解规律性[J]. 科学通报, 1977, 6: 262-268.]

[29]Yang Yati, Zhang Yiping, Zhang Xingfu. Charge characteristics of constant charge soil colloids[J]. Journal of Northwest A&F University (Natural Science Edition),2002, 30(1): 47-51.[杨亚提, 张一平, 张兴福. 恒电荷土壤胶体表面的电荷特征[J]. 西北农林科技大学学报:自然科学版,2002, 30(1): 47-51.]

[30]Yu Tianren. The Electrochemistry of Variable Soil[M]. Beijing: Science Press, 1996.[于天仁. 可变电荷土壤的电化学[M].北京:科学出版社, 1996.]

[31]Wang Wei, Wang Yujun, Li Chengbao, et al. Energy relationship between cations and soil clay fractions as in inferred from the Wien effect in dilute suspesions[J].Acta Pedologica Sinica,2007, 44(3): 451-457.[王卫, 王玉军, 李成保,等.用悬液 Wien 效应研究K+、NH+4、Ca2+、Cd2+阳离子与土壤黏粒间的能量关系[J]. 土壤学报, 2007, 44(3): 451-457.]

[32]Zhu Haowen, Wang Yujun, Jiang Jun, et al. Studies of interactions and energy relationship between cations(Na+, K+, NH+4, Ca2+, Zn2+and Cd2+) and clay fraction of red soil using the Wien effect in dilute suspensions[J].Acta Pedologica Sinica,2009, 46(2): 308-314.[朱浩文, 王玉军, 姜军,等.用悬液 Wien效应研究 Na+, K+, NH+4,Ca2+,Zn2+和Cd2+阳离子与红壤黏粒间的相互作用及能量关系[J].土壤学报,2009, 46(2): 308-314.]

[33]Zhu H W, Wang Y J, Zhou J,et al. Wien effect characterization of interactions between ions and charged sites on clay surfaces of variable-charge soils[J].Pedosphere,2009, 19(5): 545-553.

[34]Zhao X, Jiang T, Du B. Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption-desorption on/from purple paddy soils[J].Chemosphere,2014, 99: 41-48.

[35]Shi Z, Allen H E, Di Toro D M,et al. Predicting PbII adsorption on soils: The roles of soil organic matter, cation competition and iron (hydr)oxides[J].Environmental Chemistry, 2013, 10(6): 465-474.

[36]Wang Lingxiang, Wang Yujun, Zhou Dongmei,et al. Effects of organic matter on interactions between cations and clay particles in paddy soil of yellow-brown soil based on Wien effect[J].Acta Pedologica Sinica,2012, 49(4): 716-724.[王令祥, 王玉军, 周东美,等.用Wien效应研究土壤有机质对阳离子与黄棕壤型水稻土黏粒相互作用的影响[J].土壤学报, 2012, 49(4): 716-724.]

[37]Sparks D L. Environmental Soil Chemistry[M].New York:Academic Press, 2003.

[38]Mesquita M, Carranca C. Effect of dissolved organic matter on copper-zinc competitive adsorption by a sandy soil at different pH values[J]. Environmental Technology,2005, 26(9): 1 065-1 072.

[39]Sauve S, McBride M, Hendershot W. Soil solution speciation of lead (II): Effects of organic matter and pH[J].Soil Science Society of America Journal,1998,62(3):618-621.

[1] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[2] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[3] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[4] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[5] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[6] 许海超,张建辉,戴佳栋,王勇. 耕作侵蚀研究回顾和展望[J]. 地球科学进展, 2019, 34(12): 1288-1300.
[7] 邹学勇,张梦翠,张春来,程宏,李慧茹,张峰. 输沙率对土壤颗粒特性和气流湍流脉动的响应[J]. 地球科学进展, 2019, 34(8): 787-800.
[8] 王全九,孙燕,宁松瑞,张继红,周蓓蓓,苏李君,单鱼洋. 活化灌溉水对土壤理化性质和作物生长影响途径剖析[J]. 地球科学进展, 2019, 34(6): 660-670.
[9] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[10] 张金波,程谊,蔡祖聪. 土壤调配氮素迁移转化的机理[J]. 地球科学进展, 2019, 34(1): 11-19.
[11] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望 *[J]. 地球科学进展, 2018, 33(11): 1130-1141.
[12] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望[J]. 地球科学进展, 0, (): 54-.
[13] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[14] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[15] 张春来, 宋长青, 王振亭, 邹学勇, 王雪松. 土壤风蚀过程研究回顾与展望[J]. 地球科学进展, 2018, 33(1): 27-41.
阅读次数
全文


摘要