地球科学进展 ›› 2021, Vol. 36 ›› Issue (12): 1258 -1271. doi: 10.11867/j.issn.1001-8166.2021.112

综述与评述 上一篇    下一篇

长链烯酮单体碳 -14同位素分析技术进展与研究意义
肖睿 1 , 2 , 3( ), 包锐 1 , 2 , 3( ), 邢磊 1 , 2   
  1. 1.深海圈层与地球系统前沿科学中心,海洋化学理论与工程技术教育部重点实验室,中国海洋大学,山东 青岛 266100
    2.青岛海洋科学与技术试点国家实验室海洋生态与环境科学功能实验室,山东 青岛 266071
    3.南方海洋科学与工程广东省实验室(广州),广东 广州 511458
  • 收稿日期:2021-07-27 修回日期:2021-10-22 出版日期:2021-12-10
  • 通讯作者: 包锐 E-mail:xiaorui3077@stu.ouc.edu.cn;baorui@ouc.edu.cn
  • 基金资助:
    国家自然科学基金项目“基于单体分子化合物碳-14技术的边缘海有机碳转化、迁移与埋藏过程研究”(42076037);南方海洋科学与工程广东省实验室 (广州) 人才团队引进重大专项“粤港澳大湾区海岸线及滩涂湿地千年至十年尺度环境演变”(GML2019ZD0209)

Alkenones-specific Radiocarbon Analysis:A Review of Approaches and Implications

Rui XIAO 1 , 2 , 3( ), Rui BAO 1 , 2 , 3( ), Lei XING 1 , 2   

  1. 1.Frontiers Science Center for Deep Ocean Multispheres and Earth System,Key Laboratory of Marine Chemistry Theory and Technology,Ministry of Education,Ocean University of China,Qingdao 266100,China
    2.Marine Ecology and Environmental Science Laboratory,Pilot National Laboratory for Marine Science and Technology (Qingdao),Qingdao 266071,China
    3.Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),Guangzhou 511458,China
  • Received:2021-07-27 Revised:2021-10-22 Online:2021-12-10 Published:2022-01-20
  • Contact: Rui BAO E-mail:xiaorui3077@stu.ouc.edu.cn;baorui@ouc.edu.cn
  • About author:XIAO Rui (1994-), female, Qingdao City, Shandong Province, Ph. D student. Research areas include marine organic geochemistry. E-mail: xiaorui3077@stu.ouc.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Investigating transformation, distribution and burial of sedimentary organic carbon in marginal seas: insight from compound specific radiocarbon analysis"(42076037);The Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) "The environmental evolution of the coastline and tidal flat wetlands in the Guangdong-Hongkong-Macao Greater Bay area on a millennium to ten-year scale"(GML2019ZD0209)

生物标志物是研究古环境重建和物质循环理论的重要载体。针对海洋生物标志物的同位素研究是研究古海洋学与海洋元素循环理论的重要手段,应用国际先进的单体分子天然放射性碳同位素(碳-14)技术开展海洋环境演变和碳循环相关研究有着重要的科学意义。其中,长链烯酮单体分子碳-14年龄分析能够反映海洋搬运作用对有机质沉积过程的影响,对生物标志物重建古环境等应用提出了新认识,并为建立利用有机质进行沉积物定年的方法奠定基础,也为建立海洋环境变迁和海洋碳循环模型提供进一步的年龄约束。因此,有必要对长链烯酮单体分子碳-14年龄的测定与研究意义进行系统归纳总结。在此基础上,综合介绍了2种关键的长链烯酮单体的分离提纯技术、1种重要的烯酮单体分离技术和长链烯酮单体分子碳-14分析及计算方法,以及长链烯酮单体分离提纯的过程空白评估方法;并总结了长链烯酮单体分子碳-14分析技术在海洋学中的指示意义:①间接地指示海洋搬运作用;②示踪海洋碳库;③具有改进沉积物年代学和古环境指标的潜力。最后,提出了应用长链烯酮单体分子碳-14解决海洋碳循环的几点核心科学问题。系统地总结长链烯酮单体分子碳-14技术特点与典型范例,对未来在中国近海开展相关研究具有重要启示意义。

Biomarkers are important organic geochemical fingerprints in studying paleoceanography and oceanic elemental cycles. Isotope compositions of biomarkers have significant meanings in investigating the paleoenvironmental reconstruction and carbon cycles in marine realm. Radiocarbon age of Long-Chain Alkenones (LCAs) has greatly scientific significance in constraining age models for establishing marine environmental changes, and studying oceanic carbon cycles at a molecular level, setting an important dimension for the future researches in compound-specific radiocarbon analysis. It thus is necessary to summarize systematically the approaches and implications of Alkenones-Specific Radiocarbon Analysis (ASRA). The separation and purification technologies of LCAs, radiocarbon calculation methods, and blank correction are summarized here. The significant implications of ASRA are proposed as follows: ASRA ①indicates indirectly transportation and deposition processes on sedimentary organic matter, ② can be used to trace marine carbon pool, and ③ to improve chronology and paleoenvironmental indicators in the ocean. The foreground of the development and application of ASRA are also demonstrated. We suggest that systematically summarizing the technical characteristics and typical applications of ASRA is of significance in carbon cycles and paleoenvironment reconstruction in marine system, especially for marine biogeochemical studies in China marginal seas.

中图分类号: 

图1 C37-LCAs结构式
Fig. 1 The structures of the LCAs with 37 carbons
图2 LCAs单体放射性碳同位素分析技术流程图
Fig. 2 Flow chart of alkenones preparation for radiocarbon analysis
图3 空白校正对实验结果准确度的影响示意图
(a) 实验数据准确性与外源碳占样品含碳量的百分比 (Y轴) 随样品量 (X轴) 变化的概念模型;(b) 直接法和间接法校正空白校正对比图(化石源和现代源标准样品) 46 ;(c) 化石源标准样品过程空白校正前后FM值对比图 44 ;(d) 现代源标准样品过程空白校正前后FM值对比图 44 ;图中黑实线为标准样品的FM值, 虚线箭头代表实验结果与标准样品真实FM值的误差随样品量的变化趋势
Fig. 3 Schematic diagrams for influences of blank corrections on the accuracy of measured results
(a) The conceptual model of accuracy of experimental results and percentage of blank carbon against sample carbon abundance; (b) Radiocarbon values of fossil and modern standards revised by direct and indirect blank corrections 46 ; Radiocarbon values of fossil standards (c) and modern standards (d) before and after blank corrections 44 . The bold lines indicate the radiocarbon values of standards. The dashed arrows represent the trends of the offsets between measured results and standards coupled with carbon abundances
图4 LCAs单体分子碳-14技术在重建海洋古环境及海洋碳循环研究中应用示意图
Fig. 4 Schematic diagram for four applications of alkenones-specific radiocarbon in marine paleoenvironment reconstruction and marine carbon cycle
1 LEEUW J, MEER F, RIJPSTRA W, et al. On the occurrence and structural identification of long chain unsaturated ketones and hydrocarbons in sediments [J]. Physics & Chemistry of the Earth, 1980, 12: 211-217.
2 VOLKMAN J K, BARRETT S M, BLACKBURN S I, et al. Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate [J]. Geochimica et Cosmochimica Acta, 1995, 59(3): 513-520.
3 LIU W, LIU Z, FU M, et al. Distribution of the C37 tetra-unsaturated alkenone in Lake Qinghai, China: a potential lake salinity indicator [J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 988-997.
4 WARDEN L, MEER M, MOROS M, et al. Sedimentary alkenone distributions reflect salinity changes in the Baltic Sea over the Holocene [J]. Organic Geochemistry, 2016, 102: 30-44.
5 SEKI O, FOSTER G L, SCHMIDT D N, et al. Alkenone and boron-based Pliocene pCO2 records [J]. Earth and Planetary Science Letters, 2010, 292(1/2): 201-211.
6 PAGANI M, FREEMAN K H, OHKOUCHI N, et al. Comparison of water column [CO2aq] with sedimentary alkenone-based estimates: a test of the alkenone-CO2 proxy [J]. Paleoceanography, 2002, 17(4): 1-21.
7 PAGANI M, FREEMAN K, OHKOUCHI N, et al. The accuracy of the alkenone-pCO2 proxy [Z]. Geophysical Research Abstracts, 2003.
8 ZHANG Y G, HENDERIKS J, LIU X. Refining the alkenone-pCO2 method II: towards resolving the physiological parameter 'b' [J]. Geochimica et Cosmochimica Acta, 2020, 281: 118-134.
9 PRAHL F G, MUEHLHAUSEN L A, ZAHNLE D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions [J]. Geochimica et Cosrnochimica Acta, 1988, 52(9): 2 303-2 310.
10 DING Ling, XING Lei, ZHAO Meixun. Applications of biomarkers for reconstructing phytoplankton productivity and community structure changes [J]. Advances in Earth Science, 2010, 25(9): 981-989.
丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展 [J]. 地球科学进展, 2010, 25(9): 981-989.
11 CHU G, SUN Q, LI S, et al. Long-chain alkenone distributions and temperature dependence in lacustrine surface sediments from China [J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 4 985-5 003.
12 LIU Z H, LIU W G. Composition patterns of long-chain alkenones in lacustrine settings [J]. Journal of Earth Environment, 2012, 3(4): 942-949.
13 LONGO W M, HUANG Y, YAO Y, et al. Widespread occurrence of distinct alkenones from Group I haptophytes in freshwater lakes: implications for paleotemperature and paleoenvironmental reconstructions [J]. Earth & Planetary Science Letters, 2018, 492: 239-250.
14 BRASSELL S C, BRERETON R G, EGLINTON G, et al. Palaeoclimatic signals recognized by chemometric treatment of molecular stratigraphic data [J]. Organic Geochemistry, 1986, 10(4/6): 649-660.
15 ROSELL A, GRIMALT J O, EGLINTON G. Organic compounds as Proxy-Indicators of sea surface palaeotemperature: the U 37 k index[M]//Long-term climatic variations-data and modelling. Berlin Heidelberg: Springer, 1994: 239-249.
16 KASPER S, van der MEER M T J, CASTAEDA I S, et al. Testing the alkenone D/H ratio as a paleo indicator of sea surface salinity in a coastal ocean margin (Mozambique Channel) [J]. Organic Geochemistry, 2015, 78: 62-68.
17 GOULD J, KIENAST M, DOWD M, et al. An open-ocean assessment of alkenone δD as a paleo-salinity proxy [J]. Geochimica et Cosmochimica Acta, 2019, 246(1): 478-497.
18 PAHNKE K, SACHS J P, KEIGWIN L, et al. Eastern tropical Pacific hydrologic changes during the past 27,000 years from D/H ratios in alkenones [J]. Paleoceanography, 2007, 22(4): 1-15.
19 JASPER J P, HAYES J M, MIX A C, et al. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years [J]. Paleoceanography, 1994, 9(6): 781-798.
20 BAE S W, LEE K E, KIM K. Use of carbon isotopic composition of alkenone as a CO2 proxy in the east Sea/Japan Sea [J]. Continental Shelf Research, 2015, 107(15): 24-32.
21 OHKOUCHI N, EGLINTON T I, KEIGWIN L D, et al. Spatial and temporal offsets between proxy records in a sediment drift [J]. Science, 2002, 298(5 596): 1 224-1 227.
22 BRASSELL S C, EGLINTON G, MARLOWE I T, et al. Molecular stratigraphy: a new tool for climatic assessment [J]. Nature, 1986, 320(6 058): 129-133.
23 SMITTENBERG R, HOPMANS E C, SCHOUTEN S, et al. Compound-specific radiocarbon dating of the varved Holocene sedimentary record of Saanich Inlet, Canada [J]. Paleoceanography, 2004, 19(2): 1-16.
24 UCHIDA M, SHIBATA Y, OHKUSHI K, et al. Age discrepancy between molecular biomarkers and calcareous foraminifera isolated from the same horizons of Northwest Pacific sediments [J]. Chemical Geology, 2005, 218(1/2): 73-89.
25 MOLLENHAUER G, MONTLUCON D, EGLINTON T I. Radiocarbon dating of alkenones from marine sediments: II. assessment of carbon process blanks [J]. Radiocarbon, 2005, 47(3): 413-424.
26 PEARSON A, EGLINTON T I, MCNICHOL A P. An organic tracer for surface ocean radiocarbon [J]. Paleoceanography, 2000, 15(5): 541-550.
27 OHKOUCHI N, EGLINTON T I, HAYES J M. Radiocarbon dating of individual fatty acids as a tool for refining Antarctic margin sediment chronologies [J]. Radiocarbon, 2003, 45(1): 17-24.
28 PRAHL F G, WAKEHAM S G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment [J]. Nature, 1987, 330(6 146): 367-369.
29 ZHANG Hailong, TAO Shuqin, YU Meng, et al. A review on techniques and applications of biomarker compound-specific radiocarbon analysis [J]. Advances in Earth Science, 2017, 32(11): 79-89.
张海龙,陶舒琴,于蒙,等. 生物标志物单体放射性碳同位素分析技术的发展 [J]. 地球科学进展, 2017, 32(11): 79-89.
30 D' ANDREA W J, LIU Z, ALEXANDRE M D R, et al. An efficient method for isolating individual long-chain alkenones for compound-specific hydrogen isotope analysis [J]. Analytical Chemistry, 2007, 79(9): 3 430-3 435.
31 OHKOUCHI N, XU L, REDDY C M, et al. Radiocarbon dating of alkenones from marine sediments: I. isolation protocol [J]. Radiocarbon, 2005, 47(3): 401-412.
32 MOMCHILOVA S, NIKOLOVA-DAMYANOVA B. Stationary phases for silver ion chromatography of lipids: preparation and properties [J]. Journal of Separation Science, 2003, 26: 261-270.
33 MOLLENHAUER G, EGLINTON T I, OHKOUCHI N, et al. Asynchronous alkenone and foraminifera records from the Benguela Upwelling System [J]. Geochimica et Cosmochimica Acta, 2003, 67(12): 2 157-2 171.
34 LUZ L G, AUSIN B, HAGHIPOUR N, et al. Alkenones isolation from lipid fraction of marine sediments in the Southeastern Continental Brazilian Slope [J]. Revista Virtual de Quimica, 2019, 11(1): 1-14.
35 WANG L, LONGO W M, DILLON J T, et al. An efficient approach to eliminate steryl ethers and miscellaneous esters/ketones for gas chromatographic analysis of alkenones and alkenoates [J]. Journal of Chromatography A, 2019, 1 596: 175-182.
36 XU L, REDDY C M, FARRINGTON J W, et al. Identification of a novel alkenone in Black Sea sediments [J]. Organic Geochemistry, 2001, 32(5): 633-645.
37 DILLON J T, LONGO W M, ZHANG Y, et al. Identification of double-bond positions in isomeric alkenonesfrom a lacustrine haptophyte [J]. Rapid Communications in Mass Spectrometry, 2016, 30: 112-118.
38 EGLINTON T I, ALUWIHARE L I, BAUER J E, et al. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating [J]. Analytical Chemistry, 1996, 68(5): 904-912.
39 WACKER L, LIPPOLD J, MOLNÁR M, et al. Towards radiocarbon dating of single foraminifera with a gas ion source [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 307-310.
40 SANTOS G M, SOUTHON J R, GRIFFIN S, et al. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility [J]. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atmos, 2007, 259(1): 293-302.
41 BALL G I, XU L, MCNICHOL A P, et al. A two-dimensional, heart-cutting preparative gas chromatograph facilitates highly resolved single-compound isolations with utility towards compound-specific natural abundance radiocarbon (14C) analyses. [J]. Journal of Chromatography A, 2012, 1 220: 122-131.
42 PEARSON A, MCNICHOL A P, SCHNEIDER R J, et al. Microscale AMS 14C measurements at NOSAMS [J]. Radiocarbon, 1998, 40(1): 61-75.
43 MOLLENHAUER G, KIENAST M, LAMY F, et al. An evaluation of 14C age relationships between co-occurring foraminifera, alkenones, and total organic carbon in continental margin sediments [J]. Paleoceanography, 2005, 20(1): 1-12.
44 ZIOLKOWSKI L A, DRUFFEL E. Quantification of extraneous carbon during compound specific radiocarbon analysis of black carbon [J]. Analytical Chemistry, 2009, 81(24): 10 156-10 161.
45 SHAH S R, PEARSON A. Ultra-Microscale (5-25 μg C) analysis of individual lipids by 14C AMS: assessment and correction for sample processing blanks [J]. Radiocarbon, 2007, 49(1): 69-82.
46 COPPOLA A I, ZIOLKOWSKI L A, DRUFFEL E. Extraneous carbon assessments in radiocarbon measurements of black carbon in environmental matrices [J]. Radiocarbon, 2012, 55(3): 1 631-1 640.
47 MOLLENHAUER G, RETHEMEYER J. Compound-specific radiocarbon analysis—analytical challenges and applications [J]. IOP Conference Series: Earth and Environmental Science, 2009, 5: 1-9.
48 LI Xiaoyan, SHI Xuefa, CHENG Zhenbo, et al. Advances in study on the methods for sea surface paleotemperature reconstruction [J]. Advances in Marine Science, 2008, 26(4): 512-521.
李小艳,石学法,程振波,等. 表层海水古温度再造方法的研究进展 [J]. 海洋科学进展, 2008, 26(4): 512-521.
49 AUBRY M, BORD D, BEAUFORT L, et al. Trends in size changes in the coccolithophorids, calcareous nannoplankton, during the mesozoic: a pilot study [J]. Micropaleontology, 2005, 51: 309-318.
50 ZHAO Meixun, YU Meng, ZHANG Hailong, et al. Applications of compound-specific radiocarbon analysis in oceanography and environmental science [J]. Acta Oceanologica Sinica, 2014, 36(4): 1-10.
赵美训,于蒙,张海龙,等. 单体分子放射性碳同位素分析在海洋科学及环境科学研究中的应用 [J]. 海洋学报, 2014, 36(4): 1-10.
51 AUSÍN B, HAGHIPOUR N, BRUNI E, et al. The influence of lateral transport on sedimentary alkenone paleoproxy signals [J]. EGU Biogeosciences, 2021, 204: 1-25.
52 MOLLENHAUER G, EGLINTON T. Radiocarbon dating of alkenones in sediments from the Namibian continental margin [Z]. Nice: EGS General Assembly Conference, 2002.
53 MOLLENHAUER G, EGLINTON T I. Diagenetic and sedimentological controls on the composition of organic matter preserved in California Borderland Basin sediments [J]. Limnology and Oceanography, 2007, 52(2): 558-576.
54 OHKOUCHI N, MOLLENHAUER G, EGLINTON T I. Comparisons of radiocarbon ages of alkenones with planktonic foraminifera and total organic carbon in oceanic surface sediments [Z]. San Francisco: AGU Fall Meeting, 2003.
55 MOLLENHAUER G, MCMANUS J F, BENTHIEN A, et al. Rapid lateral particle transport in the Argentine Basin: molecular 14C and 230Thxs evidence [J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53(7): 1 224-1 243.
56 KUSCH S, EGLINTON T I, MIX A C, et al. Timescales of lateral sediment transport in the Panama Basin as revealed by radiocarbon ages of alkenones, total organic carbon and foraminifera [J]. Earth and Planetary Science Letters, 2010, 290(3/4): 340-350.
57 TAO S, XING L, LUO X, et al. Alkenone distribution in surface sediments of the southern Yellow Sea and implications for the U 37 k ' thermometer [J]. Geo-Marine Letters, 2012, 32(1): 61-71.
58 MÜLLER P J, KIRST G, RUHLAND G, et al. Calibration of the alkenone paleotemperature index U 37 k ' based on core-tops from the eastern South Atlantic and the global ocean (60° N- 60°S) [J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1 757-1 772.
59 CONTE M H, THOMPSON A, LESLEY D, et al. Genetic and physiological influences on the Alkenone/Alkenoate versus growth temperature relationship in emiliania huxleyi and gephyrocapsa oceanica [J]. Geochimica et Cosmochimica Acta, 1998, 62(1): 51-68.
60 SICRE M, BARD E, EZAT U, et al. Alkenone distributions in the North Atlantic and Nordic sea surface waters [J]. Geochemistry Geophysics Geosystems, 2002, 3(2): 1-13.
61 GOI M A, HARTZ D M, THUNELL R C, et al. Oceanographic considerations for the application of the alkenone-based paleotemperature U 37 k ' index in the Gulf of California [J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 545-557.
62 RICHEY J N, TIERNEY J E. GDGT and alkenone flux in the northern Gulf of Mexico: implications for the TEX86 and U 37 k ' paleothermometers [J]. Paleoceanography, 2016, 31: 1 547-1 561.
63 PRAHL F G, RONTANI J F, ZABETI N, et al. Systematic pattern in U 37 k '-temperature residuals for surface sediments from high latitude and other oceanographic settings [J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 131-143.
64 ROSELL-MELÉ A, PRAHL F G. Seasonality of U 37 k ' temperature estimates as inferred from sediment trap data [J]. Quaternary Science Reviews, 2013, 72: 128-136.
65 VERSTEEGH G, RIEGMAN R, LEEUW J, et al. U 37 k ' values for Isochrysis galbana as a function of culture temperature, light intensity and nutrient concentrations [J]. Organic Geochemistry, 2001, 32(6): 785-794.
66 KEIGWIN L D. Sedimentary record yields several centuries of data: the Little Ice Age and Medieval Warm Period in the Sargasso Sea [J]. Science, 1996, 274(5 292): 1 503-1 508.
67 SIKES E L, VOLKMAN J K. Calibration of alkenone unsaturation ratios (U 37 k ') for paleotemperature estimation in cold polar waters [J]. Geochimica et Cosmochimica Acta, 1993, 57(8): 1 883-1 889.
68 SONZOGNI C, BARD E, ROSTEK F, et al. Temperature and salinity effects on alkenone ratios measured in surface sediments from the Indian Ocean [J]. Quaternary Research, 1997, 47(3): 344-355.
69 CONTE M H, SICRE M L, RÜHLEMANN C, et al. Global temperature calibration of the alkenone unsaturation index (U 37 k ') in surface waters and comparison with surface sediments [J]. Geochemistry Geophysics Geosystems, 2006, 7(2): 1-22.
70 BART P J, CONE A N. Early stall of West Antarctic Ice Sheet advance on the eastern Ross Sea middle shelf followed by retreat at 27,500 14C yr BP [J]. Palaeogeography Palaeoclimatology Palaeoecology, 2012, 335/336: 52-60.
71 ZHU Kunjie, HE Shuping, CHEN Fang, et al. Engineering geological characteristics and genesis of the sediments from the southern Mariana Trench [J]. Journal of Geology, 2015, 39(2): 251-257.
朱坤杰,何树平,陈芳,等. 马里亚纳海沟南部海域沉积物的工程地质特性及其成因 [J]. 地质学刊, 2015, 39(2): 251-257.
72 XIAO Chunhui, WANG Yonghong, LIN Jian. Research progress on ocean trench sedimentation [J]. Journal of Tropical Oceanography, 2017, 36(6): 27-38.
肖春晖,王永红,林间. 海沟沉积物研究进展 [J]. 热带海洋学报, 2017, 36(6): 27-38.
73 FIGEN M. Radiocarbon dating of planktonic foraminifer shells: a cautionary tale [J]. Paleoceanography, 2014, 29(1): 13-29.
74 LIN Gang, CHEN Linying, LUO Min, et al. Source of organic matter and changes in carbonate content in the New Britain Trench, Central Western Pacific Warm Pool [J]. Geochimica, 2019, 48(2): 138-148.
林刚,陈琳莹,罗敏,等. 西太平洋暖池核心区新不列颠海沟有机质来源及碳酸盐含量变化 [J]. 地球化学, 2019, 48(2): 138-148.
75 BAO R, STRASSER M, MCNICHOL A P, et al. Tectonically triggered sediment and carbon export to the Hadal zone [J]. Nature Communications, 2018, 9(121): 1-8.
76 XU Y, LI X, LUO M, et al. Distribution, source and burial of sedimentary organic carbon in Kermadec and Atacama trenches [J]. Journal of Geophysical Research Biogeosciences, 2021, 126(5): 1-16.
77 EGLINTON T I, BENITEZ-NELSON B C. Variability in radiocarbon ages on individual organic compounds from marine sediments. [J]. Science, 1997, 277(5 327): 796-799.
78 OLSSON I U. Accuracy and precision in sediment chronology [J]. Hydrobiologia, 1991, 214(1): 25-34.
79 STUIVER M, PALACH H A. Discussion: reporting of 14C Data [J]. Radiocarbon, 1977, 19(3): 355-363.
80 HAO Yichun, MAO Shaozhi. Acta micropalaeontologica sinica [M]. Wuhan: China University of Geosciences Press, 1989.
郝诒纯,茅绍智. 微体古生物学教程 [M]. 武汉: 中国地质大学出版社, 1989.
81 CHEN Puli. Review of the calcareous nannofossils in stratigraphy [J]. Inner Mongolia Petrochemical Industry, 2009, 35(17): 4-6.
陈蒲礼. 钙质超微化石在地层学中的研究综述 [J]. 内蒙古石油化工, 2009, 35(17): 4-6.
82 WALLACE D. Introduction to special section: ocean measurements and models of carbon sources and sinks [J]. Global Biogeochemical Cycles, 2001, 15(1): 3-10.
83 BOWN P R. Calcareous nannofossil biostratigraphy [M]. London: Kluwer Academic Publisher, 1998.
84 LU Xi, SONG Jinming, YUAN Huamao, et al. Carbon distribution and exchange of Kuroshio and adjacent China sea shelf: a review [J]. Advances in Earth Science, 2015, 30(2): 214-225.
卢汐,宋金明,袁华茂,等. 黑潮与毗邻陆架海域的碳交换 [J]. 地球科学进展, 2015, 30(2): 214-225.
85 BAO R, BLATTMANN T, MCINTYRE C, et al. Relationships between grain size and organic carbon 14C heterogeneity in continental margin sediments [J]. Earth and Planetary Science Letters, 2019, 505: 76-85.
[1] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[2] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[3] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[4] 侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.
[5] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[6] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[7] 陈中红, Moldowan J M,刘昭茜. 东营凹陷生物降解稠油甾烷分子的选择蚀变[J]. 地球科学进展, 2012, 27(10): 1108-1114.
[8] 赵军,姚鹏,于志刚. 海洋沉积物中色素生物标志物研究进展[J]. 地球科学进展, 2010, 25(9): 950-959.
[9] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
[10] 马安来;张水昌;张大江;金之钧. 生物降解原油地球化学研究新进展[J]. 地球科学进展, 2005, 20(4): 449-454.
[11] 吴 莹,张 经,唐运千. 中国海洋有机地球化学研究的若干进展[J]. 地球科学进展, 1999, 14(3): 256-261.
阅读次数
全文


摘要