地球科学进展 ›› 2013, Vol. 28 ›› Issue (2): 282 -295. doi: 10.11867/j.issn.1001-8166.2013.02.0282

所属专题: IODP研究

IODP研究 上一篇    

白令海与西北冰洋表层沉积物中四醚膜类脂物研究及其生态和环境指示意义
王寿刚 1,王汝建 1*,陈建芳 2,陈志华 3,程振波 3,汪卫国 4,黄元辉 3   
  1. 1.同济大学海洋地质国家重点实验室,上海 200092; 2.国家海洋局第二海洋研究所,浙江 杭州 310012;3.国家海洋局第一海洋研究所,山东 青岛 266061;4.国家海洋局第三海洋研究所,福建 厦门 361005)
  • 收稿日期:2013-01-16 修回日期:2013-01-25 出版日期:2013-02-10
  • 通讯作者: 王汝建(1959-),男,云南昆明人,教授,主要从事海洋地质学、古海洋学与古气候学研究.E-mail:rjwang@tongji.edu.cn E-mail:rjwang@tongji.edu.cn
  • 基金资助:

    国家自然科学基金重点项目“重建西北冰洋晚第四纪的古海洋与古气候演变历史”(编号:41030859);国家自然科学基金国际(地区)合作与交流项目(中俄)“西北冰洋过去的环境变化:来自沉积物的记录”(编号:41211120173);南北极环境综合考察与评估专项“2012年度北极海域海洋地质考察”(编号:CHINARE2012-03-02)资助.

Spatial Distribution Patterns of GDGTs in the Surface Sediments from the Bering Sea and Arctic Ocean and Their Environmental Significances

Wang Shougang 1, Wang Rujian 1, Chen Jianfang 2, Chen Zhihua 3, Cheng Zhenbo 3, Wang Weiguo 4, Huang Yuanhui 3   

  1. 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China;2.The Second Institute of Oceanography, State Oceanic Administration People’s Republic of China, Hangzhou 310012, China; 3.The First Institute of Oceanography, State Oceanic Administration People’s Republic of China, Qingdao 266061, China; 4.The Third Institute of Oceanography, State Oceanic Administration People’s Republic of China, Xiamen 361005, China
  • Received:2013-01-16 Revised:2013-01-25 Online:2013-02-10 Published:2013-02-10

通过对中国第3次和第4次北极考察在白令海和西北冰洋采集的65个表层样沉积物中生物标记物四醚膜类脂物(GDGTs)的研究,发现西北冰洋表层沉积物中类异戊二烯和支链GDGTs的浓度分布大致以楚科奇海和波弗特海的陆坡为界线,呈现南高北低的特征,这一特征主要与水体生产力和陆源有机质的输入量有关。基于GDGTs的陆源输入指数BIT显示,从楚科奇海北部到高纬度区的阿尔法脊,陆源有机质的相对比例明显增加,与有机碳稳定同位素等结果一致,表明BIT可以用来指示北极陆源有机质输入量的变化。应用前人TEXL86-SST方程估算的研究区表面海水温度SST与现代年均SST和夏季平均SST的相关性较差,原因可能与陆源输入的类异戊二烯GDGTs干扰以及低的古菌生产力有关。从季节性海冰覆盖区到永久性海冰覆盖区,基于支链GDGTs的环化指数CBT明显升高,可能反映了CBT对海冰覆盖状况的响应,但其响应机制还不清楚。基于支链GDGTs的环化指数CBT和甲基化指数MBT估算的北极陆地年均大气温度和土壤pH差异较大,可能是由表层沉积物的来源复杂以及混合作用造成的。

Biomarker Glycerol Dialkyl Glycerol Tetraethers (GDGTs) was analyzed in 65 surface sediments from the Bering Sea and western Arctic Ocean recovered during the 3rd and 4th Chinese National Arctic Expeditions. The distribution patterns of isoprenoid and branched GDGTs concentration are divided by the Chukchi and Beaufort Sea Slope. GDGTs concentration is higher  in the   south of the slope than that in the north, which is controlled by water column productivity and terrestrial organic matter input. GDGTs based BIT suggests that terrestrial organic matter input increases from the north Chukchi Sea to Alpha Ridge, compared with marine organic matter, which is consistent with the results retrieved from organic carbon isotope ratios, suggesting that BIT is a reliable proxy in the Arctic Ocean. Sea Surface Temperatures (SST) derived by TEXL86 are not related to modern annual or summer mean SST, probably because of the mixed signal from terrestrial isprenoid GDGTs and low archaeal productivity in high Arctic region. Cyclisation ratio of Branched Tetraethers (CBT) show strong increase from seasonal sea ice area to permanent sea ice area, which may prove that CBT is sensitive to sea ice coverage. However, its mechanism remained unclear. Reconstructed terrestrial annual mean atmospheric temperature (MAT) and soil pH from branched GDGTs based CBT and Methylation index of Branched Tetraether (MBT) show extremely variability, which is probably affected by complicated sediment sources and soil mixing in transportation process.

中图分类号: 

[1]Stein R, Matthiessen J, Niessen F, et al. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean)[J]. Polarforschung, 2010, 79(2): 97-121.

[2]Schubert C J, Stein R. Lipid distribution in surface sediments from the eastern central Arctic Ocean[J]. Marine Geology, 1997, 13:11-25.

[3]Sun Yechen, Wang Rujian, Xiao Wenshen, et al. Biogenic and terrigenous coarse fractions in surface sediments of the western Arctic Ocean and their sedimentary environments[J]. Acta Oceanologica Sinica, 2011, 33 (2): 103-112.[孙烨忱, 王汝建, 肖文申,等. 西北冰洋表层沉积物中生源和陆源粗组分及其沉积环境[J]. 海洋学报, 2011, 33 (2): 103-112.]

[4]Hummel J, Segu S, Li Y, et al. Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids[J]. Frontiers in Plant Science, 2011, 2: 1-17.

[5]Lu Bing, Zhou Huaiyang, Chen Ronghua, et al. The composition characteristics of n-Alkanes in the modern sediments of the Arctic and the comparison with that of sea areas of different latitudes[J]. Chinese Journal of Polar Research, 2004, 16 (4): 281-294.[卢冰, 周怀阳, 陈荣华,等. 北极现代沉积物中正构烷烃的分子组合特征及其与不同纬度的海域对比[J]. 极地研究, 2004, 16 (4): 281-294.]

[6]Belicka L L, Macdonald R W, Harvey H R. Sources and transport of organic carbon to shelf, slope, and basin surface sediments of the Arctic Ocean[J]. Deep-Sea Research I, 2002, 49: 1 463-1 483.

[7]Yunker M B, Belicka L L, Harvey H R, et al. Tracing the inputs and fate of marine and terrigenous organic matter in Arctic Ocean sediments: A multivariate analysis of lipid biomarkers[J]. Deep-Sea Research II, 2005, 52: 3 478-3 508.

[8]Belicka L L, Macdonald R W, Yunker M B, et al. The role of depositional regime on carbon transport and preservation in Arctic Ocean sediments[J]. Marine Chemistry, 2004, 86: 65-88.

[9]Yunker M B, Backus S M, Pannatier E G, et al. Sources and significance of alkane and PAH hydrocarbons in Canadian Arctic Rivers[J]. Estuarine, Coastal and Shelf Science, 2002, 55(1): 1-31.

[10]Yunker M B, Macdonald R W, Snowdon L R. Glacial to postglacial transformation of organic input pathways in Arctic Ocean basins[J]. Global Biogeochemical Cycles, 2009, 23 (4): 1-13.

[11]Yunker M B, Macdonald R W, Snowdon L R, et al. Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments[J]. Organic Geochemistry, 2011, 42: 1 109-1 146.

[12]Yamamoto M, Okino T, Sugisaki S, et al. Late Pleistocene changes in terrestrial biomarkers in sediments from the central Arctic Ocean[J]. Organic Geochemistry, 2008, 39(6): 754-763.

[13]Yamamoto M, Polyak L. Changes in terrestrial organic matter input to the Mendeleev Ridge, western Arctic Ocean, during the Late Quaternary[J]. Global and Planetary Change, 2009, 68(1/2): 30-37.

[14]Weller P, Stein R. Paleogene biomarker records from the central Arctic Ocean (Integrated Ocean Drilling Program Expedition 302): Organic carbon sources, anoxia, and sea surface temperature[J]. Paleoceanography, 2008, 23: 1-15.

[15]Fietz S, Huguet C, Bende J, et al. Co-variation of crenarchaeol and branched GDGTs in globally-distributed marine and freshwater sedimentary archives[J]. Global and Planetary Change, 2012, 92/93:275-285.

[16]Sinninghe Damsté J S, Schouten S, Hopmans E C, et al. Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota[J]. The Journal of Lipid Research, 2002, 43(10): 1 641-1 651.

[17]Bechtel A, Smittenberg R H, Bernasconi S M, et al. Distribution of branched and isoprenoid tetraether lipids in an oligotrophic and aeutrophic Swiss lake: Insights into sources and GDGT—Based proxies[J]. Organic Geochemistry, 2010, 41(8): 822-832.

[18]Schouten S, Hopmans E C, Schefuss E, et al. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? [J]. Earth Planetary Science Letters, 2002, 204: 265-274.

[19]Weijers J W H , Schouten S, van den Donker J C, et al. Environmental controls on bacterial tet raether membrane lipid distribution in soils [J]. Geochimica et Cosmochimica Acta, 2007, 71: 703-713.

[20]Schouten S, Hopmans E C, Baas M. Intact membrane lipids of “Candidatus Nitrosopum ilus maritimus” a cultivated representative of the cosmopolitan mesophilic Group I Crenarchaeota[J]. Appllied Environmental Microbiology, 2008, 74: 2 433-2 440.

[21]Pan Xiaoju, Jiao Nianzhi. Advances in research of marine Archaea[J]. Marine Sciences, 2001, 25 (2): 21-23.[潘晓驹, 焦念志. 海洋古菌的研究进展[J]. 海洋科学, 2001, 25 (2): 21-23.]

[22]Kim J, Meer J, Schouten S, et al. New indices and calibrations derived from the distribution of crenachaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions[J]. Geochimica et Cosmochimica Acta, 2010, 74: 4 639-4 654.

[23]Weijers J W H, Schouten S, Spaargaren O C, et al. Occurrence and distribution of tetraether membrane in soils: Implications for the use of the BIT index and the TEX86 SST proxy [J] . Organic Geochemistry, 2006, 37: 1 680-1 693.

[24]Sinninghe Damsté J S, Hopmans E C, Pancost R D, et al. Newly discovered non-isoprenoid dialkyl diglycerol tetraether lipids in sediments [J]. Journal of the Chemical Society, Chemical Communications, 2000,(17): 1 683-1 684.

[25]Weijers J W H, Schouten S, Hopmans E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J]. Environmental Microbiology, 2006, 8: 648-657.

[26]Hopmans E C, Weijers J W H, Schefuss E, et al. A novel proxy for terrestrial organic matter in sediments normalized on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224: 107-116.

[27]Weijers J W H, Schouten S, Sluijs A, et al. Warm arctic continents during the Palaeocene-Eocene thermal maximum[J]. Earth and Planetary Science Letters, 2007, 261: 230-238.

[28]Sinninghe Damsté J S, Ossebaar J, Abbas B, et al. Fluxes and distribution of tetraether lipids in an equatorial African lake: Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings[J]. Geochimica et Cosmochimica Acta, 2009, 73: 4 232-4 249.

[29]Peterse F, Kim J H, Schouten S, et al. Constraints on the application of the MBT/CBT paleothermometer at high latitude environments (Svalbard, Norway)[J]. Organic Geochemistry, 2009, 40: 692-699.

[30]Zhu C, Weijers J W H, Wagner T, et al. Sources and distributions of tetraether lipids in surface sediments across a large river dominated continental margin[J]. Organic Geochemistry, 2011, 42: 376-386.

[31]Takahashi K. The Bering Sea and paleoceanography[J]. Deep-Sea Research II, 2005, 52: 2 080-2 091.

[32]Shi Jiuxin, Zhao Jinping, Jiao Yutian, et al. Pacific inflow and its links with abnormal variations in the Arctic Ocean[J]. Chinese Journal o f Polar Research, 2004, 16 (3): 253-260. [史久新, 赵进平, 矫玉田,等.太平洋入流及其与北冰洋异常变化的联系[J]. 极地研究, 2004, 16 (3): 253-260.]

[33]Grebmeier J M, Cooper L W, Feder H M, et al. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic[J]. Progress in Oceanography, 2006, 71: 331-361.

[34]Coachman L K, Aagaard K, Tripp R B. Bering Strait: The Regional Physical Oceanography[M]. Seattle,United States of American: University of Washington Press,  1975.

[35]Wei Yuli, Wang Jinxiang, Liu Jie, et al. Spatial variations in archaeal lipids of surface water and core-top sediments in the South China Sea and their implications for paleoclimate studies[J]. Applied and Environmental Microbiology,2011, 77: 7 479-7 489.

[36]Andersson L G, Bjork G, Holby O, et al. Water masses and circulation in the Eurasian basin: Results from the Oden 91 expedition[J]. Journal of Geophysical Research, 1994, 99(C2): 3 273-3 283.

[37]Liu Zilin, Chen Jianfang, Liu Yanlan, et al. The size-fractionated chlorophyll a and primary productivity in the surveyed area of the western Arctic Ocean during the summer of 2008[J]. Acta Oceanologica Sinica, 2011, 33 (2): 124-133.[刘子琳, 陈建芳, 刘艳岚,等. 2008年夏季西北冰洋观测区叶绿素a和初级生产力粒级结构[J]. 海洋学报, 2011, 33 (2): 124-133.]

[38]Hill J C, Driscoll N W. Paleodrainage on the Chukchi shelf reveals sea level history and meltwater discharge[J]. Marine Geology, 2008, 254: 129-151.

[39]Chen Zhihua, Shi Xuefa, Cai Deling, et al. Organic carbon and nitrogen isotopes in surface sediments from the western Arctic Ocean and their implications for sedimentary environments[J]. Acta Oceanologica Sinica, 2006, 28 (6): 61-71.[陈志华, 石学法, 蔡德陵,等. 北冰洋西部沉积物有机碳、氮同位素特征及其环境指示意义[J]. 海洋学报, 2006, 28 (6): 61-71.]

[40]Schouten S, Ossebaar J, Brummer G J, et al. Transport of terrestrial organic matter to the deep North Atlantic Ocean by ice rafting[J]. Organic Geochemistry, 2007, 38: 1 161- 1168.

[41]Sluijs A, Schouten S, Pagani M, et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum[J]. Nature, 2006, 441: 610-613.

[42]Naidu A S, Cooper L W. Organic carbon isotope ratios of Arctic Amerasian continental shelf sediments[J]. International  Journal of Earth Sciences, 2000, 89: 522-532.

[43]Parkinson C L, Cavalieri D J. Arctic sea ice variability and trends, 1976-2006[J]. Journal of Geophysical Research, 2008, 113C07003,doi:10.1029/2007JC004558.

[44]Park Y H, Yamomoto M, Polyak L, et al. Reconstruction of paleoenvironmental change based on GDGT-proxies from the Chukchi-Alaska margin during the Holocene[C]∥The 18thInternational Symposium on Polar Sciences: Miletones in Polar Research Collaboration. Jeju Island, Korea,2012.

[45]Loomis S E, Russell J M, Ladd B, et al. Calibration and application of the branched GDGT temperature proxy on East African lake sediments[J]. Earth and Planetary Science Letters, 2012, 357/358: 277-288.

[46]Sinninghe Damsté J S, Ossebaar J, Schouten S, et al. Altitudinal shifts in the branched tetraether lipid distribution in soil from Mt. Kilimanjaro (Tanzania): Implications for the MBT/CBT continental palaeothermometer[J]. Organic Geochemistry, 2008, 39: 1 072-1 076.

[1] 王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6): 712-722.
[2] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展 *[J]. 地球科学进展, 2014, 29(5): 569-576.
[3] 李玉红, 詹力扬, 陈立奇. 北冰洋CH 4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.
[4] 王汝建,肖文申,成鑫荣,陈建芳,高爱国,韩贻兵,李秀珠. 北冰洋西部晚第四纪浮游有孔虫氧碳同位素记录的海冰形成速率[J]. 地球科学进展, 2009, 24(6): 643-651.
[5] 付红丽,赵进平. 白令海冰间湖的数值模拟及影响模拟准确度的关键因素[J]. 地球科学进展, 2009, 24(5): 538-548.
[6] 陈木宏. 国际综合大洋钻探计划IODP323白令海航次介绍[J]. 地球科学进展, 2009, 24(12): 1352-1356.
[7] 赵进平,李涛,张树刚,矫玉田. 北冰洋中央密集冰区海冰对太阳短波辐射能吸收的观测研究[J]. 地球科学进展, 2009, 24(1): 33-41.
[8] 高众勇,陈立奇,CAI Wei-jun,WANG Yong-chen. 全球变化中的北极碳汇:现状与未来[J]. 地球科学进展, 2007, 22(8): 857-865.
[9] 史久新,赵进平. 北冰洋盐跃层研究进展[J]. 地球科学进展, 2003, 18(3): 351-357.
阅读次数
全文


摘要