地球科学进展 ›› 2021, Vol. 36 ›› Issue (12): 1272 -1290. doi: 10.11867/j.issn.1001-8166.2021.095

综述与评述 上一篇    下一篇

微生物醚类化合物在泥炭古环境重建中的应用:进展与问题
樊嘉琛 1( ), 钱施 1, 裴宏业 1, 吴杰 1, 赵世锦 1, 党心悦 1, 杨欢 2( ), 谢树成 1   
  1. 1.生物地质与环境地质国家重点实验室,中国地质大学(武汉),湖北 武汉 430078
    2.关键带演化 湖北省重点实验室,中国地质大学(武汉)地理与信息工程学院,湖北 武汉 430078
  • 收稿日期:2021-07-06 修回日期:2021-10-03 出版日期:2021-12-10
  • 通讯作者: 杨欢 E-mail:1367083879@qq.com;yhsailing@163.com
  • 基金资助:
    国家自然科学基金项目“末次冰消期以来湖北神农架大九湖泥炭湿地产甲烷生物地球化学过程对气候环境变化的响应”(42073072);“地质脂类记录的中国中东部晚中新世以来水热格局的时空演化”(41830319)

Application of Microbial Ether Lipids in the Reconstruction of Paleoenvironments in Peatlands: Progress and Problems

Jiachen FAN 1( ), Shi QIAN 1, Hongye PEI 1, Jie WU 1, Shijin ZHAO 1, Xinyue DANG 1, Huan YANG 2( ), Shucheng XIE 1   

  1. 1.State Key Laboratory of Biogeology and Environmental Geology,School of Earth Sciences,China University of Geosciences,Wuhan 430078,China
    2.Hubei Key Laboratory of Critical Zone Evolution,School of Geography and Information Engineering,China University of Geosciences,Wuhan 430078,China
  • Received:2021-07-06 Revised:2021-10-03 Online:2021-12-10 Published:2022-01-20
  • Contact: Huan YANG E-mail:1367083879@qq.com;yhsailing@163.com
  • About author:FAN Jiachen (1997-), male, Handan City, Hebei Province, Master student. Research area include geomicrobiology. E-mail: 1367083879@qq.com
  • Supported by:
    the National Natural Science Foundation of China "The response of methanogenic biogeochemical cycles to climate change in Dajiuhu peatland from Shennongjia, Hubei since the last deglaciation"(42073072);"Spatiotemporal evolution of hydroclimate and temperature pattern in central and eastern China recorded by geolipids since late Miocene"(41830319)

泥炭是研究古环境的良好载体,也是陆地重要的有机碳库。泥炭中微生物醚类化合物结构多样、含量丰富、生物来源较为明确,其分布主要受温度、pH和氧化还原状况的影响,可以作为古环境重建的代用指标,也是甲烷循环等生物地球化学过程的示踪计。一些微生物醚类如GMGTs、isoGDGTs异构体和BDGTs的含量可能被开发为泥炭新的古环境和产甲烷作用指标。当前,醚类在泥炭古环境重建和产甲烷作用重建中还存在一些问题,包括pH指标与有效降水量之间的关系不明确,沉积相转变对泥炭古环境重建和产甲烷活动重建可能存在影响,brGDGTs重建温度存在不确定性,需要进一步研究。

Peat is a good archive for paleoenvironment reconstruction and an important terrestrial organic carbon sink. Microbial ether lipids in peatlands are structurally diverse and rich in abundance, and most of these lipids have been thought to be derived from specific biological sources. Their distributions are mainly controlled by temperature, pH and redox conditions, etc. They can be used as proxies for the reconstruction of paleoenvironments, such as temperature, water table and redox conditions and also as tracers of biogeochemical processes, e.g., methane cycling. Microbial ether lipids identified in peatlands can be divided into seven groups: archaeol and OH-archaeol, isoGDGTs and OH-isoGDGTs, brGDGTs, BDGTs and PDGTs, isoGMGTs and brGMGTs, Me-isoGDGTs and Me-isoGMGTs, and GDDs. Here we introduced the structures, biological sources of these ether lipids, and environmental factors influencing their distributions in global peatlands. We showed how microbial ether lipid-based proxies for the reconstruction of the peat paleoenvironment were developed and discussed their advantages and disadvantages. We also discussed the application of microbial ether lipids in indicating methane cycling in peatlands. The abundance of some microbial ether lipids such as GMGTs, isoGDGT isomers and BDGTs can be developed as new proxies for the reconstruction of the paleoenvironment (paleotemperature, paleo-pH, paleohydrology) and methanogenesis in peatlands. At present, some problems may still exist in the application of microbial ether lipids to the reconstruction of peat paleoenvironment and methanogenesis, including the unclear relationships of pH proxies and effective precipitation, the impact of sedimentary facies on the brGDGT-based reconstructions, the uncertainty of brGDGT-based proxies, and the influence of insoluble ether lipids. This highlight further research is needed to resolve these issues. In addition, several aspects need to be paid attention to in future studies, including further determining factors influencing microbial ether lipids in peatlands, understanding the role of methanogenesis in boreal peatlands in regulating the atmospheric CH4 concentration, and introducing some new technologies.

中图分类号: 

图1 全球目前已经发表的研究过微生物醚类的泥炭点位
Fig. 1 Global distribution of peatlands where microbial ether lipids have been studied
图2 泥炭中微生物醚类的结构图
Fig. 2 Structures of microbial ether lipids found in peatlands
图3 湖北二仙岩泥炭中醚类的总离子流色谱图(TIC)和质量色谱图
Fig. 3 Total Ion ChromatogramTICand mass chromatograms showing ether lipids identified in a peat sample from a peat profile collected from the Erxianyan peatland in HubeiChina
表1 泥炭中部分微生物醚类可能的生物来源
Table 1 Possible biological sources of some microbial ether lipids in peatlands
图4 不同泥炭地brGDGTs重建的大气年均温度变化
(a) Etang de la Gruère泥炭地 60 ;(b) Corser泥炭地 62 ,实线由公式(5)计算得到,虚线由公式(3)计算得到;(c) Kyambangunguru 火山口沼泽 63 ;(d) 若尔盖—红原泥炭地 34 ;(e) 水竹洋泥炭地 65 ;(f) 哈泥泥炭地 66 ;(g) 孤山屯泥炭地 39 ;(h) 哈拉沙子泥炭地 67 ;(i) 那仁夏泥炭地,由参考文献[ 68 ]中MBT' 5ME数据计算
Fig. 4 Mean annual air temperature variations inferred from brGDGTs in different peatlands
(a) Etang de la Gruère peatland 60 ; (b) Corser peatland 62 ; The solid line is calculated from formula (5) and the dashed line is calculated from formula (3); (c) Kyambangunguru crater marsh 63 ; (d) Zoigê-Hongyuan peatland 34 ; (e) Shuizhuyang peatland 65 ; (f) Hani peatland 66 ;(g) Gushantun peatland 39 ; (h) Sahara sand peatland 67 ; (i) Narenxia peatland, calculated from the data of reference[ 68
图5 不同泥炭地brGDGTs重建的古pH变化
(a) 水竹洋泥炭地 65 ;(b) 若尔盖—红原泥炭地 34 ;(c) Kyambangunguru火山口沼泽 63 ;(d) 孤山屯泥炭地 39 ;(e) 哈泥泥炭地 39
Fig. 5 Paleo-pH variations inferred from brGDGTs in different peatlands
(a) Shuizhuyang peatland 65 ; (b) Zoigê-Hongyuan peatland 34 ; (c) Kyambangunguru crater marsh 63 ; (d) Gushantun peatland 39 ; (e) Hani peatland 39
图6 部分泥炭钻孔中crenarchaeol的分布
(a) 若尔盖—红原泥炭地 34 ;(b) 孤山屯泥炭地 39 ;(c) 哈泥泥炭地 39
Fig. 6 Crenarchaeol concentration in some peatland cores
(a) Zoigê-Hongyuan peatland 34 ; (b) Gushantun peatland 39 ;(c) Hani peatland 39
图7 英国Butterburn Flow泥炭地剖面基于有壳变形虫计算得到的水位深度(a 78 2条细线代表了估计的预测误差范围)和crenarchaeol浓度(b 5
Fig. 7 Downcore profiles ofawater table depth 78 based on testate amoebathe two grey lines represent estimated errors of predictionandbconcentration of crenarchaeol 5 in Butterburn Flow peatland from UK
图8 部分泥炭钻孔中archaeol的含量
(a)Bissendorfer沼泽;(b)Ballyduff泥炭地;(c)~(d)Butternburn Flow泥炭地;(e)Kontolanrahka bog泥炭地 27 ;阴影部分代表 sn-2-OH-archaeol出现的层位
Fig. 8 Archaeol concentration in some peatland cores
(a)Bissendorfer Moor;(b)Ballyduff peatland;(c)~(d)Butterburn Flow peatland;(e)Kontolanrahka bog peatland 27 ; Grey bar denotes the depth interval where sn-2-hydroxyarchaeol was detected
图9 四川若尔盖—红原泥炭地中GDGT-0archaeolOH-archaeol的含量 28 34
Fig. 9 The concentration of GDGT-0archaeol and OH-archaeol from Zoigê-Hongyuan peatlandSichuan province 28 34
图10 部分泥炭钻孔的岩性和由CBT重建的古pH随深度的变化
(a)瑞士Etang de la Gruère泥炭地 60 ;(b)美国阿拉斯加Corser泥炭地 62
Fig. 10 Lithology and paleo-pH variations inferred from CBT in some peatland cores
(a)Etang de la Gruère peatland, Switzerland 60 ;(b)Corser peatland, Alaska, United States 62
表2 由表层泥炭中 brGDGTs重建的年均温与实际土壤、大气年均温的对比
Table 2 Comparison of mean annual temperature reconstructed from brGDGTs in surface peat with actual soil and atmospheric temperature
1 YU Zicheng, LOISEL J, BROSSEAU D P, et al. Global peatland dynamics since the last glacial maximum[J]. Geophysical Research Letters, 2010, 37(13): 69-73.
2 YU Zicheng, BEILMAN D W, FROLKING S, et al. Peatlands and their role in the global carbon cycle[J]. EOS, Transactions American Geophysical Union, 2011, 92(12): 97-98.
3 HUGELIUS G, LOISEL J, CHADBURN S, et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw[J]. Proceedings of the National Academy of Sciences, 2020, 117(34): 20 438-20 446.
4 KӦCHY M, HIEDERER R, FREIBAUER A. Global distribution of soil organic carbon-part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world[J]. Soil, 2015, 1(1): 351-365.
5 NAAFS B D A, INGLIS G N, BLEWETT J, et al. The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: a review[J]. Global and Planetary Change, 2019, 179: 57-79.
6 WEIJERS J W H, SCHOUTEN S, HOPMANS E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J]. Environmental Microbiology, 2006, 8(4): 648-657.
7 DONGEN B E VAN, TALBOT H M, SCHOUTEN S, et al. Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area, Tanzania[J]. Organic Geochemistry, 2006, 37(5): 539-557.
8 OGER P M, CARIO A. Adaptation of the membrane in Archaea[J]. Biophysical Chemistry, 2013, 183(24): 42-56.
9 NISHIHARA M, MORII H, KOGA Y. Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum[J]. The Journal of Biochemistry, 1987, 101(4): 1 007-1 015.
10 ELLING F J, KÖNNEKE M, NICOL G W, et al. Chemotaxonomic characterisation of the Thaumarchaeal lipidome[J]. Environmental Microbiology, 2017, 19(7): 2 681-2 700.
11 LIU Yuchen, WHITMAN W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea[J]. Annals of the New York Academy of Sciences, 2008, 1 125(1): 171-189.
12 BECKER K W, ELLING F J, YOSHINAGA M Y, et al. Unusual butane- and pentanetriol-based tetraether lipids in Methanomassiliicoccus luminyensis, a representative of the seventh order of methanogens[J]. Applied and Environmental Microbiology, 2016(15): 4 505-4 516.
13 VILLANUEVA L, SINNINGHE DAMSTÉ J S, Schouten S. A re-evaluation of the archaeal membrane lipid biosynthetic pathway[J]. Nature Reviews Microbiology, 2014, 12(6): 438-448.
14 KOGA Y, MORII H, AKAGAWA-MATSUSHITA M, et al. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts[J]. Bioscience, Biotechnology, and Biochemistry, 1998, 62(2): 230-236.
15 BESSELING M A, HOPMANS E C, CHRISTINE BOSCHMAN R, et al. Benthic Archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone[J]. Biogeosciences, 2018, 15(13): 4 047-4 064.
16 GÖRRES C M, CONRAD R, PETERSEN S O. Effect of soil properties and hydrology on archaeal community composition in three temperate grasslands on peat[J]. Fems Microbiology Ecology, 2013, 85(2): 227-240.
17 SCHOUTEN S, HOPMANS E C, SINNINGHE DAMSTÉ J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review[J]. Organic Geochemistry, 2013, 54: 19-61.
18 LIU Xiaolei, LIPP J S, SIMPSON J H, et al. Mono and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: identification of both core and intact polar lipid forms[J]. Geochimica et Cosmochimica Acta, 2012, 89: 102-115.
19 WEIJERS J W H, PANOTO E, SCHOUTEN S, et al. Constraints on the biological source(s) of the orphan branched tetraether membrane lipids[J]. Geomicrobiology Journal, 2009, 26(6): 402-414.
20 YANG Huan, XIAO Wenjie, SŁOWAKIEWICZ M, et al. Depth-dependent variation of archaeal ether lipids along soil and peat profiles from southern China: implications for the use of isoprenoidal GDGTs as environmental tracers[J]. Organic Geochemistry, 2019, 128: 42-56.
21 MEADOR T B, GAGEN E J, LOSCAR M E, et al. Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability[J]. Frontiers in Microbiology, 2014, 5: 10.
22 KNAPPY C, BARILLÀ D, CHONG J, et al. Mono-, di-and trimethylated homologues of isoprenoid tetraether lipid cores in Archaea and environmental samples: mass spectrometric identification and significance[J]. Journal of Mass Spectrometry, 2015, 50(12): 1 420-1 432.
23 BAUERSACHS T, WEIDENBACH K, SCHMITZ R A, et al. Distribution of glycerol ether lipids in halophilic, methanogenic and hyperthermophilic Archaea[J]. Organic Geochemistry, 2015, 83: 101-108.
24 LIU Xiaolei, SUMMONS R E, HINRICHS K U. Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns[J]. Rapid Communications in Mass Spectrometry, 2012, 26(19): 2 295-2 302.
25 SUNAMURA M, KOGA Y, OHWADA K. Biomass measurement of methanogens in the sediments of Tokyo Bay using archaeol lipids[J]. Marine Biotechnology, 1999, 1(6): 562-568.
26 URBANOVÁ Z, BÁRTA J. Microbial community composition and in silico predicted metabolic potential reflect biogeochemical gradients between distinct peatland types[J]. FEMS Microbiology Ecology, 2014, 90(3): 633-646.
27 PANCOST R D, MCCLYMONT E L, BINGHAM E M, et al. Archaeol as a methanogen biomarker in ombrotrophic bogs[J]. Organic Geochemistry, 2011, 42(10): 1 279-1 287.
28 ZHENG Yanhong, SINGARAYER J S, CHENG Peng, et al. Holocene variations in peatland methane cycling associated with the asian summer monsoon system[J]. Nature Communications, 2014, 5(1): 1-7.
29 TORRES L C, PANCOST R D. Insoluble prokaryotic membrane lipids in a sphagnum peat: implications for organic matter preservation[J]. Organic Geochemistry, 2016, 93: 77-91.
30 LUPASCU M, WADHAM J L, HORNIBROOK E R C, et al. Methanogen biomarkers in the discontinuous permafrost zone of Stordalen, Sweden[J]. Permafrost and Periglacial Processes, 2014, 25(4): 221-232.
31 WEIJERS J W H, SCHOUTEN S, LINDEN M VAN DER, et al. Water table related variations in the abundance of intact archaeal membrane lipids in a swedish peat bog[J]. FEMS Microbiology Letters, 2004, 239(1): 51-56.
32 BLEWETT J, NAAFS B D A, GALLEGO-SALA A V, et al. Effects of temperature and pH on archaeal membrane lipid distributions in freshwater wetlands[J]. Organic Geochemistry, 2020, 148: 104080.
33 GIRKIN N T, LOPES DOS SANTOS R A, VANE C H, et al. Peat properties, dominant vegetation type and microbial community structure in a tropical peatland[J]. Wetlands, 2020, 40(5): 1 367-1 377.
34 ZHENG Yanhong, LI Qiyuan, WANG Zhangzhang, et al. Peatland GDGT records of Holocene climatic and biogeochemical responses to the asian monsoon[J]. Organic Geochemistry, 2015, 87: 86-95.
35 XIANG Xing, WANG Ruicheng, WANG Hongmei, et al. Distribution of Bathyarchaeota communities across different terrestrial settings and their potential ecological functions[J]. Scientific Reports, 2017, 7(1): 45028.
36 PANCOST R D, GEEL B VAN, BAAS M, et al. δ 13C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits[J]. Geology, 2000, 28(7): 663-666.
37 NAAFS B D A, ROHRSSEN M, INGLIS G N, et al. High temperatures in the terrestrial mid-latitudes during the early Palaeogene[J]. Nature Geoscience, 2018, 11(10): 766-771.
38 PITCHER A, RYCHLIK N, HOPMANS E C, et al. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon[J]. ISME Journal, 2010, 4(4): 542-552.
39 ZHENG Yanhong, PANCOST R D, NAAFS B D A, et al. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene[J]. Earth and Planetary Science Letters, 2018, 493: 36-46.
40 SINNINGHE DAMSTÉ J S, RIJPSTRA W I C, HOPMANS E C, et al. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3[J]. Applied and Environmental Microbiology, 2011, 77(12): 4 147-4 154.
41 SINNINGHE DAMSTÉ J S, RIJPSTRA W I C, HOPMANS E C, et al. Ether-and ester-bound iso-diabolic acid and other lipids in members of Acidobacteria subdivision 4[J]. Applied and Environmental Microbiology, 2014, 80(17): 5 207-5 218.
42 PETERSE F, HOPMANS E C, SCHOUTEN S, et al. Identification and distribution of intact polar branched tetraether lipids in peat and soil[J]. Organic Geochemistry, 2011, 42(9): 1 007-1 015.
43 HUGUET A, MEADOR T B, LAGGOUN-DÉFARGE F, et al. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations[J]. Geochimica et Cosmochimica Acta, 2017, 203: 103-116.
44 PANCOST R D, SINNINGHE DAMSTÉ J S. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings[J]. Chemical Geology, 2003, 195(1/4): 29-58.
45 WEIJERS J W H, WIESENBERG G L B, BOL R, et al. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism[J]. Biogeosciences, 2010, 7(3): 2 959-2 973.
46 COLCORD D E, PEARSON A, BRASSELL S C. Carbon isotopic composition of intact branched GDGT core lipids in Greenland lake sediments and soils[J]. Organic Geochemistry, 2017, 110: 25-32.
47 ZHU Chun, MEADOR T B, DUMMANN W, et al. Identification of unusual butanetriol dialkyl glycerol tetraether and pentanetriol dialkyl glycerol tetraether lipids in marine sediments[J]. Rapid Communications in Mass Spectrometry, 2014, 28(4): 332-338.
48 COFFINET S, MEADOR T B, MÜHLENA L, et al. Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs)[J]. Biogeosciences, 2020, 17(2): 317-330.
49 MEADOR T B, BOWLES M, LAZAR C S, et al. The archaeal lipidome in estuarine sediment dominated by members of the miscellaneous crenarchaeotal group[J]. Environmental Microbiology, 2015, 17(7): 2 441-2 458.
50 NAAFS B D A, MCCORMICK D, INGLIS G N, et al. Archaeal and bacterial H-GDGTs are abundant in peat and their relative abundance is positively correlated with temperature[J]. Geochimica et Cosmochimica Acta, 2018, 227: 156-170.
51 GOLYSHINA O V, LÜNSDORF H, KUBLANOV I V, et al. The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the Order Thermoplasmatales[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(Pt. 1): 332-340.
52 COFFINET S, HUGUET A, WILLIAMSON D, et al. Occurrence and distribution of glycerol dialkanol diethers and glycerol dialkyl glycerol tetraethers in a peat core from SW Tanzania[J]. Organic Geochemistry, 2015, 83: 170-177.
53 MEADOR T B, ZHU Chun, ELLING F J, et al. Identification of isoprenoid glycosidic glycerol dibiphytanol diethers and indications for their biosynthetic origin[J]. Organic Geochemistry, 2014, 69: 70-75.
54 LIU Xiaolei, BIRGEL D, ELLING F J, et al. From ether to acid: a plausible degradation pathway of glycerol dialkyl glycerol tetraethers[J]. Geochimica et Cosmochimica Acta, 2016, 183: 138-152.
55 WEIJERS J W H, SCHOUTEN S, DONKER J C VAN DEN, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 703-713.
56 PETERSE F, MEER J VAN DER, SCHOUTEN S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils[J]. Geochimica et Cosmochimica Acta, 2012, 96: 215-229.
57 DE JONGE C, HOPMANS E C, ZELL C I, et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2014, 141: 97-112.
58 NAAFS B D A, INGLIS G N, ZHENG Yanhong, et al. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids[J]. Geochimica et Cosmochimica Acta, 2017, 208: 285-301.
59 BALLANTYNE A P, GREENWOOD D R, SINNINGHE DAMSTÉ J S, et al. Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies[J]. Geology, 2010, 38(7): 603-606.
60 WEIJERS J W H, STEINMANN P, HOPMANS E C, et al. Bacterial tetraether membrane lipids in peat and coal: testing the MBT-CBT temperature proxy for climate reconstruction[J]. Organic Geochemistry, 2011, 42(5): 477-486.
61 WEIJERS J W H, BERNHARDT B, PETERSE F, et al. Absence of seasonal patterns in MBT-CBT indices in mid-latitude soils[J]. Geochimica et Cosmochimica Acta, 2011, 75(11): 3 179-3 190.
62 NICHOLS J E, PETEET D M, MOY C M, et al. Impacts of climate and vegetation change on carbon accumulation in a south-central Alaskan peatland assessed with novel organic geochemical techniques[J]. Holocene, 2014, 24(9): 1 146-1 155.
63 COFFINET S, HUGUET A, BERGONZINI L, et al. Impact of climate change on the ecology of the Kyambangunguru crater marsh in southwestern Tanzania during the late Holocene[J]. Quaternary Science Reviews, 2018, 196: 100-117.
64 ZHOU Haoda, HU Jianfang, MING Lili, et al. Branched glycerol dialkyl glycerol tetraethers and paleoenvironmental reconstruction in Zoigê peat sediments during the last 150 years[J]. Chinese Science Bulletin,2011, 56(21): 1 741-1 748.
周浩达, 胡建芳, 明荔莉, 等. 150年来若尔盖泥炭沉积支链四醚膜类脂及古环境重建[J]. 科学通报, 2011, 56(21): 1 741-1 748.
65 WANG Mengyuan, ZHENG Zhuo, MAN Meiling, et al. Branched GDGT-based paleotemperature reconstruction of the last 30,000 years in humid monsoon region of Southeast China[J]. Chemical Geology, 2017, 463: 94-102.
66 ZHENG Yanhong, PANCOST R D, LIU Xiaolei, et al. Atmospheric connections with the North Atlantic enhanced the deglacial warming in Northeast China[J]. Geology, 2017, 45(11): 1 031-1 034.
67 WU Dandan, CAO Jiantao, JIA Guodong, et al. Peat brGDGTs-based Holocene temperature history of the Altai Mountains in arid Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109464.
68 RAO Zhiguo, GUO Haichun, CAO Jiantao, et al. Consistent long-term Holocene warming trend at different elevations in the Altai Mountains in arid central Asia[J]. Journal of Quaternary Science, 2020, 35(8): 1 036-1 045.
69 TANG Xiaotong, NAAFS B D A, PANCOST R D, et al. Exploring the influences of temperature on "H-Shaped" glycerol dialkyl glycerol tetraethers in a stratigraphic context: evidence from two peat cores across the late quaternary[J]. Frontiers in Earth Science, 2021, 8: 477.
70 KIM J H, SCHOUTEN S, HOPMANS E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1 154-1 173.
71 SINNINGHE DAMSTÉ J S, OSSEBAAR J, SCHOUTEN S, et al. Distribution of tetraether lipids in the 25-ka sedimentary record of lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake[J]. Quaternary Science Reviews, 2012, 50: 43-54.
72 YANG Huan, PANCOST R D, JIA Chengling, et al. The response of archaeal tetraether membrane lipids in surface soils to temperature: a potential paleothermometer in paleosols[J]. Geomicrobiology Journal, 2016, 33(2): 98-109.
73 BOYD E, HAMILTON T, WANG Jinxiang, et al. The role of tetraether lipid composition in the adaptation of thermophilic Archaea to acidity[J]. Frontiers in Microbiology, 2013, 4: 62.
74 QIN Wei, CARLSON L, ARMBRUST E V, et al. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(35): 10 979-10 984.
75 ELLING F J, KÖNNEKE M, MUßMANN M, et al. Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic Thaumarchaeal isolates[J]. Geochimica et Cosmochimica Acta, 2015, 171: 238-255.
76 NAAFS B D A, GALLEGO-SALA A V, INGLIS G N, et al. Refining the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration[J]. Organic Geochemistry, 2017, 106: 48-56.
77 DANG Xinyue, YANG Huan, NAAFS B D A, et al. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils[J]. Geochimica et Cosmochimica Acta, 2016, 189: 24-36.
78 MAUQUOY D, YELOFF D, GEEL B VAN, et al. Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid-late Holocene[J]. Journal of Quaternary Science, 2008, 23(8): 745-763.
79 MCLAUGHLIN J W, WEBSTER K L. Alkalinity and acidity cycling and fluxes in an intermediate fen peatland in northern Ontario[J]. Biogeochemistry, 2010, 99(1): 143-155.
80 HALL S J, SILVER W L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils[J]. Global Change Biology, 2013, 19(9): 2 804-2 813.
81 ZHANG Yiming, HUANG Xianyu, WANG Ruicheng, et al. The distribution of long-chain n-alkan-2-ones in peat can be used to infer past changes in pH[J]. Chemical Geology, 2020, 544: 119622.
82 HUGUET A, FOSSE C, LAGGOUN-DÉFARGE F, et al. Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog[J]. Organic Geochemistry, 2010, 41(6): 559-572.
83 ZHENG Yanhong, FANG Zhengkun, FAN Tongyu, et al. Operation of the boreal peatland methane cycle across the past 16 k.y.[J]. Geology, 2019, 48(1): 82-86.
84 LIU Xiaolei, LEIDER A, GILLESPIE A, et al. Identification of polar lipid precursors of the ubiquitous branched GDGT orphan lipids in a peat bog in northern germany[J]. Organic Geochemistry, 2010, 41(7): 653-660.
85 HUGUET A, FOSSE C, LAGGOUN-DÉFARGE F, et al. Effects of a short-term experimental microclimate warming on the abundance and distribution of branched GDGTs in a French peatland[J]. Geochimica et Cosmochimica Acta, 2013, 105: 294-315.
[1] 王寿刚,王汝建,陈建芳,陈志华,程振波,汪卫国,黄元辉. 白令海与西北冰洋表层沉积物中四醚膜类脂物研究及其生态和环境指示意义[J]. 地球科学进展, 2013, 28(2): 282-295.
[2] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[3] 张俊辉,夏敦胜,张英,刘宇航. 中国泥炭记录末次冰消期以来古气候研究进展[J]. 地球科学进展, 2012, 27(1): 42-51.
[4] BambangHeroSaharjo,BasukiWasis. 我们需要保护自然资源吗?[J]. 地球科学进展, 2006, 21(2): 178-182.
[5] 王国平;刘景双;汤洁. 沼泽沉积与环境演变研究进展[J]. 地球科学进展, 2005, 20(3): 304-311.
[6] 赵红艳,王升忠,白燕,冷雪天. 近10年来我国泥炭地学的研究进展[J]. 地球科学进展, 2002, 17(6): 848-854.
[7] 洪业汤. 太阳变化驱动气候变化研究进展[J]. 地球科学进展, 2000, 15(4): 400-405.
[8] 彭格林,张则有,伍大茂. 泥炭与煤形成环境对比研究现状[J]. 地球科学进展, 1999, 14(3): 247-255.
阅读次数
全文


摘要