地球科学进展 ›› 2000, Vol. 15 ›› Issue (4): 400 -405. doi: 10.11867/j.issn.1001-8166.2000.04.0400

综述与评述 上一篇    下一篇

太阳变化驱动气候变化研究进展
洪业汤   
  1. 中国科学院地球化学研究所环境地球化学国家重点实验室,贵州 贵阳 550002
  • 收稿日期:2000-01-03 修回日期:2000-03-13 出版日期:2000-08-01
  • 通讯作者: 洪业汤(1941-),男,广西桂林人,研究员,主要从事全球环境变化的同位素标记研究。
  • 基金资助:

    国家自然科学基金重点项目“近13 ka以来陆气系统的物质能量交换过程与全球环境变化”(编号:49733130)资助。

PROGRESS IN STUDY ON RELATIONSHIPS BETWEEN SOLAR VARIABILITY AND CLIMATE CHANGE

HONG Ye-tang   

  1. State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China
  • Received:2000-01-03 Revised:2000-03-13 Online:2000-08-01 Published:2000-08-01

从5个方面综述了近20年来太阳变化驱动气候变化研究的进展,重点在机制方面,即对全球变暖原因看法的分歧、太阳总辐射量的卫星测量结果、树轮14C记录与太阳变化代用指标、太阳变化影响的模拟研究,以及太阳—宇宙射线—云量的关系。强调这是一个有重大经济和科学意义的前沿课题。

There is still controversy on both nature and cause for global warming. This review paper will be concerned only with effects of solar variability on climate change. The emphasis is on the progress in the study on potential mechanisms, rather than on reported correlation between solar variability and climate changes. It covers the Sun' s total irradiance observed by satellites, atmospheric △14C as a proxy indicator of solar activity, modeling of the effect of the Sun' s total irradiance on climate variation, and the influence of cosmic ray on cloud coverage.

中图分类号: 

[1]Houghton J T, Meira Filho L G, Callander B A,et al. Climate Change 1995: the Science of Climate Change[M]. Cambridge: Cambridge University Press, 1996.
[2]Lean J, Beer J, Bradley R. Reconstruction of solar irradiance since 1610: implications for climate change[J]. Geopgys Res Lett, 1995, 22: 3 195~3 198.
[3]Friis-Christensen E, Lassen K. Length of the solar cycle: an indicator of solar activity closely associated with climate[J].Science, 1991, 254: 698~700.
[4]Kerr R A. Could the sun be warming the climate? [J]. Science, 1991, 254: 652~653.
[5]Roberts L. Global warming:blaming the sun[J]. Science,1989,246: 992~993.
[6]Reid G C. Solar irradiance variations and the global sea surface temperature record[J]. Journal of Geophysical Research,1991, 96: 2 835~2 844.
[7]Eddy J A. The maunder minimum[J]. Science, 1976, 192:1 189~1 202.
[8]Eddy J A. Climate and the changing sun[J]. Climate Change,1977, 1: 173~190.
[9]Pap J M, Frohlich C. Total solar irradiance variations[J].Journal of Atmospheric and Solar-Terrestrial Physics, 1999,61: 15~24.
[10]Reid G C. Solar variability and its implications for the human environment[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61: 3~14.
[11]White W B, Lean J, Cayan D R,et al. Response of global upper ocean temperature to changing solar irradiance[J].Journal of Geophysical Research, 1997, 102: 3 255~3 266.
[12]Zhang Q, Soon W H, Baliunas S L,et al. A method of determining possible brightness variations of the Sun in past centuries from observations of solar-type stars[J]. Astrophysics Journal, 1994, 427: L111~L114.
[13]Suess H E. The radiocarbon record in tree rings of the last 8 000 years[J]. Radiocarbon, 1980, 22: 200~209.
[14]Stuiver M. Solar variability and climatic change during the current millennium[J]. Nature, 1980, 286: 868~871.
[15]Stuiver M, Braziunas T F, Becker B,et al. Climatic, solar,oceanic, and geomagnetic influences on late-glacial and Holocene atmospheric14C/12C change[J]. Quaternary Research, 1991, 35: 1~24.
[16]Stuiver M, Braziunas T F. Atmospheric14C and centry-scale solar oscillations[J]. Nature, 1989, 338: 405~408.
[17]Raisbeck G M, Yiou F, Jouzel J,et al.10Be andδ2Hin polar ice cores as a probe of the solar variability' s influence on climate[J]. Philosophical Transactions of the Royal Society of London, 1990, A330:463~470.
[18]Magny M. Solar influence on Holocene climatic changes illustrated by correlations between past lake-level fluctuations and the atmospheric14C record[J]. Quaternary Research,1993, 40: 1~9.
[19]Karlen W, Kuylenstierna J. On solar forcing of Holocene climate: evidence from Scandinavia[J]. The Holocene, 1996,6: 359~365.
[20]Van Geel B, Van Der Plicht J, Kilian M R,et al. The sharp rise ofΔ14C Ca 800 cal BC: possible causes, related climatic teleconnections and the impact on human environments[J].Radiocarbon, 1998, 40: 535~550.
[21]Hong Y T, Jiang HB, Liu T S,et al. Response of climate to solar forcing recorded in a 6 000-yearδ18O time series of Chinese peat cellulose[J]. The Holocene, 2000, 10 (1): 1~7.
[22]Wetherald R T, Manabe S. The effects of changing the solar constant on the climate of a general circulation model[J].Journal of Atmospheric Science, 1975, 32: 2 044~2 059.
[23]Haigh J D. Modelling the impact of solar variability on climate [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61: 63~72.
[24]Ramanathan V, Cess R D, Harrison E F,et al. Cloud-radiative forcing and climate: results from the Earth radiation budget experiment[J]. Science, 1989, 243: 57~63.
[25]Chambers F M, Ogle M I, Blackford J J. Paleoenviron-mental evidence for solar forcing of Holocene climate: link-ages to solar science[J]. Progress in Physical Geography,1999, 23(2): 181~204.
[26]Tinsley B A, Heelis R A. Correlations of atmospheric dynamics with solar activity evidence for a connection via solar wind, atmospheric electricity, and cloud microphysics[J].Journal of Geophysical Research,1993, 98(D6): 10 375~10 384.
[27]Ney E R. Cosmic radiation and the weather[J]. Nature,1959, 183: 451~452.
[28]Dickinson R. Solar variability and the lower atmosphere[J].Bulletin of the American Meteorological Society, 1975, 56:1 240~1 248.
[29]Pudovkin M, Veretenenko S. Cloudiness decrease associated with Forbush decrease of galactic cosmic rays[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1995, 57: 1 349~1 355.
[30]Svensmark H, Friis-Christensen E. Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59: 1 225~1 232.
[31]Lean J, Rind D. Evaluating sun-climate relationships since the Little Ice Age[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61: 25~36.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要