1 |
YU Zicheng, LOISEL J, BROSSEAU D P, et al. Global peatland dynamics since the last glacial maximum[J]. Geophysical Research Letters, 2010, 37(13): 69-73.
|
2 |
YU Zicheng, BEILMAN D W, FROLKING S, et al. Peatlands and their role in the global carbon cycle[J]. EOS, Transactions American Geophysical Union, 2011, 92(12): 97-98.
|
3 |
HUGELIUS G, LOISEL J, CHADBURN S, et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw[J]. Proceedings of the National Academy of Sciences, 2020, 117(34): 20 438-20 446.
|
4 |
KӦCHY M, HIEDERER R, FREIBAUER A. Global distribution of soil organic carbon-part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world[J]. Soil, 2015, 1(1): 351-365.
|
5 |
NAAFS B D A, INGLIS G N, BLEWETT J, et al. The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: a review[J]. Global and Planetary Change, 2019, 179: 57-79.
|
6 |
WEIJERS J W H, SCHOUTEN S, HOPMANS E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J]. Environmental Microbiology, 2006, 8(4): 648-657.
|
7 |
DONGEN B E VAN, TALBOT H M, SCHOUTEN S, et al. Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area, Tanzania[J]. Organic Geochemistry, 2006, 37(5): 539-557.
|
8 |
OGER P M, CARIO A. Adaptation of the membrane in Archaea[J]. Biophysical Chemistry, 2013, 183(24): 42-56.
|
9 |
NISHIHARA M, MORII H, KOGA Y. Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum[J]. The Journal of Biochemistry, 1987, 101(4): 1 007-1 015.
|
10 |
ELLING F J, KÖNNEKE M, NICOL G W, et al. Chemotaxonomic characterisation of the Thaumarchaeal lipidome[J]. Environmental Microbiology, 2017, 19(7): 2 681-2 700.
|
11 |
LIU Yuchen, WHITMAN W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea[J]. Annals of the New York Academy of Sciences, 2008, 1 125(1): 171-189.
|
12 |
BECKER K W, ELLING F J, YOSHINAGA M Y, et al. Unusual butane- and pentanetriol-based tetraether lipids in Methanomassiliicoccus luminyensis, a representative of the seventh order of methanogens[J]. Applied and Environmental Microbiology, 2016(15): 4 505-4 516.
|
13 |
VILLANUEVA L, SINNINGHE DAMSTÉ J S, Schouten S. A re-evaluation of the archaeal membrane lipid biosynthetic pathway[J]. Nature Reviews Microbiology, 2014, 12(6): 438-448.
|
14 |
KOGA Y, MORII H, AKAGAWA-MATSUSHITA M, et al. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts[J]. Bioscience, Biotechnology, and Biochemistry, 1998, 62(2): 230-236.
|
15 |
BESSELING M A, HOPMANS E C, CHRISTINE BOSCHMAN R, et al. Benthic Archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone[J]. Biogeosciences, 2018, 15(13): 4 047-4 064.
|
16 |
GÖRRES C M, CONRAD R, PETERSEN S O. Effect of soil properties and hydrology on archaeal community composition in three temperate grasslands on peat[J]. Fems Microbiology Ecology, 2013, 85(2): 227-240.
|
17 |
SCHOUTEN S, HOPMANS E C, SINNINGHE DAMSTÉ J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review[J]. Organic Geochemistry, 2013, 54: 19-61.
|
18 |
LIU Xiaolei, LIPP J S, SIMPSON J H, et al. Mono and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: identification of both core and intact polar lipid forms[J]. Geochimica et Cosmochimica Acta, 2012, 89: 102-115.
|
19 |
WEIJERS J W H, PANOTO E, SCHOUTEN S, et al. Constraints on the biological source(s) of the orphan branched tetraether membrane lipids[J]. Geomicrobiology Journal, 2009, 26(6): 402-414.
|
20 |
YANG Huan, XIAO Wenjie, SŁOWAKIEWICZ M, et al. Depth-dependent variation of archaeal ether lipids along soil and peat profiles from southern China: implications for the use of isoprenoidal GDGTs as environmental tracers[J]. Organic Geochemistry, 2019, 128: 42-56.
|
21 |
MEADOR T B, GAGEN E J, LOSCAR M E, et al. Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability[J]. Frontiers in Microbiology, 2014, 5: 10.
|
22 |
KNAPPY C, BARILLÀ D, CHONG J, et al. Mono-, di-and trimethylated homologues of isoprenoid tetraether lipid cores in Archaea and environmental samples: mass spectrometric identification and significance[J]. Journal of Mass Spectrometry, 2015, 50(12): 1 420-1 432.
|
23 |
BAUERSACHS T, WEIDENBACH K, SCHMITZ R A, et al. Distribution of glycerol ether lipids in halophilic, methanogenic and hyperthermophilic Archaea[J]. Organic Geochemistry, 2015, 83: 101-108.
|
24 |
LIU Xiaolei, SUMMONS R E, HINRICHS K U. Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns[J]. Rapid Communications in Mass Spectrometry, 2012, 26(19): 2 295-2 302.
|
25 |
SUNAMURA M, KOGA Y, OHWADA K. Biomass measurement of methanogens in the sediments of Tokyo Bay using archaeol lipids[J]. Marine Biotechnology, 1999, 1(6): 562-568.
|
26 |
URBANOVÁ Z, BÁRTA J. Microbial community composition and in silico predicted metabolic potential reflect biogeochemical gradients between distinct peatland types[J]. FEMS Microbiology Ecology, 2014, 90(3): 633-646.
|
27 |
PANCOST R D, MCCLYMONT E L, BINGHAM E M, et al. Archaeol as a methanogen biomarker in ombrotrophic bogs[J]. Organic Geochemistry, 2011, 42(10): 1 279-1 287.
|
28 |
ZHENG Yanhong, SINGARAYER J S, CHENG Peng, et al. Holocene variations in peatland methane cycling associated with the asian summer monsoon system[J]. Nature Communications, 2014, 5(1): 1-7.
|
29 |
TORRES L C, PANCOST R D. Insoluble prokaryotic membrane lipids in a sphagnum peat: implications for organic matter preservation[J]. Organic Geochemistry, 2016, 93: 77-91.
|
30 |
LUPASCU M, WADHAM J L, HORNIBROOK E R C, et al. Methanogen biomarkers in the discontinuous permafrost zone of Stordalen, Sweden[J]. Permafrost and Periglacial Processes, 2014, 25(4): 221-232.
|
31 |
WEIJERS J W H, SCHOUTEN S, LINDEN M VAN DER, et al. Water table related variations in the abundance of intact archaeal membrane lipids in a swedish peat bog[J]. FEMS Microbiology Letters, 2004, 239(1): 51-56.
|
32 |
BLEWETT J, NAAFS B D A, GALLEGO-SALA A V, et al. Effects of temperature and pH on archaeal membrane lipid distributions in freshwater wetlands[J]. Organic Geochemistry, 2020, 148: 104080.
|
33 |
GIRKIN N T, LOPES DOS SANTOS R A, VANE C H, et al. Peat properties, dominant vegetation type and microbial community structure in a tropical peatland[J]. Wetlands, 2020, 40(5): 1 367-1 377.
|
34 |
ZHENG Yanhong, LI Qiyuan, WANG Zhangzhang, et al. Peatland GDGT records of Holocene climatic and biogeochemical responses to the asian monsoon[J]. Organic Geochemistry, 2015, 87: 86-95.
|
35 |
XIANG Xing, WANG Ruicheng, WANG Hongmei, et al. Distribution of Bathyarchaeota communities across different terrestrial settings and their potential ecological functions[J]. Scientific Reports, 2017, 7(1): 45028.
|
36 |
PANCOST R D, GEEL B VAN, BAAS M, et al. δ 13C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits[J]. Geology, 2000, 28(7): 663-666.
|
37 |
NAAFS B D A, ROHRSSEN M, INGLIS G N, et al. High temperatures in the terrestrial mid-latitudes during the early Palaeogene[J]. Nature Geoscience, 2018, 11(10): 766-771.
|
38 |
PITCHER A, RYCHLIK N, HOPMANS E C, et al. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon[J]. ISME Journal, 2010, 4(4): 542-552.
|
39 |
ZHENG Yanhong, PANCOST R D, NAAFS B D A, et al. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene[J]. Earth and Planetary Science Letters, 2018, 493: 36-46.
|
40 |
SINNINGHE DAMSTÉ J S, RIJPSTRA W I C, HOPMANS E C, et al. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3[J]. Applied and Environmental Microbiology, 2011, 77(12): 4 147-4 154.
|
41 |
SINNINGHE DAMSTÉ J S, RIJPSTRA W I C, HOPMANS E C, et al. Ether-and ester-bound iso-diabolic acid and other lipids in members of Acidobacteria subdivision 4[J]. Applied and Environmental Microbiology, 2014, 80(17): 5 207-5 218.
|
42 |
PETERSE F, HOPMANS E C, SCHOUTEN S, et al. Identification and distribution of intact polar branched tetraether lipids in peat and soil[J]. Organic Geochemistry, 2011, 42(9): 1 007-1 015.
|
43 |
HUGUET A, MEADOR T B, LAGGOUN-DÉFARGE F, et al. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations[J]. Geochimica et Cosmochimica Acta, 2017, 203: 103-116.
|
44 |
PANCOST R D, SINNINGHE DAMSTÉ J S. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings[J]. Chemical Geology, 2003, 195(1/4): 29-58.
|
45 |
WEIJERS J W H, WIESENBERG G L B, BOL R, et al. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism[J]. Biogeosciences, 2010, 7(3): 2 959-2 973.
|
46 |
COLCORD D E, PEARSON A, BRASSELL S C. Carbon isotopic composition of intact branched GDGT core lipids in Greenland lake sediments and soils[J]. Organic Geochemistry, 2017, 110: 25-32.
|
47 |
ZHU Chun, MEADOR T B, DUMMANN W, et al. Identification of unusual butanetriol dialkyl glycerol tetraether and pentanetriol dialkyl glycerol tetraether lipids in marine sediments[J]. Rapid Communications in Mass Spectrometry, 2014, 28(4): 332-338.
|
48 |
COFFINET S, MEADOR T B, MÜHLENA L, et al. Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs)[J]. Biogeosciences, 2020, 17(2): 317-330.
|
49 |
MEADOR T B, BOWLES M, LAZAR C S, et al. The archaeal lipidome in estuarine sediment dominated by members of the miscellaneous crenarchaeotal group[J]. Environmental Microbiology, 2015, 17(7): 2 441-2 458.
|
50 |
NAAFS B D A, MCCORMICK D, INGLIS G N, et al. Archaeal and bacterial H-GDGTs are abundant in peat and their relative abundance is positively correlated with temperature[J]. Geochimica et Cosmochimica Acta, 2018, 227: 156-170.
|
51 |
GOLYSHINA O V, LÜNSDORF H, KUBLANOV I V, et al. The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the Order Thermoplasmatales[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(Pt. 1): 332-340.
|
52 |
COFFINET S, HUGUET A, WILLIAMSON D, et al. Occurrence and distribution of glycerol dialkanol diethers and glycerol dialkyl glycerol tetraethers in a peat core from SW Tanzania[J]. Organic Geochemistry, 2015, 83: 170-177.
|
53 |
MEADOR T B, ZHU Chun, ELLING F J, et al. Identification of isoprenoid glycosidic glycerol dibiphytanol diethers and indications for their biosynthetic origin[J]. Organic Geochemistry, 2014, 69: 70-75.
|
54 |
LIU Xiaolei, BIRGEL D, ELLING F J, et al. From ether to acid: a plausible degradation pathway of glycerol dialkyl glycerol tetraethers[J]. Geochimica et Cosmochimica Acta, 2016, 183: 138-152.
|
55 |
WEIJERS J W H, SCHOUTEN S, DONKER J C VAN DEN, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 703-713.
|
56 |
PETERSE F, MEER J VAN DER, SCHOUTEN S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils[J]. Geochimica et Cosmochimica Acta, 2012, 96: 215-229.
|
57 |
DE JONGE C, HOPMANS E C, ZELL C I, et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2014, 141: 97-112.
|
58 |
NAAFS B D A, INGLIS G N, ZHENG Yanhong, et al. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids[J]. Geochimica et Cosmochimica Acta, 2017, 208: 285-301.
|
59 |
BALLANTYNE A P, GREENWOOD D R, SINNINGHE DAMSTÉ J S, et al. Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies[J]. Geology, 2010, 38(7): 603-606.
|
60 |
WEIJERS J W H, STEINMANN P, HOPMANS E C, et al. Bacterial tetraether membrane lipids in peat and coal: testing the MBT-CBT temperature proxy for climate reconstruction[J]. Organic Geochemistry, 2011, 42(5): 477-486.
|
61 |
WEIJERS J W H, BERNHARDT B, PETERSE F, et al. Absence of seasonal patterns in MBT-CBT indices in mid-latitude soils[J]. Geochimica et Cosmochimica Acta, 2011, 75(11): 3 179-3 190.
|
62 |
NICHOLS J E, PETEET D M, MOY C M, et al. Impacts of climate and vegetation change on carbon accumulation in a south-central Alaskan peatland assessed with novel organic geochemical techniques[J]. Holocene, 2014, 24(9): 1 146-1 155.
|
63 |
COFFINET S, HUGUET A, BERGONZINI L, et al. Impact of climate change on the ecology of the Kyambangunguru crater marsh in southwestern Tanzania during the late Holocene[J]. Quaternary Science Reviews, 2018, 196: 100-117.
|
64 |
ZHOU Haoda, HU Jianfang, MING Lili, et al. Branched glycerol dialkyl glycerol tetraethers and paleoenvironmental reconstruction in Zoigê peat sediments during the last 150 years[J]. Chinese Science Bulletin,2011, 56(21): 1 741-1 748.
|
|
周浩达, 胡建芳, 明荔莉, 等. 150年来若尔盖泥炭沉积支链四醚膜类脂及古环境重建[J]. 科学通报, 2011, 56(21): 1 741-1 748.
|
65 |
WANG Mengyuan, ZHENG Zhuo, MAN Meiling, et al. Branched GDGT-based paleotemperature reconstruction of the last 30,000 years in humid monsoon region of Southeast China[J]. Chemical Geology, 2017, 463: 94-102.
|
66 |
ZHENG Yanhong, PANCOST R D, LIU Xiaolei, et al. Atmospheric connections with the North Atlantic enhanced the deglacial warming in Northeast China[J]. Geology, 2017, 45(11): 1 031-1 034.
|
67 |
WU Dandan, CAO Jiantao, JIA Guodong, et al. Peat brGDGTs-based Holocene temperature history of the Altai Mountains in arid Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109464.
|
68 |
RAO Zhiguo, GUO Haichun, CAO Jiantao, et al. Consistent long-term Holocene warming trend at different elevations in the Altai Mountains in arid central Asia[J]. Journal of Quaternary Science, 2020, 35(8): 1 036-1 045.
|
69 |
TANG Xiaotong, NAAFS B D A, PANCOST R D, et al. Exploring the influences of temperature on "H-Shaped" glycerol dialkyl glycerol tetraethers in a stratigraphic context: evidence from two peat cores across the late quaternary[J]. Frontiers in Earth Science, 2021, 8: 477.
|
70 |
KIM J H, SCHOUTEN S, HOPMANS E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1 154-1 173.
|
71 |
SINNINGHE DAMSTÉ J S, OSSEBAAR J, SCHOUTEN S, et al. Distribution of tetraether lipids in the 25-ka sedimentary record of lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake[J]. Quaternary Science Reviews, 2012, 50: 43-54.
|
72 |
YANG Huan, PANCOST R D, JIA Chengling, et al. The response of archaeal tetraether membrane lipids in surface soils to temperature: a potential paleothermometer in paleosols[J]. Geomicrobiology Journal, 2016, 33(2): 98-109.
|
73 |
BOYD E, HAMILTON T, WANG Jinxiang, et al. The role of tetraether lipid composition in the adaptation of thermophilic Archaea to acidity[J]. Frontiers in Microbiology, 2013, 4: 62.
|
74 |
QIN Wei, CARLSON L, ARMBRUST E V, et al. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(35): 10 979-10 984.
|
75 |
ELLING F J, KÖNNEKE M, MUßMANN M, et al. Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic Thaumarchaeal isolates[J]. Geochimica et Cosmochimica Acta, 2015, 171: 238-255.
|
76 |
NAAFS B D A, GALLEGO-SALA A V, INGLIS G N, et al. Refining the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration[J]. Organic Geochemistry, 2017, 106: 48-56.
|
77 |
DANG Xinyue, YANG Huan, NAAFS B D A, et al. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils[J]. Geochimica et Cosmochimica Acta, 2016, 189: 24-36.
|
78 |
MAUQUOY D, YELOFF D, GEEL B VAN, et al. Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid-late Holocene[J]. Journal of Quaternary Science, 2008, 23(8): 745-763.
|
79 |
MCLAUGHLIN J W, WEBSTER K L. Alkalinity and acidity cycling and fluxes in an intermediate fen peatland in northern Ontario[J]. Biogeochemistry, 2010, 99(1): 143-155.
|
80 |
HALL S J, SILVER W L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils[J]. Global Change Biology, 2013, 19(9): 2 804-2 813.
|
81 |
ZHANG Yiming, HUANG Xianyu, WANG Ruicheng, et al. The distribution of long-chain n-alkan-2-ones in peat can be used to infer past changes in pH[J]. Chemical Geology, 2020, 544: 119622.
|
82 |
HUGUET A, FOSSE C, LAGGOUN-DÉFARGE F, et al. Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog[J]. Organic Geochemistry, 2010, 41(6): 559-572.
|
83 |
ZHENG Yanhong, FANG Zhengkun, FAN Tongyu, et al. Operation of the boreal peatland methane cycle across the past 16 k.y.[J]. Geology, 2019, 48(1): 82-86.
|
84 |
LIU Xiaolei, LEIDER A, GILLESPIE A, et al. Identification of polar lipid precursors of the ubiquitous branched GDGT orphan lipids in a peat bog in northern germany[J]. Organic Geochemistry, 2010, 41(7): 653-660.
|
85 |
HUGUET A, FOSSE C, LAGGOUN-DÉFARGE F, et al. Effects of a short-term experimental microclimate warming on the abundance and distribution of branched GDGTs in a French peatland[J]. Geochimica et Cosmochimica Acta, 2013, 105: 294-315.
|